T Veerarajan - Laplace Transform
T Veerarajan - Laplace Transform
Laplace
Transforms
5.1 INTRODUCTION
The Laplace transform is a powerful mathematical technique useful to the
engineers and scientists, as it enables them to solve linear differential equations
with given initial conditions by using algebraic methods. The Laplace transform
technique can also be used to solve systems of differential equations, partial
differential equations and integral equations. Starting with the definition of Laplace
transform, we shall discuss below the properties of Laplace transforms and derive
the transforms of some functions which usually occur in the solution of linear
differential equations.
5.1.1 Definition ∞
∫e
− st
If f (t) is a function of t defined for all t ≥ 0, f (t ) dt is defined as the Laplace
0
transform of f(t), provided the integral exists.
Clearly the integral is a function of the parameters s. This function of s is denoted
as f (s) or F(s) or f(s). Unless we have to deal with the Laplace transforms of more
than one function, we shall denote the Laplace transform of f (t) as f(s). Sometimes
the letter ‘p’ is used in the place of s.
The Laplace transform of f (t) is also denoted as L{f (t)}, where L is called the
Laplace transform operator.
∞
The operation of multiplying f (t) by e−st and integrating the product with respect
to t between 0 and • is called Laplace transformation.
The function f (t) is called the Laplace inverse transform of f(s) and is denoted
by L−1{φ (s)}.
Note
Note
1. A function f (t) is said to be piecewise continuous in the finite interval a ≤ t ≤
b, if the interval can be divided into a finite number of sub-intervals such that
(i) f (t) is continuous at every point inside each of the sub-intervals and
(ii) f (t) has finite limits as t approaches the end points of each sub-interval
from the interior of the sub-interval.
2. A function f (t) is said to be of the exponential order, if | f (t)| ≤ M eαt, for all t ≥ 0 and
some constants M and α or equivalently, if lim{e−αt f (t )} = a finite quantity.
t →∞
Most of the functions that represent physical quantities and that we encounter in
differential equations satisfy the conditions stated above and hence may be assumed
to have Laplace transforms.
= k1 ∫ f1 (t ) ⋅ e−st dt ± k2 ∫ f 2 (t ) ⋅ e−st dt
0 0
= k1 ⋅ L{f1 (t )} ± k2 ⋅ L{ f 2 (t )}.
Thus L is a linear operator.
As a particular case of the property, we get
L{k f (t)} = kL{f(t)}, where k is a constant.
Laplace Transforms 5.5
Note
1. L{f1(t) . f2(t)} ≠ L{f1(t)} . L{f2(t)} and
L−1{φ (s) . φ (s)} ≠ L−1(φ (s)} × L−1{φ (s)}
1 2 1 2
∞
e−st
=k
−s
0
k
= (0 −1)[ e−st → 0 as t → ∞, if s > 0]
−s
k.
=
s
5.6 Mathematics II
1
In particular, L(0) = 0 and L(1) =
s
1
∴ L−1
=1.
s
− at 1
2. L{e } = , where a is a constant,
s+a
∞
∞
∞
e−(s + a )t
=∫ e −(s + a )t
dt =
−(s + a )
0 0
1
= (0 −1) , if (s + a) > 0
−(s + a )
1
= , if s > −a.
s+a
1
Inverting, we get L−1 = e−at .
s + a
1
3. L{e at } = , where a is a constant, if s −a > 0 or s > a.
s−a
Changing a to − a in (2), this result follows. The corresponding inverse result is
1
L−1 = e at
s − a
(n + 1)
4. L(t n ) = , if s > 0 and n > − 1.
sn + 1
∞
L(t ) = ∫ e−st ⋅ t n dt
n
∞
x d x
n
= ∫ e− x ⋅ , on putting st = x
s s
0
∞
1
∫e
−x
= x n dx
sn + 1 0
Laplace Transforms 5.7
(n + 1) = n!
n!
∴ L(t n ) = , if s > 0 and n is a positive integer.
sn + 1
n!
Inverting, we get L−1 n + 1 = t n or
s
1
1
L−1 n + 1 = t n
s
n!
−1
1
1
Changing n to n − 1, we get L n = t n− 1 , if n is a positive integer.
s
(n − 1)!
1
1 n− 1
If n > 0, then L−1 n = t
s
(n)
1 1
In particular, L(t ) = or L−1 2 = t .
s2 s
a
5. L(sin at ) =
s2 + a2
∞
∞
e−st
= 2 ( − s sin at − a cos at )
s + a2
0
s ∞ a ∞
=−
s2 + a2
( e−st sin at)0 − s 2 + a 2 (e−st cos at )0
a
=
s2 + a2
[ e−st sin at and e−st cos at tend to zero at t → ∞, if s > 0]
a
Inverting this result we get L−1 2 2
= sin at .
s + a
5.8 Mathematics II
s
6. L(cos at ) =
s2 + a2
∞
∞
e−st
= 2 ( − s cos at + a sin at )
s + a2
0
s ∞ a ∞
2 (
=− 2 e−st cos at ) + 2 2 (
e−st sin at )
s +a 0 s +a 0
s
= , as per the results stated above.
s + a2 2
s
Inverting the above result we get L−1 2 2
= cos at .
s + a
Aliter
L(cos at + i sin at) = L(eiat)
1
= , by result (3).
s − ia
s + ia
=
s2 + a2
s a
i.e., L(cos at ) + iL (sin at ) = +i 2 , by linearity property.
s +a
2 2
s + a2
s
Equating the real parts, we get L(cos at ) = .
s2 + a2
a
Equating the imaginary parts, we get L(sin at ) =
s + a2
2
a
7. L(sinh at ) =
s − a2
2
1
L(sinh at ) = L (e at − e−at )
2
1
= L (e at ) − L (e−at ) , by linearity property.
2
1 1 1
= − , if s > a and s > − a.
2 s − a s + a
a
= , if s > |a|
s − a2
2
Laplace Transforms 5.9
Aliter
L(sinh at) = − iL(sin i at) [ ∴ sin iθ = i sinh θ]
ia
= −i ⋅ , by result (5)
s +i a
2 2 2
a
=
s −a
2 2
a
Inverting the above result we get L−1 2 2
= sinh at.
s − a
s
8. L(cosh at ) =
s −a2 2
1
L(cosh at ) = L (e a t + e−a t )
2
1
= L (e a t ) + L (e−a t ), by linearity property,
2
1 1 1
= + , if s > |a|.
2 s − a s + a
s
= , if s > |a|.
s − a2
2
Aliter
L(cosh at) = L(cos iat) [ cos iq = cosh q]
s
= , by result (6)
s + i2a2
2
s
=
s − a2
2
s
Inverting the above result we get L−1 2 2
= cosh at.
s −a
5.4.1 Definition
0, when t < a
The function f (t ) =
, is called Heavyside’s unit step
1, when t > a, where a ≥ 0
function and is denoted by ua (t) or u (t − a)
5.10 Mathematics II
= ∫ e−s t ua (t ) dt + ∫ e−s t ua (t ) dt
0 a
∞
e−s t e−a s
= −S = S , assuming that s > 0.
a
1
In particular, L{u0 (t )} = , which is the same as L(1).
S
e−as
Inverting the above result, we get L−1
= ua (t ) .
s
5.4.2 Definition
lim { f (t )} , where f (t) is defined by
h→0
1 , when a − h ≤ t ≤ a + h
f (t ) =
h 2 2 is called Unit Impulse
0 , otherwise
= lim L{ f (t )}
h→ 0
= lim ∫ e−s t f (t ) dt
h→ 0
0
h
a+
2
1
= lim
h→ 0 ∫ e−s t ⋅
h
dt
h
a−
2
a+
h
1 e−s t 2
= lim ⋅
h → 0 h −s h
a−
2
Laplace Transforms 5.11
−s a − h − s a +
h
e 2 − e 2
= lim
h→ 0 sh
s h/2 − s h / 2
−e
= e−a s lim
e
h→ 0
sh
sh
2 sinh
2
= e−a s lim
h→ 0 sh
sh
s cosh
2
= e−a s lim , by L’ Hospital’s rule.
h→ 0 s
sh
= e−a s lim cosh = e−a s
h→ 0 2
Aliter
1
f (t ) = u h (t ) − u h (t ) , since
h a− 2 a+
2
h
u h (t ) = 1, when t > a − and u h (t ) = 0 ,
a− a+
2 2 2
h
when t<a+ and hence u h (t ) − u h (t ) = 1
2 a− a+
2 2
h h
when a− <t <a +
2 2
∴ L{f (t )} =
1L
u ( t )
− L
u (t )
h a− h
a+
h
2
2
− a − ⋅⋅ s
h
− a + ⋅⋅ s
h
1 e 2 e 2
= −
h s s
sh
2 sinh
2
= e−a s
sh
5.12 Mathematics II
sh
2 sinh
2
∴ L {δa (t )} = lim L { f (t )} = e−as ⋅ lim
h→ 0 h→ 0 sh
= e−as
Inverting the above result, we get
L−1{e−as}= δa(t). When a → 0, L−1 {1} = δ (t).
∞ x
−s d x , putting x = at and making necessary changes.
=∫ e a
f (x)
0
a
∞
1
∫e
−(s / a ) x
= ⋅ f (x) dx (2)
a 0
∞
1
∫e
−(s / a ) t
= ⋅ f (t ) dt , changing the dummy variable x as t.
a 0
Now, comparing (1) and (2), we note that the integral in (2) is the same as the
integral in (1) except that ‘s’ in integral in (1) is replaced by s in the integral
a
in (2).
∴ When the integral in (1) is equal to φ (s), that in (2) is equal to φ (s/a).
1
Thus L{ f (at )} = φ ( s a ) (3)
a
Proof
∞
= ∫ e−( s + a ) t f (t ) dt (2)
0
Note
1. The above property can be rewritten as a working rule (formula) in the fol-
lowing way:
L{e−at f (t )}=φ (s + a )
=[φ (s )]s→ s + a
= L{ f (t )}s→ s + a
‘s → s + a’ means that s is replaced by (s + a).
Thus, to find the Laplace transform of the product of two factors, one of
which is e−at, we ignore e−at, find the Laplace transform of the other factor as
a function of s and change s into (s + a) in it.
Similarly,
L{eat f (t)} = L{f (t)s → s −a
2. The above property can be stated in terms of the inverse Laplace operator as
follows:
−1
If L {φ (s )}= f (t ) , then L−1 {φ (s + a )}= e−at ⋅ f (t )
From this form of the property, we get the following working rule:
L−1 {φ (s + a )}= e−at ⋅ L−1 {φ (s )}
This means that if we wish to find the Laplace inverse transform of a function
that can be identified as a function of (s + a), we have to find the Laplace
inverse transform of the corresponding function of s and multiply it with e−at.
Similarly,
L−1 {φ (s − a )}= e at L−1 {φ (s )} .
5.14 Mathematics II
3. The above property is called so, as it concerns shifting on the s-axis by a (or
− a), i.e., replacing s by s + a (or s − a).
The second shifting property, that follows, concerns shifting on the t-axis by
−a i.e., replacing t by t − a.
Proof
∞
− as
=e φ (s )
Note
1. Rewriting the above property, we get the following working rule:
L{f (t − a) ua(t)} = e−as L{f (t)}
2. The above property can be stated in terms of the inverse Laplace operator as
follows:
If L−1{φ (s)} = f (t), then L−1{e−as φ (s)} = f (t − a) ua(t).
From this form of the property, we get the following working rule.
L {e−as φ (s)} = L−1 {φ (s)}t → t − a · ua(t).
−1
Thus if we wish to find the Laplace inverse transform of the product of two factors,
one of which is e−as, we ignore e−as, find the Laplace inverse transform of the other
factor as a function of t, replace t by (t − a) in it and multiply by ua(t).
(t −1)2 ,
for t >1
(i) f (t ) =
for 0 < t < 1
0,
e k t , for 0 < t < a
(ii) f (t ) =
0, for t > a
π
sin ωt , for 0 < t <
(iii) f (t )=
ω
π
0, for t >
ω
t, for 0 < t < 4
(iv) f (t ) =
5,
for t > 4
∞
1 ∞
(i) L{f (t )}= ∫ e−st ⋅ odt + ∫ (t −1) e−st dt
2
0 1
∞
2 e
− st e−st e−st
= (t −1) ⋅ − 2 (t −1) 2 + 2 3
−s s − s
1
2 −s 2 −s
=0+ e = 3e
s3 s
Aliter
0, for 0 < t <1
(t −1) u1 (t ) =
2
(t −1)
2
for t >1
2 −s
= e
s3
a ∞
e−(s − k )t
a
= = 1 {1− e−a (s − k ) }
−( s − k ) 0 s − k
5.16 Mathematics II
Aliter
e k t , for 0 < t < a
Consider e kt {1− ua (t )}=
0, for t > a
Thus f (t) = e k t − e k t ua (t)
= e k t −e k (t − a) + ka · ua (t)
∴ L{f (t)} = L(e k t) −e ak · L{e k (t − a) · ua(t)}
1
= − e ak ⋅ e−as ⋅L{e kt } , by the second shifting property
s−k
1 1
−e ( ) ⋅
−a s − k
=
s−k s−k
1
{1− e ( ) }.
−a s − k
=
s−k
π ω
(iii) L{f (t )}= ∫ e−st sin ωt dt
0
e−st
π ω
= 2 − s sin ωt − ω cos ωt )
s + ω2 (
0
ω
= 2
s +ω2
(1+ e−π s ω )
4 ∞
Aliter
t, for 0 < t < 4
t{1− u4 (t )} + 5u4 (t ) =
5, for t > 4
( t) +( t)
3 5
∴ ( ) 1 1
L sin t = L(t1 2 ) − L (t 3 2 ) + L(t 5 2 ) −....∞
3! 5!
(3 2) 1 (5 2) 1 (7 2)
= − + −....∞
s3 2 3! s 5 2 5! s 7 2
1 1 1 3 1 1 15 3 1 1
= (1 2)− ⋅ ⋅ (1 2)⋅ + ⋅ ⋅ (1 2)⋅ 2 −....∞
32
s 2 3! 2 2 s 5! 2 2 2 s
π 11 1 1
2
cos t
∴ L = L(t −1/ 2 ) − 1 L (t1 2 ) + 1 L (t 3 2 )−.....∞
t 2! 4!
(1 2) 1 (3 2) 1 (5 2)
= − + −.....∞
s1 2 2! s 3 2 4! s 5 2
= 1− 1 + 1 3 ⋅1 2 −.....∞
π
2! 2s 4! 2 ⋅ 2 s
s
π 1 1 1 1
2
= − ⋅ + ⋅ −
1 . . ...∞
s 1! 4 s 2! 4s
π −1 4 s
= e
s
e a t + e−a t
L (cosh at cos at )= L cos at
(iv)
2
1
= L (cos at )s → s − a + L (cos at )s → s + a
2
s −a s +a
=
1
+
2 ( s − a )2 + a 2 ( s + a )2 + a 2
1 s −a s +a
= + 2
2 s + 2a − 2as s + 2a + 2as
2 2 2
1 (s − a ) ( s + 2a + 2as ) + (s + a ) ( s + 2a − 2as )
2 2 2 2
=
2 ( s 2
+ 2 a )
2 2
− 4 a 2 2
s
s3
= .
s 4 + 4a 4
t 3
(v) L(sinh sin t)
2 2
et 2 − e−t 2 3
= L sin t
2
2
1 3 3
= L sin t − L sin t
2 2 s→s − 1 2 s→s + 1
2 2
=
1 3 2 3 2
−
2 ( s −1 2) + 3 4 ( s +1 2)2 + 3 4
2
3 1 1
= −
4 s 2 − s +1 s 2 + s +1
3 s
= ⋅ 4
2 s + s 2 +1
= − e−sp L(sin t)
e −sπ
=−
s 2 +1
2
s − a2 2 as
= I.P. of +i
( s 2 + a 2 )2 (s 2 + a 2 )
2
2 as
=
(s + a 2 )
2 2
s2 − a2
=
(s 2 + a 2 )
2
( s + 4 + i3)
2
1
= I.P. of = I.P. of
( s + 4 − i3) {(s + 4) + 9}
2 2 2
= I.P. of
{(s + 4) −9} + i 6(s + 4)2
{(s + 4) + 9} 2 2
6 ( s + 4)
=
{(s + 4) + 9}
2 2
5.22 Mathematics II
Example 5.7
t
(i) Assuming L(sin t) and L(cos t), find the Laplace transforms of Lsin and
2
L(cos 3t).
2s s 2 −1
(ii) Given that L(t sin t )= and L(t cost )= , find L(t sin at) and
(s 2 +1) (s 2 +1)
2 2
t
Lt cos .
a
1
(i) L (sin t )=
s +12
t 1
∴ L sin = 2 ⋅
2 (2s ) +1
2
t
∵ L
f = a ⋅ L { f (t )}s→as , by the charge of sccale property
a
2
=
4 s 2 +1
s
L (cos t )=
s +12
1 s/3
∴ L (cos3t )= ⋅
3 ( s / 3)2 +1
1
∵ L { f (a t )} = L { f (t )} s , by the charge of scale property
s→
a a
s
= .
s +9
2
2s
(ii) Given that L (t sin t )=
(s +1)
2 2
1
∴ L (t sin at ) = L(at sin at )
a
1 1 2s/ a
= ⋅ ⋅ , by change of scale property⋅
a a ( s 2 / a 2 +1)2
2 as
=
(s 2 + a 2 )
2
Laplace Transforms 5.23
s 2 −1
Given that L (t cos t )=
(s 2 +1)
2
t t t
∴ L t cos = a ⋅ L cos
a
a a
(as ) −1
2
1
a4 s2 − a2 s2 −2
= or a .
(a 2 s 2 +1)
2
2 1
2
s +
a 2
Example 5.8 Find the inverse Laplace transforms of the following functions:
1 e−2 s s e−s (3a − 4s )
(i) e−s (ii) (iii) (iv) e−bs
( s + 2) (2s − 3) s2 + a2
5/ 2
( s − 3)
3 5
( s + 4)
(v) e−4 s
s2 − 4
(i) From the second shifting property, we have
L−1 {e−as φ (s)} = L−1 {φ (s)t → t − a ⋅ ua(t)
∴ L−1 −s 1 −1 1
e ⋅ 5/ 2
=L 5/ 2
⋅ u1 (t ) (1)
( s + 2 )
( s + 2 )
t → t −1
Now L−1
1 −2 t −1 1
5/ 2
=e ⋅ L 5/ 2
( s + 2)
s
[ L−1 {φ (s + 2) = e−2t L−1 {φ (s)}, by the first shifting property.]
1 −1 1 1 n−1
= e−2t ⋅ ⋅t3/ 2 ∵L n = t
(5 / 2)
s (n)
1
= e−2t ⋅ ⋅t3/ 2 ∵ (n)= (n −1) (n −1)
3 1
⋅ ⋅ (1/ 2)
2 2
3
4
= t 2 e−2t ∵ (1/ 2)= π
3 π
(2)
Inserting (2) in (1), we have
1 4
(t −1) e−2(t −1) ⋅ u1 (t )
3/ 2
L−1 e−s 5/ 2
=
( s + 2)
3 π
5.24 Mathematics II
0,
when t < 1
or = 4
(t −1)3/2 ⋅ e−2 (t −1) , when t > 1
3 π
e−2 s = L−1
1
(ii) L−1
3
3
⋅u2 (t ) (1)
( 2 s − 3)
( 2 s − 3)
t→ t −2
Now L−1
1 = 1 L−1
1
3 3
( 2 s − 3)
8
(s − 3 2 )
1 2 t −1
3
1
= e L 3
8
s
1 3t 1 1 3t
= e2 ⋅ t2 = e2 t2 (2)
8 2! 16
e−2 s 3
= 1 e 2 (t −2 ) (t − 2) 2 ⋅ u (t )
L−1
3
(2 s − 3)
16
2
s e−s
= L−1 s
(iii) L−1
5
5
⋅ u1 (t ) (1)
(s − 3)
(s − 3)
t → t −1
s = L−1
(s − 3) + 3
Now L−1
5
5
(s − 3)
(s − 3 )
s + 3
= e3t L−1
5
s
1
3
= e3t L−1 4 + 5
s s
1 1
= e 3t t 3 + 3 ⋅ t 4
3!!
4!
1 3t 3
= e (4t + 3t 4 ) (2)
24
Using (2) in (1), we have
s 1 3(t −1)
L−1 e−s
= e {4(t −1)3 + 3(t −1) 4 }⋅ u1 (t )
(s − 3)5
24
(3a − 4s ) −bs
3a − 4 s
(iv) L−1
2
e = L−1 2 2
⋅ ub (t ) (1)
s + a 2
s + a
t → t −b
Laplace Transforms 5.25
3a − 4 s
a
s
Now L−1 2 2
= 3L−1 2 2
− 4 L−1 2 2
s + a
s + a
s + a
= 3 sin at − 4 cos at (2)
Using (2) in (1), we have
(3a − 4s ) −bs
L−1
2 e = [3 sin a (t − b) − 4 cos a (t − b)]ub (t )
s +a
2
( s + 4) −4 s
s+4
(v) L−1 2 e = L−1 2 ⋅ u4 (t ) (1)
s − 4
s − 4
t → t −4
s+4
s
−1
2
−1
Now L−1
2
= L 2
+ 2 L 2
s − 4
s − 4
s − 4
= cosh 2t + 2 sinh 2t (2)
Using (2) in (1), we have
( s + 4 ) −4 s
L−1
2 e ={cosh 2(t − 4) + 2 sinh 2(t − 4)}⋅ u4 (t )
s − 4
Example 5.9 Find the inverse Laplace transforms of the following functions:
e−s e−2 s e−s e−3 s
(i) (ii) (iii) (iv)
( s − 2) ( s + 3) s ( s 2 +1)
2
s ( s 2 + 4) s + 4 s + 13
2
( s +1)e−π s
(v)
s 2 + 2s + 5
−1
e−s
−1 1
(i) L = L
⋅ u1 (t ) (1)
( s − 2) ( s + 3)
( s − 2) ( s + 3)
t→ t −1
1
1
Now to find L−1
, we resolve into partial fractions
(s − 2) (s + 3)
(s − 2) (s + 3)
and then use the linearity property of L−1 operator.
1 A B
Let = +
( s − 2) ( s + 3) s − 2 s + 3
Then A (s + 3) + B (s − 2) = 1
1 1
By the usual procedure, we get A= , B =−
5 5
1 5
1 −1 1 5
∴ L−1
= L −
( )( )
s − 2 s + 3
s − 2 s + 3
5.26 Mathematics II
1 1 1 −1 1
= L−1 − L
5 s − 2 5 s + 3
1
= (e 2 t − e−3 t ) (2)
5
e−s
1 2 (t −1)
L−1
= {e − e−3(t −1) }⋅ u1 (t )
( s − 2 ) ( s + 3)
5
e−2 s
−1 1
(ii) L−1
2 2
= L 2 2
⋅ u2 (t ) (1)
s ( s + 1)
s ( s + 1)
t → t −2
1 1 1 1 1 1
Now = = − = 2− 2
s ( s +1) u (u +1) u u +1 s
2 2
s +1
1
−1 1
1
∴ L−1
2 2
= L 2 − L 2
−1
s ( s +1)
s s +1
= t − sin t (2)
Inserting (2) in (1), we get
e−2 s
L−1 2 2
={(t − 2) − sin (t − 2} u2 (t )
s ( s +1)
e−s
−1
−1
(iii) L
= L
1
2 2 ⋅ u1 (t ) (1)
s ( s + 4 )
s ( s + 4 )
t →t −1
1 A B s +C
Let = + 2
s ( s 2 + 4) s s +4
1
−1 1
Now L−1
2
= L 2
s + 4 s +13
( s + 2) + 3
2
1
= e−2t ⋅ L−1
2 , by the shifting property
2
s + 3
1 3
= e−2t L−1
2
2
3
s + 3
1
= e−2t sin 3t (2)
3
Using (2) in (1), we get
e−3 s
1 −2 (t − 3)
L−1
2
= e ⋅ sin 3(t − 3) ⋅ u3 (t )
s + 4 s +13
3
−1 ( s +1) e
−π s
−1
s +1
(v) L 2
= L 2
⋅ uπ (t ) (1)
s + 2s + 5
s + 2s + 5
t →t −π
s +1
( s +1)
−1
Now L−1
2
= L
2
s + 2 s + 5
( s + 1) 2
+ 2
s
= e− t ⋅ L−1
2 , by the shifting property
2
s +2
= e−t cos 2t (2)
Using (2) in (1), we have
( s +1) e−π s
L−1
2
= e
−( t − π )
⋅ cos 2(t − π ) ⋅ uπ (t )
s + 2s + 5
Example 5.10 Find the inverse Laplace transforms of the following functions:
s2 + s − 2 2 s 2 + 5s + 2 s
(i) (ii) (iii)
s ( s + 3) ( s − 2) ( s − 2) 4 ( s + 1) 2 ( s 2 + 1)
1 s
(iv) (v) .
s ( s + 1) ( s 2 + 9)
2 2
( s + 1) ( s + 4) ( s 2 + 9)
2 2
5.28 Mathematics II
s2 + s − 2
(i) To find L−1
, we resolve the given function of s into partial
s ( s + 3) ( s − 2 )
fractions and then use the linearity property of L−1 operator.
s2 + s − 2 A B C
Let = + +
s ( s + 3) ( s − 2) s s + 3 s − 2
1 4 2
A= , B = and C = .
3 15 5
s2 + s − 2
−1 1 / 3 4 / 15 2 / 5
∴ L−1
= L + +
s ( s + 3) ( s − 2)
s s + 3 s − 2
1 4 2
= + e−3 t + e 2 t
3 15 5
2 s2 + 5 s + 2
(ii) To resolve into partial fractions, we put s − 2 = x, so that
( s − 2) 4
s = x + 2.
2 s 2 + 5 s + 2 2 ( x + 2) 2 + 5 ( x + 2) + 2
Then =
( s − 2) 4 x4
2 x 2 +13 x + 20
=
x4
2 13 20
= 2+ 3+ 4
x x x
2 13 20
= + +
( s − 2) 2 ( s − 2) 3 ( s − 2 ) 4
2 s 2 + 5 s + 2
1
−1
+13L−1 1 1
−1
∴ L−1
= 2L 2
3
+ 20 L
( s − 2)
4
( s − 2)
( s − 2)
( s − 2) 4
1 −1 1 −1 1
= 2 e ⋅ L−1
2t 2t
2t
s 2 +13 e ⋅ L s 3 + 20 e ⋅ L s 4
2t 13 20
= e 2⋅ t + t 2 + t 3
2! 3!
2t 13 2 10 3
= e 2 t + t + t
2 3
Laplace Transforms 5.29
1 2t
= e (12t + 39t 2 + 20t 3 )
6
s A B C s+D
(iii) Let = + + 2
(s + 1) 2 ( s 2 + 1) s + 1 (s + 1) 2 s +1
1
into partial fractions as shown in (iv).
(s 2 +1)(s 2 + 4)(s 2 + 9)
1 1
Thus =
(s 2 +1)(s 2 + 4)(s 2 + 9) (u + 1) (u + 4) (u + 9)
A B C
= + + , say.
u +1 u + 4 u + 9
5.30 Mathematics II
1 1 1
We find that A = , B =− and C = .
24 15 40
1 1/ 24 1/15 1/ 40
∴ = − +
(s 2 +1)(s 2 + 4)(s 2 + 9) s 2 +1 s 2 + 4 s 2 + 9
s 1 s 1 s 1 s
∴ = ⋅ 2 − ⋅ 2 + ⋅ 2
(s 2
+ 1)( s + 4)( s + 9)
2 2
24 s + 1 15 s + 4 40 s + 9
1 −1 s 1 −1 s
∴ L−1
s
= − L 2 +
2 s + 1 15 s + 4
L 2
(
s + 1)( s + 4)( s + 9) 24
2 2
1 −1 s
s + 9
L 2
40
1 1 1
= cos t − cos 2t + cos 3t
24 15 40
Example 5.11 Find the inverse Laplace transforms of the following functions:
14 s + 10 2s3 + 4s 2 − s +1
(i) (ii)
49 s 2 + 28s + 13 s 2 ( s 2 − s + 2)
1 1
(iii) (iv)
s3 − a3 s4 + 4
s
(v)
s 4 + s 2 +1
5
s+
14 s + 10
14 −1 7
(i) L−1 = L
49 s 2 + 28s + 13
49
4 13
s 2
+ s +
7 49
5
s +
2 −1 7
= L 2
3
2
7
s + +
2
7 7
s + +
2 3
2 −1 7 7
= L 2
7
2
s + 2 + 3
7 7
3
2 s+
2 7 −1
− t
7
= e ⋅L 2
7
s 2 +
3
7
Laplace Transforms 5.31
2 − 72 t 3 3
= e cos t + sin t
7
7 7
2s3 + 4s 2 − s +1 A B Cs + D
(ii) Let = + 2+ 2
s 2 (s 2 − s + 2) s s s −s+2
1 1 9 13
A= , B= ,C = and D =
4 2 4 4
9 13
3
s+
2 s + 4 s 2 − s + 1
−1
1 −1 1 1 −1 1 −1 4 4
∴ L 2 2 = − L + L 2 + L 2
s ( s − s + 2) 4 s 2 s s − s + 2
9 1 35
s − +
1 t 4 2 8
= − + + L−1 2
4 2
1 7
2
s − +
2 2
5 7 7
⋅
1 t 9 s 4 2
= − + + et / 2 L−1 ⋅ + 2
4 2 4 7
2
7
s +
2
s +
2
2 2
9 7
= − + + et / 2 cos
1 t 7 5 7
t+ sin t
4 2 4 2 4 2
1 1
(iii) =
s 3 − a 3 (s − a ) ( s 2 + as + a 2 )
1 A Bs + C
∴ Let = + 2
s −a
3 3
s − a s + as + a 2
1 1 2
A= ,B =− 2 and C = − .
3a 2 3a 3a
5.32 Mathematics II
1
− 2 s − 2
1
−1 1 −1 1 −1 3a 3a
a
∴ L 3 3
= 2 L + L 2 2
s − a
3a s−a
s + as + a
1 1 s + 2 a
= e at − 2 L−1 2
3a 2 3a
2 3a
a
s + +
2 2
3
s + a
1 1 − at2 −1 2
= e − 2 e ⋅L
at
2
3a 2 3a
3a
s 2 +
2
at
3
=
1 e at − e− 2
cos
3
at + 3 sin at
3a 2 2 2
1 1 1
(iv) = 4 =
s + 4 ( s + 4 s + 4) − 4 s
4 2 2
( s 2 + 2) − ( 2 s ) 2
2
1
=
(s 2
+ 2 s + 2)( s 2 − 2 s + 2)
1 As + B Cs + D
∴Let = 2 + 2
s + 4 s + 2s + 2 s − 2s + 2
4
1
1 1
1
8s+ 4
8 s − 4
1
−1 −1 −1
∴ L 4 = L 2 − L 2
s + 4
s + 2s + 2
s − 2 s + 2
1 (s + 1) + 1
1 −1 (s −1) −1
= L−1
− L
8
(s + 1) + 1
2
8
(s −1) + 1
2
1 t −1 s −1
s +1
= e−t ⋅ L−1 2 − e ⋅ L 2
8
s + 1
s + 1
Laplace Transforms 5.33
1
= e−t (cos t + sin t ) − et (cos t − sin t )
8
1 et + e−t et − e−t
= sint − cos t
4 2 2
1
= (sin t cosh t − cos t sinh t )
4
s s s
(v) = =
s 4 + s 2 + 1 ( s 4 + 2 s 2 + 1) − s 2 ( s 2 + 1)2 − s 2
s
=
(s 2 + s +1)(s 2 − s +1)
s As + B Cs + D
∴Let = 2 + 2
s + s +1 s + s +1 s − s +1
4 2
2
s +4
2
−1 s + 1
(ii) Given that L−1
2
2
= t cosh 2 t , find L 2
s − 4) s −1 2
(
( )
1 1 1
(iii) Given that L−1
2
= (sin 2 t − 2 t cos 2t ), find L −1
2
.
( s + 9)
(
s + 4)
2
16 2
(i) By change of scale property,
1 s
L{ f (at )}= φ
a a
∴ L−1 {f (s/a)} = a L−1{f (s)}t → at (1)
−1
s
= t sin t
Given L 2
s + 1)
(
2
2
−1 s / a = a ⋅ at sin at , by
∴ L 2
(1)
s 2
+ 1
2
a
2
3 −1
s
a2
i.e., a L = t sin at
s2 + a2 )
(
2
2
s t
∴ L−1 2 = sin at .
2 2
( s + a )
2 a
1
= 1 (sin 2t − 2t cos 2t )
(iii) Given L−1
2 2
s + 4)
(
16
−1
1
3 −1
1
∴ L 2
= L 2
, by (2)
2 s 2
+ 4
2
( s 2
+ 4 ) t → 3 t
3 2
81 −1 1
= 3 (sin 3t − 3t cos 3t )
i.e. L 2 2
s + 9)
(
16 32
−1 1
= 1 (sin 3t − 3t cos 3t )
∴ L 2
s + 9)
(
2
54
EXERCISE 5(a)
Part A
(Short Answer Questions)
1. Define Laplace transform.
2. State the conditions for the existence of Laplace transform of a function.
3. Give two examples for a function for which Laplace transform does not exist.
4. State the change of scale property in Laplace transformation.
5. State the first shifting property in Laplace transformation.
6. State the second shifting property in Laplace transformation.
7. Find the Laplace transform of unit step function.
8. Find the Laplace transforms of unit impulse function.
e 2t , for 0< t < 1
9. Find L{ f (t)}, if f (t ) =
0, for t > 1
0, for0 < t < 1
10. Find L{ f (t)}, if f (t ) =
t , for 1 < t < 2
0, for t > 2
sin 2t , for 0< t < π
11. Find L{ f (t)}, if f (t ) =
0,
for t > π
2π
0, for 0< t <
3
13. Find L{ f (t)}, if f (t )=
2 π 2 π
cos t − , for t >
3 3
sin t , for 0< t < π
14. Find L{ f (t)}, if f (t )=
t ,
for t > π
1
( )
15. Find L t and L
π t
16. Find L{(t − 3) u3(t)} and L{u1(t) sin p (t − 1)}.
17. Find L{t2u2 (t)}
Find the Laplace transforms of the following functions:
18. (at + b)3 19. sin (wt + q)
20. sin2 3t 21. cos3 2t
22. sin 2t cos t 23. cos 3t cos 2t
24. sinh3 t 25. cosh2 2t
−2 t 2
26. (t + 1)2 e−t 27. e cos 3t − sin 3t
3
t 1
28. e cosh 2t + sinh 2t 29. sin t sinh t
2
30. t2 cosh t 31. e3(t + 2)
Find the Laplace inverse transforms of the following functions:
32. e−as/s2 (a > 0). 33. (e−2s − e−3s)/s
e−2 s se−s
34. 35.
s −3 s2 + 9
1 + e−π s
36.
s 2 +1
Find f (t) if L{ f (t)} is given by the following functions:
1 s 2 + 2s + 3
37. 38.
(s + 1)3/2 s3
1 s
39. 40.
(2s − 3) ( s − 2)
4 5
2s + 3 s+6
41. 42.
s2 + 4 s2 − 9
1 1
43. 44.
s (s + a ) s 2 + 2 s +5
s −3
45.
s 2 − 6 s + 10
Laplace Transforms 5.37
Part B
Find the Laplace transforms of the following functions:
47. e (1+ 2at ) / t
at
46. e3t(2t + 3)3
−t 3
48. e sinh t 49. sin at cosh at − cos at sinh at
cos 2t
3
s2 −9
60. Given that L(t cos 3t ) = , find L(t cos 2t).
( s 2 + 9)
2
1 s 4 − 8s 2 + 31
65. 66.
(s 2 + s)
2
(s 2 +1)(s 2 + 4)(s 2 + 9)
2s 2s − 9
67. 68.
(s +1)( s + 2)( s + 3) s + 6 s + 34
2 2 2 2
s +1 ls + m
69. 70.
s + s +1
2
as + bs + c
2
3s 2 −16 s + 26 1
71. 72.
s ( s + 4 s +13)
2
s 3 +1
1 s
73. 74.
s + 4a 4
4
s +4
4
s2 4s3
75. 76. 4 s 4 +1
s 4 + 64
s 2 +1
77.
s + s 2 +1
4
5.38 Mathematics II
s 1
78. If L
−1 −1 s
2 2
= t sinh t , find L 2
2 2
( s −1) (
s − a )
2
1 1 −1 1
79. If L−1
2
2
= (sin 3t − 3t cos 3t ), find L 2 .
s +1 2
( s + 9 )
54
( )
s −1
t −1
s
80. Given that L 2
= sin 3t , find L 2
s + 9) s + 4
( ( )
2
6 2
Proof:
∞
By definition, L { f (t )} = ∫ e f (t ) dt
− st
0
P ∞
In the second integral in (1), put t = x + P, ∴ dt = dx and the limits for x become 0 and ∞.
∞ ∞
− s( x + P )
∫e f (t ) dt = ∫ e
− st
∴ f (x + P) dx
P 0
∞
[ f(x + P) = f(x)]
= e−sP ⋅ ∫ e−sx f ( x) dx
0
Laplace Transforms 5.39
= e−sP ⋅ L { f (t )} (2)
L { f (t )} = ∫ e−st f (t ) dt + e−sP ⋅ L { f (t )}
0
P
∴ (1− e− Ps ) L { f (t )} = ∫ e−st f (t ) dt
0
P
∴ 1
L { f (t )} = ∫e
− st
f (t ) dt
1− e− Ps 0
The following two theorems, in which we differentiate and integrate the transform
1
function f (s) = L{f (t)} with respect to s, will help us to find L{t f (t)} and L f (t )
t
respectively. Repeated differentiation and integration of f (s) will enable us to find
1
L{tn f (t)} and L n f (t )
, where n is a positive integer.
t
Theorem
If L{f (t)} = f (s), then L{t f (t)} = − f' (s).
Proof :
Given: L{f (t)} = f (s)
∞
i.e. (1)
∫e
− st
f (t ) dt = φ (s )
0
Assuming that the conditions for interchanging the two operations of integration
with respect to t and differentiation with respect to s in (2) are satisfied, we have
∞
d
∫ ds {e } f (t ) dt = φ ′(s)
− st
0
5.40 Mathematics II
∫ −t e f (t ) dt = φ ′(s )
− st
i.e.
0
∞
i.e.
∫ e−st [t f (t )]dt = −φ ′(s )
0
Corollary
Differentiating both sides of (1) n times with respect to s, we get
dn
L{t n f (t )} = ( −1) n φ (s ) or ( −1) nφ (n ) (s ) .
ds n
Note
1. The above theorem can be rewritten as a working rule in the following manner
d
L{t f (t )} = − φ (s )
ds
d
= − L{ f (t )}
ds
Thus, to find the Laplace transform of the product of two factors, one of which is ‘t’,
we ignore ‘t’ and find the Laplace transform of the other factor as a function of s;
then we differentiate this function of s with respect to s and multiply by (− 1).
Extending the above rule,
d2
L{t 2 f (t )} = ( −1) 2 L{ f (t )} and in general
ds 2
dn
L{t n f (t )} = ( −1) nL{ f (t )} .
ds n
2. The above theorem can be stated in terms of the inverse Laplace operator as
follows:
If L−1{φ (s)} = f (t),
1
L−1{ φ (s )} = − L−1{ φ ′(s )}
t
This rule is applied when the inverse transform of the derivative of the given function
can be found out easily. In particular, the inverse transforms of functions of s that
contain logarithmic functions and inverse tangent and cotangent functions can be
found by the application of this rule.
Laplace Transforms 5.41
Theorem
∞
1
If L{ f (t )} = φ (s) , then L 1 f (t ) = ∫ φ (s ) ds , provided lim f (t ) exists.
t
t →0 t
s
Proof:
Given: L{ f (t)} = φ (s)
∞
∫e
− st
i.e. f (t ) dt = φ (s ) (1)
0
Integrating both sides of (1) with respect to s between the limits s and ∞ , we have
∞ ∞ ∞
∫ ∫ ef (t ) dt ds = ∫ φ (s ) ds
− st
(2)
s 0 s
Assuming that the conditions for the change of order of integration in the double
integral on the left side of (2) are satisfied, we have
∞ ∞ ∞
e−st ds f (t ) dt = φ (s ) ds
∫ ∫
∫
0 s s
s =∞
∞
e−st ∞
i.e.
∫ −t
f (t ) dt = ∫ φ (s ) ds
0 s=s s
∞ ∞
1
∫ − t (0 − e ) f (t ) dt = ∫ φ (s) ds ,
− st
i.e.
0 s
∞
f (t )
i.e. L = ∫ φ (s ) ds
t
s
Corollary
1
1 1
L 2 f (t ) = L f (t )
t
t
t
∞ ∞
= ∫ ∫ φ (s ) d s ds
s s
∞ ∞
=∫ ∫ φ (s)ds ds
s s
L n f (t ) = ∫ ∫ …∫ φ (s) (ds)
n
t
s s s
5.42 Mathematics II
Note
1. The above theorem can be rewritten as a working rule as given below:
∞
1
L f (t ) = ∫ L{ f (t )}d s
t
s
1
Thus, to find the Laplace transform of the product of two factors, one of which is ,
t
1
we ignore , find the Laplace transform of the other factor as a function of s and
t
integrate this function of s with respect to s between the limits s and ∞ .
Extending the above rule. We get;
∞ ∞
1
L 2 f (t ) = ∫ ∫ L{ f (t )}ds ds and in general
t
s
s
1
∞
∞ ∞
L n f (t ) = ∫ ∫ …∫ L{ f (t )}(ds) .
n
t
s s s
2. The above theorem can be stated in terms of the inverse Laplace operator as
follows:
If L−1{ φ (s )} = f (t ) ,
∞ 1
then L−1 ∫ φ (s ) ds = f (t ) .
s t
From this form of the theorem, we get the following working rule:
∞
L { φ (s )} = t ⋅ L ∫ φ (s ) d s
−1 −1
s
This rule is applied when the inverse transform of the integral of the given function
with respect to s between the limits s and ∞ can be found out easily.
In particular, the inverse transforms of proper rational functions whose numerators
are first degree expressions in s and denominators are squares of second degree
expressions in s can be found by applying this rule
Example 5.1 Find the Laplace transform of the “saw-tooth wave” function f (t)
which is periodic with period 1 and defined as f (t) = kt, in 0 < t < 1.
The graph of f (t) is shown in Fig. 5.1 below. If the period of the function f (t) is
k
P, the function will be defined as f (t ) = t in 0 < t < P.
P
Laplace Transforms 5.43
f (t)
t
0 1 2 3
Fig. 5.1
By the formula for the Laplace transform of a periodic function f (t) with period P,
P
1
∫e
− st
L{f (t )} = f (t ) dt
1− e− Ps 0
e−st − st
1
=
k t −1⋅ e
1− e−s −s s 2
0
k e − s
e − s
1
= −s
− − 2 + 2
1− e s s s
k (1− e ) e−s
−s
= −
1− e−s s 2 s
−s
k ke
= 2−
s s (1− e−s )
Example 5.2 Find the Laplace transform of the “square wave” function f (t)
defined by
f (t) = k in 0 ≤ t ≤ a
= − k in a ≤ t ≤ 2a
f (t + 2a) = f (t) means that f (t) is periodic with period 2a. The graph of the function
is shown in Fig. 5.2.
For a periodic function f (t) with period P,
P
1
∫e
− st
L{f (t )} = f (t ) dt
1− e− Ps 0
5.44 Mathematics II
f (t)
k
t
O a 2a 3a 4a
–k
Fig. 5.2
∴ For the given function;
1 a 2a
k e−st dt + ( − k ) e−st dt
L{f (t )} =
1− e−2 as ∫
0
∫
a
e−st e−st
a 2 a
=
k −
1− e−2aas −s 0 −s a
k
= [1 − e−as − e−as + e−2 as ]
s (1− e−2 as )
k (1 − e−as ) 2
=
s (1 − e−as ) (1 + e−as )
k (1 − e−as ) k (e as / 2 − e−as / 2 )
= =
s (1 + e−as ) s (e as / 2 + e−as / 2 )
k as
= tanh
s 2
Example 5.3 Find the Laplace transform of “triangular wave function f (t) whose
graph is given below in Fig. 5.3.
y = [= f (t)]
A
a
B
t
O a 2a 3a 4a 5a
Fig. 5.3
From the graph it is obvious that f (t) is periodic with period 2a.
Let us find the value of f (t) in 0 ≤ t ≤ 2a, by finding the equations of the lines OA
and AB.
Laplace Transforms 5.45
∴ Equation of AB is y − 0 = (− 1) (t − 2a)
or y = 2a − t in a ≤ t ≤ 2a.
f(t) = t, in 0 ≤ t ≤ a
= 2a − t, in a ≤ t ≤ 2a
and f(t + 2a) = f(a).
2a
1
∫e
− st
Now L{f (t )} = f (t ) dt
1− e−2 a s 0
1 a 2a
te−st dt + (2a − t )e−st dt
=
1− e−2 a s ∫ ∫
0 a
e−st
a 2a
1 e−s t e−st
e−st
=
− 1⋅ 2 + (2a − t )
1− e−2 a s
t
−s s −s + 1⋅ s 2
0 a
1 a −a s e − a s −2 a s − a s
= − e − 2 + 12 + e 2 + a e−a s − e 2
1− e−2 a s s s s s s s
1 − 2e−a s + e−2 a s (1 − e−a s ) 2
= =
s 2 (1 − e−2 a s ) s 2 (1 − e−a s ) (1 + e−a s )
1 (1 − e−a s ) 1 e a s / 2 − e− a s / 2
= 2 = 2 a s / 2
s (1 + e ) s e
−a s
+ e− a s / 2
1 as
= tanh
s 2 2
Example 5.4 Find the Laplace transform of the “half-sine wave rectifier” function
f (t) whose graph is given in Fig. 5.4.
f (t)
π t
O π/ω 2π/ω 3π/ω 4π/ω
2ω
Fig. 5.4
5.46 Mathematics II
From the graph, it is obvious that f(t) is a periodic function with period 2π/ω. The
π
graph of f (t) in 0 ≤ t ≤ π/ω is a sine curve that passes through (0, 0), , a and
2ω
π
, 0
ω
∴ The definition of f (t) is given by
f (t) = a sin ω t, in 0 ≤ t ≤ π/ ω
= 0, in π/ ω ≤ t ≤ 2π/ ω
2π
and f t + = f (t ) .
ω
2π ω
1
Now L { f (t )}=
1− e−2 π s ω ∫ e−st f (t ) dt
0
π ω
a
∫e
− st
= sin ωt dt
1− e−2 π s ω 0
e−st
π ω
a
= ⋅
−2 π s ω 2
( − s sin ωt − ω cos ωt
1− e
s +ω
2
0
a ωe−π s ω + ω
=
(s + ω ) (1− e−2 π s ω )
2 2
ω a (1+ e−π s ω ) ωa
= =
(s + ω ) (1− e
2 2 −2 π s ω
) (s + ω ) (1− e−π s ω )
2 2
Example 5.5 Find the Laplace transform of the “full-sine wave rectifier” function
f (t), defined as
f (t) = |sin ω t|, t ≥ 0
We note that f (t + π/ ω) = |sin ω (t + π/ ω)|
= |sin ω t|
= f (t)
∴ f (t) is periodic with period π/ ω.
Also f (t) is always positive. The graph of f (t) is the sine curve as shown in
Fig. 5.5.
t
O π/ω 2π/ω 3π/ω
Fig. 5.5
Laplace Transforms 5.47
π ω
1
∫e
− st
Now L { f (t )}= | sin ω t | dt
1− e−π s ω 0
π ω
1
∫e
− st
= sin ω t dt [ ∵sin ωt > 0 in 0 ≤ t ≤ π ω ]
1− e−π s ω 0
e−st
π ω
1 2
= ( − s sin ωt − ω cos ωt )
1− e−π s ω s +ω 2
0
1 ω 1+ e−π s ω
−π s ω (
= ωe−π s ω + ω )= 2
(s + ω ) (1− e
2 2
) s + ω 2 1− e−π s ω
ω eπ s 2 ω + e−π s 2 ω
= , on integration and simplification
s 2 + ω 2 eπ s 2 ω − e−π s 2 ω
ω πs
= coth
s +ω
2 2 2ω
1 d
=− L (e3t + 3et + 3e−t + e−3t )
8 ds
1 d
1 3 3 1
=− + + +
8 ds
s − 3 s −1 s +1 s + 3
1
1 3 3 1
=
+ + +
8
(s − 3)
2
(s −1) 2
(s +1) 2
(s + 3) 2
Note After getting step (1), we could have applied the first shifting property and
got the same result.
t
(ii) L(t cos 2t cos t ) = L (cos 3t + cos t )
2
1 d
= − L (cos 3t +ccos t )
2 ds
1 d s s
=− 2 + 2
2 ds s + 9 s +1
5.48 Mathematics II
1 s 2 + 9 − 2 s 2 s 2 +1− 2 s 2
=− 2 +
2 (s + 9) 2 (s 2 +1) 2
1 s2 −9 s 2 −1
= 2 +
2 (s + 9) 2 (s 2 +1) 2
3
1
(iii) L(t sin 3 t ) = L sin t − sin 3t
4 4
1 d
=− {L (3 sin t − sin 3t )}
4 ds
1 d 3 3
=− 2 − 2
4 ds s +1 s + 9
3 2s 2 s
=− − 2 + 2
4 (s +1)
2
(s + 9) 2
3
1 1
= s
− 2 − 2 2
2
(s +1)
2
(s + 9)
∫ te−2t sin 3t dt ∫ te
−3 t
(i) (ii) cos 2t dt
0 0
∫e
− st
(i) (t sin 3t ) dt = L(t sin 3t ) (by definition) (1)
0
Laplace Transforms 5.49
d
Now L (t sin 3t ) =− L (sin 3t )
ds
d 3
=− 2
ds s + 9
6s
= (2)
( s 2 + 9) 2
∫e
− st
(ii) (t cos 2 t ) dt = L(t cos 2t ) , by definition (1)
0
Now d
L(t cos 2t ) =− L(cos 2t )
ds
d s
=− 2
d s s + 4
s2 − 4
= (2)
( s 2 + 4) 2
∞
5
∫ te
−3 t
cos 2t dt = .
0
169
d
Now L(t sin 3t ) =− L(sin 3t )
ds
d 3
=− 2
d s s + 9
6s
= (2)
( s + 9) 2
2
Note The same problem has been solved by using an alternative method in
Worked Example (6) in Section 5(a).
t
(ii) L {t cosh t cos t}= L (et + e−t ) cos t
2
1
= [ L(t cos t ) s → s −1 + L (t cos t ) s → s +1 ] (1)
2
d s
Now L (t cos t ) =−
ds s 2 +1
s 2 −1 (2)
=
( s 2 +1) 2
Using (2) in (1), we have
1 ( s −1) 2 −1 ( s +1) 2 −1
L (t cosh t cos t ) = 2 + 2
2 ( s − 2 s + 2) 2
( s + 2 s + 2) 2
1 s2 − 2 s s 2 + 2 s
= 2 + 2
2 ( s − 2 s + 2) 2
( s + 2 s + 2) 2
d
Now L (t sinh 3t ) =− L (sinh 3t )
ds
d 3
=− 2
ds s − 9
6s
= (2)
( s − 9) 2
2
6 ( s + 2) 6 ( s + 2)
L {te−2t sinh 3t}= =
{( s + 2) 2 − 9}2 ( s −1) 2 ( s + 5) 2
Aliter
1
L {te−2t sinh 3t}= L te−2t ⋅ (e3t − e−3t )
2
1
= L { tet − te−5t }
2
1 1 1
= −
2
2
( s − 2 ) 2
( s + 5)
1
12 s + 24
6 ( s + 2)
= 2
=
2
( s −1) 2
( s + 5)
( s − 1 ) 2 ( s + 5) 2
d2
Now L (t 2 cos t ) = (−1) 2 L (cos t )
ds 2
d2 s
= 2 2
ds s +1
d
1− s 2
= 2 2
ds
( s + 1 )
2 ( s 3 − 3s ) (2)
=
( s 2 +1)3
Using (2) in (1), we have
2 {( s +1)3 − 3 ( s +1)}
L {t 2 e−t cos t}=
( s 2 + 2 s + 2) 3
Example 5.9 Find the inverse Laplace transforms of the following functions:
a s +a
2 2
(i) log 1− (ii) log
s s + b
2 2
s +1
2 s −1
(iii) log (iv) s log + k (k is a constant)
s ( s +1) s +1
1
(i) L−1 { φ ( s )}=− L−1 { φ ′ ( s )} (1)
t
a s − a 1 −1 d s − a
∴ L−1 log 1− = L−1 log =− log
s
L
s s t ds
5.52 Mathematics II
1 d
=− L−1 {log (s − a ) − log s}
t ds
1 1 1
=− L−1 −
t s − a s
1 1
=− (e at −1) = (1− e at )
t t
s 2 + a 2 1 d
L−1 log 2 2
=− L−1 [log(s 2 + a 2 ) − log(s 2 + b 2 )]
s + b t ds
1 2s 2s
=− L−1
2 − 2
2
t
s + a 2
s + b
2
= (cos bt − cos at )
t
s 2 +1
L−1 log =−1 L−1 d [log (s 2 +1) − log s − log(s +1)]]
s (s +1) t ds
1 2s 1 1
=− L−1
2 − −
t
s + 1 s s + 1
1
=− (2 cos t −1− e−t )
t
1
= (1+ e−t − 2 cos t )
t
s −1 1 d
L−1 s log + k =− L−1 [s log(s −1) − s log (s +1)] + L−1 (k )
s +1 t ds
1 s s
=− L−1 + log(s −1) − − log(s +1) + k δ(t )
t s −1 s +1
1 s s 1 −1
=− L−1 − − L [log(s −1) − log(s +1)] + k δ(t )
t s −1 s +1 t
1 2 s 1 1 1 1
=− L−1 2 − − L−1 − + k δ(t )
t s −1 t t s −1 s +1
Laplace Transforms 5.53
Note
−1 s
[ L and L−1 s do not exist, as s and s are improper rational
s −1 s +1 s−1 s +1
s s 2s ,
functions. Hence we have simplified − as 2 which is a proper
s −1 s +1 s −1
rational function. ]
2 1
=− cosh t + 2 (et − e−t ) + k δ (t )
t t
2 2
= 2 sinh t − cosh t + k δ (t )
t t
Example 5.10 Find the inverse Laplace transforms of the following functions:
−1 s + a
(i) cot–1 (as) (ii) tan
b
2 2
(iii) cot −1 (iv) tan −1 2
s +1 s
1
(i) L−1 { φ (s )} = − L−1{ φ ′ (s )} (1)
t
1 d
∴ L−1{cot −1 (as )} = − L−1 cot −1 (as )
t
d s
1 −a
= − L−1
t 1+ a s
2 2
a 1
= L−1 2 2
t 1+ a s
1 1/ a
= 1 sin t .
= L−1
2 2
t
s + (1/ a )
t
a
−1 s + a 1 −1 d −1 s + a
(ii) L−1
tan
= − L tan
b
t d s b
1 1/ b
= − L−1
2
1 + s + a
t
b
1 b
= − L−1
(s + a ) + b
2 2
t
5.54 Mathematics II
1
= − e−at sin bt
t .
−1 2 1 d 2
(iii) L−1
cot = − L−1 cot −1 .
s + 1
t d s s + 1
1 1
2
=− L−1 − −
t
4 (s +1) 2
1+
(s +1) 2
1 2
=− L−1
(s +1) + 4
2
t
1
=− e−t sin 2t.
t
−1 2
1 −1 d −1 2
(iv) L−1
tan 2
=− L tan 2
s
t d s s
1 −1 1 −4
=− L . 3
t 1+ 4 s
s4
4 s
= L−1 4 (2)
t s + 4
s s
Consider 4 =
s + 4 (s 2 + 2) 2 − (2 s ) 2
s
= 2
(s − 2 s + 2) (s 2 + 2 s + 2)
1 1 1
= 2 − 2 ,
4 s − 2 s + 2 s + 2 s + 2
by resolving into partial fractions
1 1 1
= −
4 (s −1) +1 (s +1) +1
2 2
s 1 t
∴ L−1 4 = e sin t − e−t sin t
s + 4 4
1
= sin t sinh t (3)
2
Using (3) in (2), we have
−1 2
2
L−1
tan 2
= sin t sinh t
s
t
Laplace Transforms 5.55
(v)
t
.
∞
f (t )
(i) L = ∫ L {f (t )}ds (1)
t
s
∞
sinh t
∴ L = ∫ L (sinh t ) ds
t
s
∞
1
=∫ ds
s
s −1
2
∞
1 s −1
= log
2 s +1 s
1 s −1 1 s −1
= log
− log
2 s +1 s → ∞ 2 s +1
1
1−
1 s +1
= log s
1
+ log
2 1 2 s −1
1+
s s→∞
1 1 s +1 1 s +1
= log 1 + log = log
s −1
2 2
s −1 2
e−at − ebt
∞
(ii) L
= ∫ L (e − e ) d s , by rule
− at −bt
(1)
t
s
∞
1 1
= ∫ − d s
s + a s + b
s
s + a s + a
= log − log
s + b s → ∞ s + b
a
1+ s + b
= log s + log
1+ b s + a
s s → ∞
5.56 Mathematics II
s + b
= log1+ log
s + a
s + b
= log
s + a
e at −cosbt
∞
(iii) L
∫ L (e − cos bt ) ds , by rule (1)
= at
t
s
∞
1 s
= ∫ − ds
s − a s 2 + b 2
s
∞
1
= log ( s − a ) − log ( s 2 + b 2 )
2 s
s − a s − a
= log − log
s 2 + b 2 s 2 + b 2
s →∞
s 2 + b 2
1− a /s
= log + log
2 2
1+ b /s s − a
s →∞
s2 + b2
= log 1 + log
( s − a )2
1
s2 + b2
= log
2
2
( s−a )
∞
2 sin 2t sin t
(iv) L
= ∫ L(2 sin 2t sin t ) ds, by rule (1)
t
s
∞
= ∫ L( cos t − cos3t ) ds
s
∞
s s
= ∫ 2 − ds
s +1 s 2 + 9
s
∞
1 s 2 +1
= log 2
2 s + 9 s
1 s 2 +1 1 s 2 +1
= log
− log
2 s 2 + 9 s → ∞ 2 s 2 + 9
Laplace Transforms 5.57
1
1+ 2
1 s 1 s 2 + 9
= log + log
2 1 + 9/ s 2 2 s 2 +1
s→∞
1 1 s 2 + 9
= log1 + log 2
2 2 s +1
1 s 2 + 9
= log 2
2 s +1
∞
f (t )
∞
(v) L 2 = ∫ ∫ L{ f (t )} ds ds (2)
t
s s
sin 2 t
∞ ∞
∴ L
2 = ∫ ∫ L (sin
2
t ) ds d s
t
s s
∞ ∞
1− cos 2t
=∫ ∫ L 2
ds d s
s s
1
∞ ∞
1 s
=
2 ∫ ∫ s − s 2
ds ds
+ 4
s s
∞
s2 + 4
log 2 ds,
1 1
= ∫
2 s 2 s
by putting a = 0 and b = 2 in (iii) above.
∞
1 s 2 + 4 2 s 2
∞
= s log 2 − ∫ s 2
− ds
4 s s + 4 s
s s
by integrating by parts.
s s 2 + 4 s2 + 4 1 ∞ 8
= log 2 − log 2 + ∫ 2
s
ds
4 s s →∞ 4 s 4 s s + 4
s s 2 −1 ∞
s
= L + log 2 − cot , say
4 s + 4 2 s
s s 2 s
= L + log 2 + cot −1 (3)
4 s + 4 2
4
s/4
1
s 2 /4 s
4
= log 1+ 2
s
1
s
s 2 /4
4
lim ( L) = log lim 1+ 2
s →∞
s →∞ s
= log (e ) = log 1 = 0
0
(4)
Using (4) in (3), we have
sin 2 t s s 2 s
L 2 = log 2 + cot −1 .
t 4 s + 4 2
∞
e−t sin 3 t ∞ sin 3 t
∫ d t = ∫ e−st d t
t
(i)
0
t 0 s =1
sin 3 t
= L (1)
t
s =1
sin 3 t ∞
Now L = ∫ L(sin 3 t ) ds
t
s
∞
3
=∫ ds
s s + ( 3 )2
2
∞
1 s
= 3 − cot −1
3 3
s
s
= 0 + cot −1 (2)
3
∞
sin 2 t
∞
2
−t sin t
(ii) ∫ t et
d t = ∫ t dt
e
0 0
∞ sin 2 t
= ∫ e−st dt
0 t s =1
sin 2 t
= L (1)
t
s =1
1
∞
1 s
=
2 ∫ s − s 2
d s
+ 4
s
∞
1 s
= log
2 s 2 + 4
s
1 s
2
1 s
= log 2 − log
2 s + 4 2 s 2 + 4
s→ ∞
s 2 + 4
1
= log
1 1
2 + log
2 1 + 4 /s s → ∞ 2 s
s 2 + 4
1 1
= log 1+ log
2 2 s
s 2 + 4
1
= log
2 s (2)
∞
cos at − cos bt ∞
e−st cos at − cos bt dt
(iii) ∫ t
dt = ∫
0
t
0 s = 0
cos at − cos bt
=L (1)
t s = 0
5.60 Mathematics II
∞
cos at − cosbt
Now L = ∫ L(cos at − cos bt ) ds
t
s
∞
s s
= ∫ 2 − 2 ds
s + a
s
2
s + b 2
∞
1 s 2 + a 2
= log 2 2
2 s + b s
1 s 2 + a 2 1 s 2 + a 2
= log 2 − log
2 s + b 2 2 s 2 + b 2
s →∞
s 2 + b2
= log (2)
s2 + a2
Using (2) in (1), we have
∞
cos at − cos bt b
∫ dt = log
0
t a
∞
e−2t − e−4t ∞ −2 t −4 t
e−st e − e dtt
(iv) ∫ t ∫ t
d t =
0 0 s=0
e−2t − e−4t
= L (1)
t
s=0
e−2t − e−4t ∞
Now L = ∫ L (e−2t − e−4t ) ds
t
s
∞
1 1
= ∫ − ds
s + 2 s + 4
s
∞
s + 2
= log
+
s 4 s
s + 2 s + 2
= log − log
s + 4 s →∞ s + 4
s + 4
= log (2)
s + 2
∞
e−2t − e−4t
∫ t
dt = log 2
0
Laplace Transforms 5.61
Example 5.13 Find the inverse Laplace transforms of the following functions:
s s
(i) (ii)
(s + a 2 ) 2
2
(s − 4) 2
2
4(s −1) s2 −3
(iii) (iv)
(s 2 − 2 s + 5) 2 (s 2 + 4 s + 5) 2
s +1
(v)
(s + 2 s − 8) 2
2
s
∞
s
∴ L−1
2 = t ⋅ L−1
2 2 ∫ ds
(s + a )
(s + a 2 ) 2
2
s
∞
1 dx
= t L−1 ∫ 2 x2
, on putting s2 + a2 = x
s2 + a2
∞
t −1 1
= L −
2 x s2 + a2
t −1 1
= L 2 2
2 s + a
t
= sin at.
2a
s
∞
s
(ii) L−1
2 = t ⋅ L−1
2 ∫ ds
(s − 4)
(s − 4) 2
2
s
t 1
= L−1 2 , as in (i) above.
2 s − 4
t
= sinh 2t
4
Note The inverse transform in this case can also found out by resolving the
given function into partial fractions.
4(s −1)
−1
−1 s −1
(iii) L 2 2
= 4L 2
(s − 2 s + 5)
(s −1) + 2
2 2
s
= 4et L−1
2 , by the first shifting property
2 2
(s + 2 )
5.62 Mathematics II
t
= 4et sin 2t , as in problem (i)
4
= tet sin 2t.
s2 −3
= L−1 (s + 4 s + 5) − (4 s + 8)
2
(iv) L−1
2 2
(s + 4 s + 5)
(s 2 + 4 s + 5) 2
1
−1 s+2
= L−1
2
− 4 L 2 2
s + 4s + 5
(s + 4 s + 5)
1
s+2
= L−1
− 4 L
−1
2
(s + 2) +1
2
2
{(s + 2) +1}
t
= e−2t sin t − 4e−2t sin t , as in problem (i)
2
= e−2t (1−2t) sin t.
s +1
= L−1 s +1
(v) L−1
2 2
2 2
(s + 2 s − 8)
[(s +1) − 3 ]
2
s
= e−t ⋅ L−1
2
2 2
,
(s − 3 )
t
= e−t ⋅ sinh 3t , proceeding as in problem (ii)
6
t
= e−t sinh 3t
6
EXERCISE 5(b)
Part A
(Short Answer Questions)
1. State the formula for the Laplace transform of a periodic function.
2. Find the Laplace transform of f(t) = t, in 0 < t < 1 if f (t + 1) = f(t)
3. State the relation between the Laplace transforms of f(t) and t · f(t).
4. State the relation between the inverse Laplace transforms of φ (s) and φ′ (s).
1
5. State the relation between the Laplace transforms of f(t) and f (t ) .
t
6. State the relation between the inverse Laplace transform of φ (s) and its
integral.
Find the Laplace transforms of the following functions:
1
7. t sin at 8. t cos at 9. sin kt − kt cos kt
2a
Laplace Transforms 5.63
t
10. sin kt + kt cos kt 11. (1− cos at )
a2
1
12. cos kt − kt sin kt .
2
Find the inverse Laplace transforms of the following functions:
s + 1 s + 1 a
13. log 14. log 15. log 1+
s −1 s s
s + a s s 2 + 1
16. log 17. log 18. log 2
s + b s −1 s + 4
a
19. cot−1 s 20. tan −1
s
Find the Laplace transforms of the following functions:
sin at 1− e−t 1− et
21. 22. 23.
t t t
1− cos at sin 2 t
24. 25.
t t
Part B
Find the Laplace transforms of the following periodic functions:
1
26. f (t ) = E , in 0 ≤ t <
E
1 2π
= 0, in ≤ t <
E n
2π
given that f t + = f (t )
n
T
27. f (t ) = E , in 0 ≤ t <
2
= − E, in T/2 ≤ t < T
given that f (t + T) = f (t)
28. f (t) = et, in 0 < t < 2π and f (t + 2π) = f (t)
t
29. f (t ) = sin , in 0 < t < 2 π and f (t + 2π) = f (t)
2
30. f (t) = |cos ωt|, t ≥ 0
π/ω π / 2ω
Hint: f (t )is periodic with period ( π ω ) and e−st | cos ωt| dt =
∫ ∫ e−st cos ωt dt
0 0
π/ω
+ ∫ e−st ( − cos ωt ) dt
π / 2ω
5.64 Mathematics II
a2 s2 + a2 ( s − 2)2
46. log 1 + 2 47. log 48. log
s ( s + b)
2
s 2 +1
s − a −1 1 −1 s + 2
49. s log +a 50. tan 51. tan
s + a 2s 3
−1 a
52. cot 53. tan-1 (s2)
s + b
Find the values of the following integrals, using Laplace transforms:
∞ ∞ ∞
e−t − e−3t
∫te
−2 t
∫t e−t sin t dt ∫ dt
2
54. cos 2t dt 55. 56. t
0 0 0
Laplace Transforms 5.65
∞ ∞ ∞
(1− cost ) e−t e−at − cosbt e− 2t sint sinht
57. ∫ dt 58. ∫ dt 59. ∫ dt
0
t 0
t 0
t
Find the Laplace transforms of the following functions:
1− e−t sin2t
2
1− cosat
60. 61. 62.
t t t
Proof:
The given conditions ensure the existence of the Laplace transforms of f(t) and f ′(t).
∞
By definition, L{f ′(t )} = ∫ e−st f ′(t ) dt
0
∞
= ∫ e−st d [f (t )]
0
∞ ∞
− st
= li [e f (t )] − f (0) + s ⋅ L{f (t )}
t →∞
Corollary 1
In result (1) if we replace f (t) by f ′(t) we get
L{f″ (t)}= sL {f ′ (t)} − f ′(0)
= s [sL {f(t)} − f (0)] −f ′(0), again by (1)
= s2 L{f (t)}−s f (0) −f ′(0) (2)
Note
1. Result (2) holds good, if f(t) and f′(t) are continuous in t ≥ 0,f″ (t) is piecewise
continuous in every finite interval in the range t ≥ 0 and f(t), f ′ (t) and f″ (t) are
of the exponential order.
Corollary 2
Repeated application of (1) gives the following result:
L{ f(n)(t)} = sn L{f(t)}−s n−1 f (0) −sn−2 f ′ (0) − − f (n−1) (0) (3)
Note
2. Result (3) holds good, if f(t) and its first (n − 1) derivatives are continuous in
t ≥ 0, f(n) (t) is piecewise continuous in every finite interval in the range t ≥ 0
and f(t), f ′(t), … , f (n) (t) are of the exponential order.
3. If we take L { f (t)}= f (s), result (1) becomes
t 1
L ∫ f (t ) d t = L{ f (t )}
0 s
.
Proof:
t
g (t ) = ∫ f (t ) dt
Let
0
∴ g′(t) = f (t)
Under the given conditions, it can be shown that the Laplace transforms of both f(t)
and g(t) exist.
Now by the previous theorem,
L{g′(t)}=sL{g(t)} − g(0)
t 0
s⋅L ∫ f (t ) dt − ∫ f (t ) dt = L{ f (t )}
i.e.,
0 0
t 1
∴ L ∫ f (t ) d t = L{ f (t )} (1)
0 s
Corollary
t t 1
L ∫ ∫ f (t ) dt dt = 2 L{ f (t )} , as explained below.
0 0 s
Let ∫ f (t ) dt = g (t )
.
0
t t 1 t
f (t ) dt dt = L ∫ f (t )dt
i.e., L ∫ ∫
0 0 s 0
1 1
= ⋅ L{ f (t )} , again by (l)
s s
1
= L{ f (t )} (2)
s2
Generalising (2), we get
t t t 1
L ∫ ∫ ∫ f (t ) (dt ) = s n L{f (t )}
n
(3)
0 0 0
5.68 Mathematics II
Note
1. If we put L{ f (t)} = f (s), result (1) becomes
t 1
L ∫ f (t ) dt = φ (s ) (4)
0 s
1
t
(5)
L−1 φ (s ) = ∫ f (t ) dt
s
0
From (5), we get the following rule:
1
t
L−1 φ (s ) = ∫ L−1{φ (s )} dt .
s
0
Thus, to find the inverse Laplace transform of the product of two factors, one of
1 1
which is , we ignore , find the inverse transform of the other factor and integrate
s s
it with respect to t between the limits 0 and t.
2. In a similar manner, from (2) above, we get
1
t t
L−1 2 φ (s ) = ∫ ∫L
−1
{φ (s )} dt dt .
s
0 0
t 1 1
0
L ∫ f (t ) dt = L{ f (t )} + ∫ f (t ) dt
3. a s s a
t
g (t ) = ∫ f (t ) dt and g ′(t ) = f (t ),
If we let
a
t 1 1
0
or L ∫ f (t ) dt = L{ f (t )} + ∫ f (t ) dt .
a s s a
The first result, known as the initial value theorem, gives a relation between
lim[ f (t )] and lim[sφ (s )], where φ (s ) = L { f (t )}
t →0 s→∞
The second result, known as the final value theorem, gives a relation between
lim[ f (t )] and lim[sφ (s )] .
t →∞ s→0
Proof:
We know that L{f ′(t)} = sf (s) − f (0)
∴ sf (s) = L{f ′(t)} + f (0)
∞
∫e f ′(t ) dt + f (0),
− st
∴ lim [sφ (s ) = lim
s→∞ s→∞
0
assuming that the conditions for the interchange of the operations of integration
and taking limit hold.
i.e. lim [sφ (s )] = 0 + f (0)
s →∞
= lim [ f (t )].
t →0
= [ f (t )]∞
0 + f ( 0)
∫ f (u ) g (t − u ) du
0
i.e. f (t ) * g (t ) = ∫ f (u ) g (t − u ) du
0
t t
∫ φ (u ) du = ∫ φ (t − u ) du
0 0
t
= ∫ g (u ) f (t − u ) du
0
= g (t )* f (t ).
Laplace Transforms 5.71
Proof:
∞
=∫ ∫e
− st
f (u ) g (t − u )du dt (1)
0 0
The region of integration for the double integral (1) is bounded by the lines u = 0,
u = t, t = 0 and t = ∞ and is shown in the Fig. 5.6.
u
t
=
t=∞
u
t=0
(u, u)
(∞, u)
t
u=0
Fig. 5.6
Changing the order of integration in (1), we get,
∞ ∞
L{f (t ) * g (t )} = ∫ ∫e
− st
f (u ) g (t − u ) dt du (2)
0 u
In the inner integral in (2), on putting t − u = v and making the consequent changes,
we get,
∞ ∞
L{f (t ) * g (t )} = ∫ ∫e
− s (u + v )
f (u ) g (v) dv du
0 0
∞ ∞
= ∫ e−su f (u ) ∫ e−sv g (v)dv du
0 0
5.72 Mathematics II
∞ ∞
∞ ∞
L{f (t ) * g (t )} = f (s ) ⋅ g (s ) (3)
In terms of the inverse Laplace operator, result (3) can be written in the following
way.
L−1{f (s ) ⋅ g (s )} = f (t ) * g (t )
= ∫ f (u ) g (t − u ) du (4)
0
Result (4) means that the inverse Laplace transform of the ordinary product of two
functions of s is equal to the convolution product of the inverses of the individual
functions.
Example 5.1 Using the Laplace transforms of derivatives, find the Laplace
transforms of
(i) e−at (ii) sin at
(iii) cos2 t (iv) t n (n is a positive integer)
s2 + 2
=
s2 + 4
s2 + 2
∴ L(cos 2 t ) =
s (s 2 + 4)
(iv) L{f (n ) (t )} = s n L{f (t )} − s n−1 f (0) − s n−2 f ′(0) − f (n−1) (0) (3)
n!
∴ L(t n ) =
s n+1
t 1
Example 5.2 Find the Laplace transform of and hence find L .
π πt
t
1 1 (3 / 2)
L
= L(t1/ 2 ) = = 3/ 2
π
π π s
1
(1 / 2)
=
1 1
⋅ 2 3/ 2 = 3/ 2 ( (1/2) = π )
π s 2s
In the result L{f ′(t)} = sL {f(t)} − f (0), we put
t
f (t ) = , we get
π
1
1
L
= s ⋅ 3/ 2 − 0
2 πt
2s
5.74 Mathematics II
1
=
2 s
1 1
∴ L
= .
π t
s
Aliter
1
1
L
= L ⋅ t / π
πt
t
∞
= ∫ L( t / π ) ds
s
∞
1
=∫ ds
s
2s 3/ 2
∞
1 1
= − = .
s s s
2a 2
= 1−
s + a2
2
s2 − a2
= 2
s + a2
s2 − a2
∴ L(t cos at ) =
(s 2 + a 2 ) 2
a a (s 2 − a 2 )
Now L(sin at − at cos at ) = −
s 2 + a 2 (s 2 + a 2 ) 2
Laplace Transforms 5.75
a {(s 2 +a 2 ) − (s 2 − a 2 )}
=
(s 2 + a 2 ) 2
2a 3
=
(s 2 + a 2 ) 2
Taking f (t) = t cos at in the result
L{f ′(t)} = sL{f(t)} − f(0), we get
L{cos at − at sin at} = sL (t cos at) − 0
s (s 2 − a 2 )
=
(s 2 + a 2 ) 2
2as
∴ L(t sinh at ) =
(s 2 − a 2 ) 2
In the result L{f ′(t)} = sL {f(t)} − f(0), if we put f(t) = t sinh at, we
have
2as 2
L(sinh at + at cosh at )= [ f(0) = 0]
(s 2 − a 2 ) 2
1
Now L(cosh at + at sinh at )
2
a
= L(cosh at ) + L(t sinh at)
2
s a 2as
= 2 + ⋅ 2
s −a 2
2 (s − a 2 ) 2
s (s 2 − a 2 ) + a 2 s s3
= = 2 .
(s − a )
2 2 2
(s − a 2 ) 2
Example 5.4 Find the inverse Laplace transforms of the following functions:
s s2
(i) (ii)
(s + 2) 4 (s − 2)3
5.76 Mathematics II
s s
(iii) (iv)
s + 4s + 5
2
(s + 2)(s + 3)
s
(v)
(s 2 + 1)(s 2 + 4)
d −1
(i) L−1 {sφ(s)} = L {φ(s)} , provided L−1{f (s)} vanishes at t = 0 (1)
dt
s
, let us first find f (t ) = L−1
1
To find L−1
4
4
and then apply
(s + 2)
(s + 2)
rule (1)
1
Now f (t ) = e−2t L−1 4
s
1 3 1 3 −2t
= e−2t t = te
3! 6
d 2 −1
(ii) L−1 {s 2φ(s )} = L {φ(s )} , provided
dt 2
f(0) = 0 f ′(0) = 0, where f(t) = L−1 {f (s)}. (2)
s 2
1
To find L−1
3
, we shall find f (t ) = L-1
3
and then apply rule (2).
(s − 2)
(s − 2)
1
Now f (t ) = e 2t L−1 3
s
1 2 1 2 2t
= e 2t ⋅ t = t e
2! 2
1 2 2t
f ′(t ) = (2t e + 2te 2t )
2
We note that f(0) = 0 and f ′(0) = 0
−1
s2
d2 1 2 2t
∴ By (2), L = 2
t e
(s − 2) 3
d t
2
Laplace Transforms 5.77
d 2
= [(t + t )e 2t ]
dt
= 2(t 2 + t )e 2t + (2t + 1)e 2t
= (2t 2 + 4t + 1)e 2t
s
(iii) To find L−1 2 ,
s + 4s + 5
1
we shall find f (t )=L−1 2 and then apply the rule (1).
s + 4s + 5
1
Now f (t ) = L−1
(s + 2 ) 2
+ 1
= e−2t sin t
and f(0) = 0.
s
d −2 t
∴ By (l), L−1 2 = (e sin t )
s + 4 s + 5
dt
= e−2t cos t − 2e−2t sin t
= e−2t (cos t − 2 sin t)
s
−1 1
(iv) To find L−1
, we shall find f (t ) = L and
(s + 2) (s + 3)
(s + 2) (s + 3)
then apply the rule (1).
1
Now f (t ) = L−1
(s + 2) (s + 3)
1
1
= L−1 − ,
s + 2 s + 3
by resolving the function into partial fractions.
= e−2t − e−3t
and f(0) = 0.
s
d −2t
∴Βy (1), L−1
−3t
= (e − e )
(s + 2 ) (s + 3)
dt
= 3e−3t − 2e−2t
s
−1 1
(v) To find L−1
2
, we shall find f (t ) = L 2
(s + 1) (s + 4)
2
(s + 1) (s + 4)
2
1/ 3
1/ 3
Now f (t )=L−1 2 − 2 ,
s + 1 s + 4
by resolving the function into partial fractions.
1 1
= sin t − sin 2t
3 6
and f(0) = 0
s
d 1 1
∴ By (1), L−1
2
= sin t − sin 2t
(s + 1) (s 2
+ 4 )
d t
3 6
1
= (cos t − cos 2t )
3
Note We have solved the problems in the above example by using the working
rule derived from the theorem on Laplace transforms of derivatives. They can be
solved by elementary methods, such as partial fraction methods, discussed in Section
5(a) also.
Example 5.5 Find the inverse Laplace transforms of the following functions.
s2 s3
(i) (ii)
(s 2 + a 2 ) 2 (s + a 2 ) 2
2
(s + 1) 2 s2
(iii) (iv)
(s 2 + 2 s + 5) 2 (s 2 − 4) 2
(s − 3) 2
(v)
(s 2 − 6 s + 5) 2
s
(i) Let f (t ) = L−1
2
2 2
(s + a )
t
=sin at [Refer to Worked Example (13) (i) in Section 5(b)]
2a
We note that f (0) = 0
d −1
Now L−1{sφ (s )} = L {φ(s )} , provided f (0) = 0,
dt
where f(t) = L−1 {φ (s)} (1)
s2
s
∴ L−1
2 2 2
= L−1
s ⋅ 2
2 2
(s + a )
(s + a )
d t
= sin at , by rule (1)
dt 2a
Laplace Transforms 5.79
1
= (sin at + at cos at ) (2)
2a
s2
(ii) Let f (t ) = L−1 2
(s + a )
2 2
1
= (sin at + at cos at ) , by (2)
2a
we note that f(0) = 0
s3
= L−1
s2
Now L−1
2 2 2
s ⋅ 2 2 2
(s + a )
(s + a )
d1
= (sin at + at cos at ) , by rule (l)
dt 2a
1
= (2 cos at − at sin at ) .
2
(s + 1) 2
(s + 1) 2
(iii) L−1
2
= L−1
2 2
(s + 2 s + 5) {(s + 1) + 2 }
2 2
s2
= e−t L−1
2
2 2 , by the first shifting property
(s + 2 )
1
= e−t (sin 2t + 2t cos 2t ) , by (2)
4
s
(iv) Let f (t ) = L−1
2
2
(s − 4 )
t
= sinh 2t
4
[Refer to Worked Example (13) (ii) in Section 5(b)]
We note that f(0) = 0.
s2
= L−1 s
Now L−1
2 2
s ⋅ 2 2
(s − 4)
(s − 4)
d −1 s
= L
2 2
, by rule (1)
dt
(s − 4)
d t
= sinh 2t
dt 4
1
= (sinh 2t + 2t cosh 2t ) (3)
4
5.80 Mathematics II
(s − 3) 2
(s − 3) 2
(v) L−1 2 = L−1
(s − 6 s + 5) 2 2
{(s − 3) − 4}
2
s2
= e3t L−1 2
(s − 4) 2 , by the first shifting property.
1
= e3t (sinh 2t + 2t cosh 2t ) , by (3).
4
Example 5.6 Find the Laplace transforms of the following functions:
t t
t
e−t sin t
t
(iii) t ∫ e−4t sin 3t dt (iv) ∫ dt
0 0
t
t t
sin t 1
(v) e−t ∫
t
dt (vi) ∫
t 0
e−t sin t dt
0
t 1
(i) L ∫ f (t ) dt = L{ f (t )} (1),
0 s
by the theorem on Laplace transform of integral
t
∴ L ∫ t e−4t sin 3t dt
0
1
= L{te−4t sin 3t}
s
6(s + 4)
=
s (s + 8s + 25) 2
2
t
1
Now L ∫ t sin 3t dt = L(t sin 3t ) , by rule (l)
0
s
1 d
= − L(sin 3t )
s ds
1 d 3
= − ⋅ 2
s ds s + 9
Laplace Transforms 5.81
1 −3× 2 s 6
=− × 2 = (3)
s (s + 9) 2 (s 2 + 9) 2
6
= 2
(s + 8s + 25) 2
t
(iii) L t ⋅ ∫ e−4t sin 3t dt
0
d
t
ds ∫0
−4 t
=− L e sin 3t d t (4)
t
1
Now L ∫ e−4t sin 3t dt = L(e−4t sin 3t ) , by (1)
0
s
1
= [L(sin 3t )]s → s + 4
s
1 3
= ⋅
s (s + 4) 2 + 9
3
= 3 (5)
s + 8s 2 + 25s
Using (5) in (4), we get
t d 3
L t ∫ e−4t sin 3t dt = − 3
0
s + 8s + 25s
ds 2
e−t sin t ∞
Now L = ∫ L(e−t sin t ) ds
t s
∞
ds
=∫
s
(s + 1) 2 + 1
5.82 Mathematics II
= {− cot −1 (s + 1)}∞
s
(7)
= cot −1 (s + 1)
Using (7) in (6), we get
e−t sin t
t
1
L∫ dt = cot −1 (s + 1)
0
t s
sin t sin t
t t
1 sin t
t
sin t
Now L∫ dt = L , by (1)
0
t s t
∞
1
s ∫s
= L(sin t ) ds
∞
1 ds 1
= ∫ = cot −1 s
s s s +1 s
2
(9)
1 1
= ⋅ (11)
s (s + 1) 2 + 1
Using (11) in (10), we get
1 t ∞ ds
L ∫ e−t sin t dt = ∫
t
0 s
s (s 2
+ 2 s + 2)
∞
1 1 s+2
=∫ − 2 ds ,
s
2 s s + 2 s + 2
on resolving the integrand into partial fractions.
1
∞
1 s +1 1
= ∫ − − ds
2 s s (s + 1) + 1 (s + 1) + 1
2 2
Laplace Transforms 5.83
∞
1 1
= log s − log {(s + 1) 2 + 1} + cot −1 (s + 1)
2 2 s
∞
1
= log
s + cot −1 (s + 1)
2 s 2 + 2 s + 2
s
1 s + 2 s + 2 1 −1
2
= log − cot (s + 1).
4
s2 2
Example 5.7 Find the inverse Laplace transforms of the following functions:
1 54 1
(i) ; (ii) ; (iii) .
s (s + 2)3 s 3 (s − 3) s (s 2 + 4 s + 5)
1 1 s + 1 5s − 2
(iv) ; (v) ; (vi) ;
s (s + a 2 )
2 2
s 2 s 2 + 1 s (s −1)(s + 2)
2
1
(vii)
(s + 2) (s 2 + 4 s + 13)
Note All the problems in this example may be solved by resolving the given
functions into partial fractions and applying elementary methods. However we shall
solve them by applying the following working rule and its extensions.
1
t
L−1 φ(s ) = ∫ L−1 (φ (s ) dt (1)
s
0
1 t
1
(i) L−1 L−1 dt , by (1)
s (s + 2)3 ∫
= 3
(s + 2 )
0
t
1
= ∫ e−2t L−1 3 dt
s
0
t
1 2
= ∫ e−2t t dt
0
2
by Bernoulli’s formula.
1 t2 t 1 1
= −e−2t + + +
2 2 2 4 4
1
= [1 − (2t 2 + 2t + 1)ee−2t ]
8
5.84 Mathematics II
54
= 54 ∫ ∫ ∫ L−1 1 dt dt dt , by the extension of rule (1).
t t t
(ii) L−1 3
s (s − 3)
s − 3
0 0 0
t t t
= 54 ∫ ∫∫ e 3 t dt d t d t
0 0 0
t
t t
e3t
= 54 ∫ ∫ 3 dt dt
0 0 0
t t
=18∫ ∫ (e
3t
−1) dt dt
0 0
e 3t
t t
=18∫ − t dt
3
0 0
t
= 6 ∫ (e3t − 3t −1) dt
0
e3t 3t 2
t
= 6 − − t
3 2
0
= 2e3t − 9t 2 − 6t − 2.
Aliter
We can avoid the multiple integration by using the following alternative method.
54 54
L
−1
=L
−1
s 3 (s − 3)
( s − 3 + 3) (s − 3)
3
1
= 54e3t L−1 3
,
s (s + 3)
t
1
= 54e3t ∫ e−3t ⋅ L−1 3 dt
s
0
t
1 2 −3t
= 54e3t ∫ t e dt
0
2
Laplace Transforms 5.85
e−3t −3 t
t
− 2t e + 2 e
−3 t
= 27e t 2
3t
9 −27
−3 0
−3 t
= e [2 − e (9t + 6t + 2)]
3t 2
= 2e3t − 9t 2 − 6t − 2
1
t
−1 1
∫L
−1
(iii) L 2 = 2 dt ,
s (s + 4 s + 5
0
s + 4 s + 5
by rule (1).
t
1
= ∫ L−1
dt
(s + 2) +1
2
0
t
= ∫ e−2t sint dt
0
−e−2t
t
= (2sin t + cos t )
5
0
1
= [1− e−2t (2 sin t + cos t )]
5
1
t t
1
(iv) L−1
2 2 2
= ∫ ∫L
−1
s 2 + a 2 dt dtt
,
s (s + a )
0 0
1 −cosat
t t
a ∫0 a 0
= dt
t
1
=
a2 ∫ (1− cos at ) dt
0
1 sin at
t
= t −
a 2 a 0
1
= (at − sin at ).
a3
1 s +1
t t
s +1
L−1 =
2 2
∫ ∫L
(v)
−1
s 2 +1 dt dt ,
s s +1
0 0
t t
=∫ ∫ (cos t + sin t ) dt dt
0 0
t
5s − 2
t t
5 s − 2
(vi) L−1
2
∫
= ∫L
−1
dt dt ,
s (s −1) (s + 2)
0
(s −1) (s + 2)
0
=∫ ∫ (e + 4e
t −2 t
) dt dt
0 0
t
1
(vii) L−1
(s + 2) (s + 4 s +13)
2
1
= L−1
(s + 2){(s + 2) 2 + 9}
1
= e−2t ⋅ L−1 2 , by the first shifting property.
s (s + 9)
t
1
= e−2t ∫L
−1
dt , by rule (1),
s 2 + 9
0
t
1 −2 t
=
3
e ∫ sin 3t dt
0
Laplace Transforms 5.87
1 −2t −cos 3t
t
= e
3 3 0
1
= e−2t (1− cos 3t )
9
Example 5.8 Find the inverse Laplace transforms of the following functions:
1
1 1
(i) ; (ii) ; (iii) (s 2 + 2 s + 5) 2 ;
(s + a 2 ) 2
2
s (s + a 2 ) 2
2
1 1 1
(iv) ; (v) ; (vi) .
(s − 4) 2
2
s (s − 4) 2
2
(s − 2 s − 3) 2
2
1
= L−1 1⋅
s
(i) L−1
2 2 2
(s + a )
s (s 2
+ a 2 2
)
t
s
= ∫ L−1 2 2 2
d t ,as
(s + a )
0
1
t
L−1 φ (s ) = ∫ L−1 { φ (s )} d t (1)
s
0
t
t
=∫ sin at d t
0
2a
= t −
2 a a a 2 0
1
= 3 (siin at − at cos at ) (2)
2a
1 1 s
(ii) L−1 2 = L−1 2 ⋅ 2
s (s + a 2 ) 2 s (s + a 2 ) 2
t t
s
=∫ ∫ L−1 2 2 2
dt dt ,
(ss + a )
0 0
1
= (−2 cos at − at sin at )t0
2a 4
1
= 4 (2 − 2 cos at − at sin at ).
2a
1
−1 1
−1
L 2 =L
2 2
(iii)
( s + 2 s + 5)
( s +1) 2 + 4
1
= e−t ⋅ L−1 2 2
( s + 4)
1
= e−t (sin 2t − 2t cos 2t ), by problem (i)
16
1 −1
1 s
(iv) L−1
2 = L
2 ⋅ 2
2
( s − 4 )
s ( s − 4 )
t
s
= ∫ L−1 2 dt , by rule (1)
2
( s − 4 )
0
t
t
=∫ sinh 2t dt
0
4
[Refer to Worked Example 13 (ii) in Section 5(b)]
= t −
4 2 4 0
1
= (2t cosh 2t − sinh 2t ) (3)
16
1
= L−1
1 s
(v) L−1
2 2
2⋅ 2 2
s ( s − 4)
s ( s − 4)
t t
s
= ∫ ∫ L−1 2 2
dt dt ,
( s − 4)
0 0
1
(iii) If L{ f (t )} = , find lim [ f (t )] and lim [ f (t )] .
s ( s + 1)( s + 2) t →0 t →∞
= ∫ te−21 dt
0
5.90 Mathematics II
e−2t e−2t
t
1
and lim [ f (t )] = = lim [ sφ ( s )]
t →∞ 4 s→0
Hence the initial and final value theorems are verified.
(ii) L(e−t cos2 t) = f (s)
i.e., f (t) = e−t cos2 t
By the final value theorem,
lim [ sφ ( s )] = lim [e−t cos 2 t ] = 0
s→0 t →∞
1
(iii) L{ f (t )} =
s ( s +1)( s + 2)
1
∴ sφ ( s ) =
( s +1)( s + 2)
By the initial value theorem,
lim [ f (t )] = lim [ sφ ( s )] = 0
t →0 s →∞
t t
∫u e ∫
2 −a ( t − u )
(i) du is of the form f (u ) g (t − u ) du
0 0
Laplace Transforms 5.91
∫u e−a (t − u ) du = (t 2 ) *(e−at )
2
i.e.
0
∴ By convolution theorem,
t
L ∫ u 2 e−a (t − u ) du = L(t ) 2 ⋅ L(e−at )
0
2 1
= 3⋅
s s+a
t
2
∫u
2
e−a (t − u ) du = L−1
3
s ( s + a )
0
2
= e−at ⋅ L−1
3
s ( s − a )
t
2
= e−at ∫ L−1 3
dt
0 ( s − a )
t
= e−at ∫t
2
e at dt
0
e at e at
t
e at
= e−at t 2 − 2t 2 + 2 3
a a a 0
t 2 e at 2t e at 2e at 2
= e−at − 2 + 3 − 3
a a a a
1 2 2
= {a t − 2at + 2 − 2e−at }
a3
t t
∴ By convolution theorem,
t
L ∫ sin u cos (t − u ) du = L(sin t ) ⋅ L(cos t )
0
5.92 Mathematics II
s
=
( s 2 + 1) 2
t
s
∫ sin u cos (t − u ) du = L
−1
∴ 2 2
( s + 1)
0
t
= sin t , by Worked Example 13(i) of Section 5(b).
2
Example 5.11 Use convolution theorem to find the inverse Laplace transforms of
the following functions:
1 s s2
(i) (ii) (iii)
( s +1) ( s + 2) (s 2 + a 2 )2 (s 2 + a 2 ) (s 2 +b2 )
4 s2 + s
(iv) (v)
( s + 2 s + 5) 2
2
( s 2 +1) ( s 2 + 2 s + 2)
1
1 1 * −1 1
(i) L−1
⋅
= L
−1
L , by convolution theorem
s +1 s + 2
s +1 s + 2
= e−t * e−2t
t
= ∫ e−u ⋅ e−2 (t − u ) du
0
t
∫e
−2 t
=e u
du
0
s
= L−1
1 s
(ii) L−1
2 2 2
2 ⋅ 2
2
( s + a )
s + a 2
s + a
1 −1 s
= L−1 2 2
* L 2
s + a 2 , by convolution theorem
s + a
1
= sin at * (cos at )
a
t
1
=∫ sin au cos a (t − u ) du
0
a
t
1
=
2a ∫ [sin at + sin (2au − at )] du
0
cos( 2au − at )
t
1
= (sin at ) u −
2a 2a 0
Laplace Transforms 5.93
1 1
= t sin at − (cos at − cos at )
2a 2a
1
= t sin at.
2a
s2
= L−1 s s
(iii) L−1
2 2
2 ⋅ 2 2
2 2
( s + a )( s + b )
s + a s + b
2
s
* L−1 s
= L−1
2 2
2 2
, by convollution theorem
(s + a )
s + b
= ( cos at ) * ( cos bt )
t
1 1
t
1
= sin{(a − b) u + bt + sin{(a + b) u − bt}
2 a −b a +b
0
1 1 1
= (sin at − sin bt ) + (sin at + sin bt )
2 a − b a +b
1 1 1 1
1
= +
sin at + + sin bt
2 a − b a + b a + b a − b
1 2a 2b
= sin at − 2 sin bt
2 a − b
2 2
a −b 2
1
= 2 (a sin at − b sin bt ).
a −b2
−1 4 2 2
(iv) L = L−1 2 ⋅ 2
( s 2 + 2 s + 5) ( s + 2 s + 5) ( s + 2 s + 5)
2
2
−1 2
= L−1
* L ,
( s +1) + 4
2
( s +1) + 4
2
by convolution theorem.
−t −t
= (e sin 2t )*(e sin 2t )
t
t
1
= e−t ∫ [cos (4u − 2t ) − cos 2t ] dv
2 0
sin (4u − 2t )
t
1
= e−t − (cos 2t ) ⋅ u
2 4 0
1 1
= e−t (sin 2t + sin 2t ) − t cos 2t
2
4
1
= e−t (sin 2t − 2t cos 2t ).
4
s +1
s2 + s s
(v) L−1 2 = L−1
2 ⋅ 2
( + )( 2
+ + ) s + 2 s + 2 s +1
s 1 s 2 s 2
s +1
s
= L−1
* L 2
−1
( s +1) +1
2
s +1
−t
= (e cos t )*(cos t )
t
1 1 1
= cos t (− e−u ) + ⋅ e−u {− cos (2u − t ) + 2 sin (2u − t )}
t t
2 0 2 5 0
1 1
= cos t (1− e−t ) + e−t (2 sin t − cos t ) + (2 sin t + cos t )
2 10
1 −t 1
= e (sin t − 3 cos t ) + (sin t + 3 cos t ).
5 5
EXERCISE 5(c)
Part A
(Short Answer Questions)
1. State the relation between the Laplace transforms of f (t) and f ′(t). Under
what conditions does this relation hold good?
2. Express L−1 {sφ (s)} interms of L−1 {φ (s)}. State the condition for the validity
of your answer.
t t
3. Express L ∫ ∫ f (t ) dt dt in terms of L{f(t)}.
0 0
Laplace Transforms 5.95
1
4. State the relation between L−1 {f (s)} and L−1 2 φ (s ) .
s
5. State the initial value theorem in Laplace transforms.
6. State the final value theorem in Laplace transforms.
7. Define the convolution product of two functions and prove that it is com-
mutative.
8. Verify whether 1 * g (t) = g (t), when g (t) = t.
9. State convolution theorem in Laplace transforms.
Using the Laplace transforms of the derivatives find the Laplace transforms
of the following functions:
10. e at 11. cos a t 12. sin2 t
Find the inverse Laplace transforms of the following functions:
s s2
13. 14.
(s + 2)3 (s −1)3
s s
15. 16.
(s − a ) 2 + b 2 (s +1) (s + 2)
Find the Laplace transforms of the following functions:
t t t
sin t 1− et 1− 2 cos t
17. ∫ t
dt 18. ∫ t
dt 19. ∫ t
dt
0 0 0
t t t
1 1
25. 26.
s (s 2 − a 2 ) s (s 2 +1)
s +3
27. If L { f (t )} = , find lim ( f (t )} and lim{ f (t )} .
(s +1) (s + 2) t →0 t →∞
−1 1 −t −2 t
28. If L { φ (s )}= (1− 2e + e ) , find lim
s →0
(s φ (s )} and lim {s φ (s )}.
2 s →∞
t n−1
29. Show that 1 * 1 * 1 * ......* 1 (n times) = , where * denotes Convolu-
tion. (n −1)!
t
1
30. If L { f (t )} = , evaluate ∫ f (u ) f (t − u ) du .
s 2 +1 0
5.96 Mathematics II
Part B
36. Using the Laplace transforms of the derivatives find L (t sin a t) and hence
find L (2 cos at − a t sin a t) and L (sin a t + a t cos a t).
37. Using the Laplace transforms of the derivatives, find L (t cosh a t) and
hence find L (sinh a t + a t cosh a t) and L (a t cosh a t − sinh a t).
1
−1
38. Find L−1 s
and hence find L .
( s + a) (s + b)
( s + a) (s + b)
−1 1
s2
39. Find L
and hence find L−1 .
( s −1) (s − 2) (s − 3)
( s −1) (s − 2) (s − 3)
1 −1 s
40. Find L−1
2
and hence find L
2
( )( ) ( )( )
s + a 2
s 2
+ b 2 s + a 2
s 2
+ b 2
s2
and L−1
2
.
( s + a 2
) ( s 2
+ b 2
)
41. Given that L−1 = t sin 2 t , find
s
2
s + 4)
(
2
4
s2 , L−1
3
and L−1 (s + 3)
2
L−1
2
s
2 2
( s + 6 s + 13)
(
s + 4)
(
2
s + 4)
2 2
−1s
= t sinh at
42. Given that L 2 , find
( s 2
− a 2
)
2a
and s + a
2
s2 s3
L−1
,
2
L−1
2
L−1 .
s (s + 2a )
( s − a )
( − )
2 2 2 2
s a
1
1 s
−1
43. Given that L−1
4
= (sin t cosh t − cos t sinh t ), find L 4 ,
s + 4
4 s + 4
Laplace Transforms 5.97
s2
s3
−1
L−1
4
and L 4
.
s + 4
s + 4
Find the Laplace transforms of the following functions:
t t
∫te ∫ t sin t dt
t t
44. sin t dt 45 . e
0 0
e−2t sin 3t
t t
t t
sin 3t 1
t ∫0
48. e−2t ∫ dt 49. e−2t sin 3t dt
0
t
Find the inverse Laplace transforms of the following functions:
1 s −1
50. Hint: Consider the function as s2−1
s 2 s + 1
s (s + s )
4s + 7 1
51. 52.
s 2 (2s + 3) (3s + 5) s (s 2 + 6 s + 25)
1 1 s − 2 1
53. 54. 55.
(s + 1) (s + 2 s + 2) 2
s 2 s 2 + 4 (s + 9) 2
2
1 1 1
56. 57. 58.
s (s + 9) 2 2
(s + 6s + 10) 2
2
(s − a 2 ) 2
2
1 1
59. 60.
s (s 2 − a 2 ) 2 (s 2 + 4 s ) 2
Verify the initial and final value theorems when
−1 1
61. f (t) = (2t + 3)2 e−4t 62. f (t ) = L 3
s (s + 4)
63. Use convolution theorem to evaluate
t
∫e
−u
sin (t − u ) du
0
1 10
67. 68.
(s + 4) 22
(s + 1) (s 2 + 4)
5.98 Mathematics II
1 1
69. 70.
s (s + 1)3
2
s4 + 4
5.11.1 Procedure
1. We take the Laplace transforms of both sides of the given differential equa-
tion in y (t), simultaneously using the given initial conditions. This gives an
algebraic equation in y (s ) = L{y (t )} .
E
i.e., L{s i (s ) − i (0)} + Ri (s ) = , where i (s ) = L{i (t )}
s+a
E
i.e., (Ls + R) i (s ) =
s+a
E
∴ i (s ) =
(s + a ) (Ls + R )
Laplace Transforms 5.99
1 1
R − a L a L − R
= E +
s+a s+R L
Taking inverse Laplace transforms
−1 1 1
i (t ) =
E L
− L−1
R − aL s + a
s + R L
E
= (e−at − e−Rt L )
R−aL
1
i.e., (s 2 − 4 s + 8) y (s ) = + (2 s −10)
s−2
1 2 s −10
∴ y (s ) = +
(s − 2) ( s 2 − 4 s + 8) s2 − 4s +8
A Bs + C 2 s −10
= + 2 + 2
s − 2 s − 4s +8 s − 4s +8
1 1 1
− s+
= 4 + 4 2 + 2 s −10
s − 2 s2 − 4s +8 s2 − 4s +8
1 7 19
s−
= 4 + 4 2
s − 2 s2 − 4s +8
1 7
(s − 2) − 6
= 4 +4
s − 2 (s − 2) 2 + 4
7
s − 6
1 −1 1 2t −1 4
y= L + e L 2
4 s − 2 s + 4
1 7
= e 2 t + e 2 t cos 2t − 3 sin 2t
4 4
1
= e 2 t (1+ 7 cos 2t −12 sin 2t )
4
5.100 Mathematics II
∴ y = 4e − 6 te + ∫ t e dt + 2 ∫ ∫ t et d t d t + 2 ∫ ∫∫te
t t t t
dt dt dt
0 0 0 0 0 0
t t t
= 4et − 6 t et + (t et − et + 1) + 2 ∫ (t et − et + 1) d t + 2 ∫ ∫ (t e − e
t t
+ 1) d t d t
0 0 0
t
t2
= −et − 3 t et + 2 t + 5 + 2 (t et − 3 et + + 2t + 3)
2
= − 7et − t et + t 2 + 6 t + 11
ω
∴ y (s ) = (1)
(s 2 + 4)(s 2 + ω 2 )
ω 1 1
= 2 − 2
ω − 4 s + 4 s + ω 2
2
Inverting, we have,
1 ω
y= sin 2t − sin ωt , if w ≠ 2.
ω 2 − 4 2
1
∴ y = 2 L−1
2
2
(s + 4)
Laplace Transforms 5.101
1
= (sin 2t − 2t cos 2t )
8
[Refer to Worked Example 8(i) in Section 5(c).
Example 5.5 Solve the equation y″ + y′ − 2y = 3 cos 3t −11 sin 3t, y (0) = 0
and y′(0) = 6.
Taking Laplace transforms and using the giving initial conditions, we get
3s 33
(s 2 + s − 2) y (s ) = − 2 +6
s +9 s +9
2
6 s 2 + 3s + 21
=
s2 + 9
6 s 2 + 3s + 21
∴ y (s ) = ,
(s 2
+ 9) (s + 2) (s −1)
As + B C D
= + +
s 2 + 9 s + 2 s −1
3 1 1
= 2 − + by the usual procedure
s + 9 s + 2 s −1
∴ y = sin 3t − e−2t + et.
Example 5.6 Solve the equation (D2 + 4D + 13) y = e−t sin t, y = 0 and
d
D y = 0 at t = 0, where D ≡ .
dt
Taking Laplace transforms and using the given initial conditions, we get
1
(s 2 + 4 s + 13) y (s ) =
s +2s+2
2
1
∴ y (s ) =
(s 2 + 2s + 2)(s 2 + 4s +13)
As + B Cs + D
= +
s 2 + 2 s + 2 s 2 + 4 s + 13
1 −2 s + 7 2s − 3
= 2 + ,
85 s + 2 s + 2 s 2 + 4 s + 13
1 −2(s + 1) + 9 2(s + 2) − 7
= +
85 (s + 1) 2 + 1 (s + 2) 2 + 9
1 −t
e { − 2 cos t + 9 sin t}+ e−2t 2 cos 3t − sin 3t
7
∴ y=
85
3
5.102 Mathematics II
s
i.e. (s 2 + 9) y (s ) = + s + A , where A = y′(0).
s +4
2
s s A
∴ y (s ) = + +
(s 2 + 4)(s 2 + 9) s2 + 9 s2 + 9
s
1 s s A
= 2 − 2 + 2 + 2
5
s + 4 s + 9
s + 9 s +9
1 4 A
∴ y = cos 2t + cos 3t + sin 3t
5 5 3
π
Given y = −1
2
1 A 12
i.e. −1 = − − ∴ A =
5 3 5
1 4 4
∴ y = cos 2 t + cos 3 t + sin 3 t .
5 5 5
Laplace Transforms 5.103
i.e. (s − k ) 2 y (s ) = As + B + f (s )
[As y (0) and y′(0) are not given, they are assumed as arbitrary contants]
As B f (s )
∴ y (s ) = + +
(s − k ) 2
(s − k ) 2
(s − k ) 2
A (s − k ) + (Ak + B ) f (s )
= +
(s − k ) 2
(s − k ) 2
C1 C2 f (s )
= + + , where C1 = A and C2 = Ak + B
s − k (s − k ) 2 (s − k ) 2
1
∴ y = C1 e kt + C2 t e kt + L−1
f (s ) ⋅
(s − k ) 2
i.e. y = (C1 + C2t) ekt + f (t) * t ekt
t
3s 1 1 2
∴ y (s ) = + 2 + + 2 2
s + 1 s + 1 s ( s + 1) s ( s + 1)
2 2
t t t
d 4 y d3 y dy d 2 y d3 y
Example 5.11 Solve the equation − = 0 , y = = 2 and = =1
d x 4 d x3 dx d x 2 d x3
at x = 0.
(s 4 − s 3 )y (s ) = 2 s 3 − s
2 s 2 −1 A B C
∴ y ( s )= = + 2+ .
s ( s −1) s s
2
s −1
1 1 1
i.e. y ( s )= + 2 +
s s s −1
∴ y = 1 + t + et
dy
Example 5.12 Solve the simultaneous differential equation + 2 x = sin 2t
dt
dy
and + 2 x = cos 2t , x (0) = 1, y (0) = 0.
dt
Taking Laplace transforms of both sides of the given equation and using the given
initial conditions, we get
2
sy ( s ) + 2 x ( s ) = (1)
s +4
2
s
and sx ( s ) − 2 y ( s ) = +1 (2)
s +4
2
1 s 2
x ( s )= + 2 and y ( s )=− 2
s +4 s +4
2
s +4
1
∴ x = sin 2t + cos 2t and y = − sin 2 t.
2
2 1
[ sx ( s ) −1] + 2[ s y ( s ) −1]− 2 x ( s ) − y ( s ) = −
s3 s 2
2
i.e. (2 s + 3) x ( s ) − sy ( s ) = +1 (1)
s2
2 1
and ( s − 2) x ( s ) + (2 s −1) y ( s ) = − +3 (2)
s3 s 2
Solving (1) and (2), we have
3 5s −1
x ( s )= +
s ( s +1)(5s − 3) ( s +1)(5s − 3)
−1 3 8 25 8 3 4 5 4
= + + +
+
s s +1 5s − 3 s +1 5s − 3
1 98 78
=− + +
s s +1 s − 3 5
9 7
∴ x =−1+ e−t + e3 5t (3)
8 8
Eliminating y′ from the given equations,
we get 5x′ + 4x − y = t2 + 3t
∴ y = 5x′ + 4x − t2 − 3t
9 21 3 t 7 3t
= 5 − e−t + e 5 + 4 −1+ e−t + e 5
9
8 40 8 8
− t2 − 3t, on using (3)
3
9 49 t
i.e. y =− e−t + e − t 2 − 3t − 4 .
5
8 8
Example 5.14 Solve the simultaneous equations
Dx + Dy = t and D2x − y = e−t; nx = 3,
Dx = − 2 and y = 0 at t = 0.
Taking Laplace transformed of both the equations, we get
1
sx ( s ) − 3 + sy ( s ) = and
s2
1
s 2 x ( s ) − 3s + 2 − y ( s ) =
s +1
1 3
i.e. x (s) + y ( s) = + (1)
s3 s
1
and s 2 x ( s) − y ( s) = + 3s − 2 (2)
s +1
5.106 Mathematics II
1 1 1
− s
2 2
3 1 3s 2
= 2 + 2 + + 3 2 + 2 − 2
s +1 s +1 s ( s +1) s ( s +1) s +1 s +1
2
1 3 5
s
3 1
= 2 − 2 2 + 22 + + 3 2
s +1 s +1 s +1 s ( s +1) s ( s +1)
2
t t t t
1 3 5
∴ x = e−t − sin t + cos t + 3∫ sin t dt + ∫ ∫ ∫ sin t dt dt dt
2 2 2 0 0 0 0
2
1 3 5 t
= e−t − sin t + cos t + 3 (1− cos t ) + + cos t −1
2 2 2 2
1 −t 3 1 t2
i.e. x= e − sin t + cos t + + 2 (3)
2. 2 2 2
1 3 1
∴ x ′′ = e−t + sin t − cos t +1 (4)
2 2 2
From the given second equation we have
y = x″ − e−t
1 3 1
=1− e−t + sin t − cos t.
2 2 2
1
and sx ( s ) + s 2 y ( s ) = 2 − (2)
s 2 +1
s 2 s 2 −1
= + +
s 2 +1 s ( s 2 +1) s ( s 2 +1)2
Laplace Transforms 5.107
1 2
and y ( s )= −
(s2 +1)
2 2
s +1
t
1
t
−1 1
∴ x = cos t + 2 ∫ sin t d t + ∫ L 2 − 2 L−1
2
dt
s +1 s 2 +1)
0 0
(
t
= 1 + t sin t
1
and y = sin t − 2× (sin t − t cos t )
2
= t cos t.
Example 5.16 Show that the solution of the equation
t
di 1
L + Ri + ∫ i d t = E , i (0) = 0 [where L, R, E are constants] is given by
dt C 0
Ï E - at
Ô w L e sin w t ,if w > 0
2
Ô
Ô E
i = Ì te - at ,if w = 0
Ô L
Ô E - at 2
Ô kL e sinh kt ,if w < 0
Ó
R 1 R2
where a= , w2 = - 2 and k2 = −w2.
2L LC 4 L
Note The given equation is an integro-differential equation, as the unknown
(dependent variable) i occurs within the integral and differential operations.]
Taking Laplace transforms of the given equation, we get
1 E
Lsi ( s ) + Ri ( s ) + i (s) =
Cs s
E 1
= ◊
Rˆ Ê 1 R2 ˆ
2
L Ê
ÁË s + 2 L ˜¯ + Á LC - 2 ˜
Ë 4L ¯
E 1
= ◊ ,if w 2 > 0
L (s + a ) 2 + w 2
E - at
∴ i (t ) = ◊ e sin w t
Lw
If ω = 0,
E 1
i (s )= ⋅
L ( s + a)2
E −at
∴ i (t )= te
L
If ω2 < 0 a n d ω2 = − k 2 ,
E 1
i (s ) = ⋅
L (s + a ) 2 − k 2
E −at
∴ i (t ) = e sinh kt .
Lk
3 s +3
and x (s ) + (s +1) y (s ) = −3 (2)
s s +1 2
2 1 2
i.e. x (s )=− ⋅ +
3 s +1 s + 32
Laplace Transforms 5.109
2
∴ x =− sin t + 2e−3t .
3
Solving (1) and (2) for y (s ) , we have
3s 2 + 5s − 2 1 2 s −1
y (s ) = =− + 2
(s + 3) ( s +1)
s + 3 s +1
2
Noting that the integral in the given equation is a convolution type integral and
taking Laplace transforms, we get
1
y (s ) = − L(t ) ⋅ L{ y (t )}
s3
1 1
= 3 − 2 y (s )
s s
1+ s 2 1 1
∴ y (s ) = 3 or y (s ) =
2
s s s (1+ s 2 )
t
∴ y (t ) = ∫ sin t dt
0
= 1 − cos t.
a 2s
i.e. y (s ) = − ⋅ y (s )
s 2 + 1 s 2 +1
(s +1) 2 a
i.e. y (s ) = 2
s +1
2
s +1
5.110 Mathematics II
a
i.e. y (s ) =
( s +1)
2
∴ y (t ) = a t e−t .
Example 5.20 Solve the integro-differential equation
y ′ (t ) = t + ∫ y (t − u ) cos u d u , y (0) = 4
0
1 s
s y (s ) − 4 = + 2 y (s )
s 2
s +1
1
s 1− 2 y (s ) = 2 + 4
1
i.e.
s +1 s
(s 2 +1)(1+ 4 s 2 )
i.e. y (s ) =
s5
4 5 1
= + 3+ 5
s s s
5 1
∴ y (t ) = 4 + t 2 + t 4 .
2 24
EXERCISE 5(d)
Part A
(Short Answer Questions)
Using Laplace transforms, solve the following equations:
1. x ′ + x = 2 sin t, x (0) = 0
2. x ′ − x = et , x (0) = 0
3. y ′ − y = t, y (0) = 0
4. y ′ + y = 1, y (0) = 0
t
5. y + ∫ y (t ) d t = e−t
0
t
6. x + ∫ x (u ) d u = t + 2t
2
0
Laplace Transforms 5.111
7. x + ∫ x (t ) d t = cos t + sin t
0
8. x − 2 ∫ x (t ) d t =1
0
t
9. y =1+ 2 ∫ e−2u y (t − u ) d u
0
11. f (t ) = cos t + ∫ e f (t − u ) d u
−u
12. y (t ) = t + ∫ sin u y (t − u ) d u
0
Part B
Solve the following differential equations, using Laplace transforms:
13. x″ + 3x′ +2x = 2 (t2 +t + 1), x (0) = 2,x′ (0) = 0
14. y″ − 3y′ − 4y = 2e−t, y (0) = y′ (0)=1
15. x″ + 4x′ + 3x = 10 sin t, x (0) = x′ (0) = 0
16. (D2 + D − 2) y = 20 cos 2t, y = − 1, Dy = 2 at t = 0
17. x″+ 4x′ + 5x = e−2t (cos t − sin t), x (0) = 1, x′ (0) = −3
18. y″ + 2y′ + 2y = 8 et sin t, y (0)= y′ (0) = 0
19. x″ − 2x′ + x = t 2 et, x (0) = 2, x′ (0) = 3
20. y″ + y = t cos 2t, y (0) = y′ (0) = 0
21. x″ + 9x=18t, x (0) = 0, x (π/2) = 0
22. y″ + 4y′ = cos 2t, y (π) = 0, y′ (π) = 0
23. (D2 + a2) x = f (t)
24. (D3 − D) y = 2 cos t, x = 3, Dx = 2, D2x = 1 at t = 0
25. x′″ − 3x″ + 3x′ − x =16 e3t, x (0) = 0, x′ (0) = 4, x″ (0) = 6
26. (D4 − a4) y = 0, y (0) = 1, y′ (0) = y″(0) = y′″ (0) = 0
Solve the following simultaneous equations, using Laplace transforms:
27. x′ − y = et; y′ + x = sin t, given that x (0)= 1 and y (0) = 0
28. x′ − y = sin t; y′ − x = − cos t, given that x = 2 and y = 0 for t = 0
29. x′ + 2 x − y = − 6 t; y′ − 2x + y = − 30 t, given that x = 2 and y = 3 at t = 0
30. Dx + Dy + x − y = 2; D2x + Dx − Dy = cos t, given that x = 0, Dx = 2 and y = 1
at t = 0
31. D2x + y = − 5 cos 2t; D2y + x = 5 cos2t, given that x = Dx = Dy = 1 and
y = − 1 at t = 0
5.112 Mathematics II
33. x ′ + 3 x + 2 ∫ x dt = t , x (0) = 0
0
34. y ′ + 4 y + 5 ∫ y dt = e , y (0) = 0
−t
37. x (t ) = 4t − 3 ∫ x (u ) sin (t − u ) du
0
38. y (t ) = e − 2 ∫ y (u ) cos (t − u ) du
−t
t
x(u )
39.
∫ t −u
du = 1 + t + t 2
0
40. ∫ y (u ) y (t − u ) du = 2 y (t ) + t − 2
0
ANSWERS
Exercise 5(a)
2 1
{1 − e−(s − 2 ) }
t
3. tan t ; e 9.
s −2
1 1 2 1
10. + 2 e−s − + 2 e−2 s
s s s s
2 2
11. (1 − e−π s ) ⋅ 12. (1 − e− 2 π s ) ⋅
s +4
2
s +1
2
Laplace Transforms 5.113
s 1 π 1
13. ⋅ e−2 π s / 3 14. (1 + e− πs ) + + 2 e−πs
s2 + 1 s2 + 1 s s
1 π 1 1 −3 s π
15. ; 16. e ; 2 e−s
2s s s s2 s + π2
2 4 4 −2 s 6a 3 6a 2b 3ab 2 b3
17. 3 + 2 + e + 3 + 2 +
18.
s s s s4 s s s
1 1 s
(ω cos θ + s sin θ ) 20. − 2
1
36
19.
s +ω2 2
2 s s +
1 3s s 1 3 1
2 − 2 2 − 2
4 s + 4 s + 36
21. 22.
2 s + 9 s + 1
1 s s 1 1 1 3 1
2 + 2 − + −
8 s − 3 s − 1 s + 1 s + 3
23. 24.
2 s + 25 s + 1
1 1 3 2 2 2 1
+ + + +
s
25. 26.
4 s − 2 s +2 (s + 1)3 (s + 1) 2 s + 1
s 1
3 1
27. 28. +
(s + 2) 2 + 9 4
s − 3 s + 1
2s 1 1
29. 30. +
s +4
4
(s − 1) 3
(s + 1)3
2e3
31. 32. (t − a) ua (t)
2s − 3
33. u2 (t) − u3 (t) 34. e3(t −2). u2 (t)
35. cos 3 (t −1) u1 (t) 36. sin t + sin (t − π) uπ(t)
t −t 1
37. 2 e 38. (2 + 4t + 3t 2 )
π 2
1 3 3t / 2 1 3
39. t e 40. t (2 + t ) e 2t
96 12
3
41. 2 cos 2t + sin 2t 42. cosh 3t + 2 sinh 3t
2
1 1 −t
43. (1 − e−at ) 44. e sin 2t
a 2
8 12 9
45. e3t cos t 46. + +
(s − 3) 3
(s − 3) 2
s −3
π s 1
1 3 3 1
47. ⋅ 48. − + −
s−a s−a 8
s − 2 s s + 2 s + 4
5.114 Mathematics II
4a 3 2
49. 50.
s 4 + 4a 4 (s − 2) ( s 2 − 4 s + 8)
(s + 3)
3 1
51. +
4
(s − 3) 2
+ 4 (s + 3) 2
+ 36
w cos q + (s + k ) sin q 3 ( s 2 + 2 s + 9)
52. 53.
(s + k ) 2 w 2 (s 2 + 2s + 5)(s 2 + 2s + 17)
(s − 1)
1 1 1 1
54. + + +
4 (s − 1)
2
(s − 1) + 4 (s −1) + 16 (s + 1) + 36
2 2 2
1
1 3 5 9
55. + + −
4
(s + 2)
2
(s + 2) + 9 (s + 2) + 25 (s + 2) + 81
2 2 2
s2 − 4 s (s + 2)
56. 57.
(s + 4) (s + 2 s + 2)
2 2 2
2
6 (s − 2) 2s
58. 59.
(s − 4 s + 13) (s + 1)
2 2 2 2
s2 − 4 1 5
60. 61. − 2et + e− 2t
(s + 4)
2
2 2 2
9
62. 2e − t − 3et + 5e2t 63. 1 − 5t + t 2 e−t
2
64. − 2e − t + 2e2t + te2t 65. − 2 + t + 2e−t + t e−t
1 1
66. sin t − sin 2t + sin 3t 67. cos t − 2 cos 2 t + cos 3 t
2 3
e− t / 2 3 cos
1 3 3
68. e − 3t (2 cos 5t − 3 sin 5t) 69. t + sin t
3 2 2
1 − bt / 2 a
λt m b 2a λt
70. e ⋅
cos + − ⋅ sin
a
2a l
2a λ 2a
1 − bt / 2 a
m b
1 + − t
, if b − 4ac = 0
2
e
a
l 2a
Laplace Transforms 5.115
1 − t
t/2 3 3
72. e − e cos t − 3 sin t
3 2 2
1
73. (sin at cosh at − cos at sinh at)
4a 3
1
74. sin t sinh t
2
1
75. (sinh 2t cos 2t + cosh 2t sin 2t)
4
t t 2 3 t
76. cos cosh 77. sin t cosh
2 2 3 2 2
1 1
78. t sinh at 79. (sin t − t cos t )
2a 2
1
80. t sin 2t
4
Exercise 5(b)
1 1 s
2. − 7.
s (e − 1) (s 2 − a 2 )
2 2
s
s
s2 − a2 2k 3
8. 9.
(s 2 + a 2 ) (s 2 + k 2 )
2 2
2ks 2 3s 2 + a 2
10. 11.
(s 2 + k 2 ) s 2 (s 2 + a 2 )
2 2
s3 2sinht
12. 13.
(s 2
+k )
2 2 t
1− e− t 1− e− at
14. 15.
t t
e− bt − e− at et −1
16. . 17.
t t
2 sin t
18. (cos 2t − cos t ) 19.
t t
sin at
20. 21. cot − 1 (s/a)
t
5.116 Mathematics II
s + 1 s −1
22. log 23. log
s s
1 s 2 + a 2 1 s 2 + 4
log log
s 2 s 2
24. 25.
2 4
E (1− e−s / E ) E sT
26. 27. tanh
s (1− e −2 π s / n
) s 4
2 Ï
1 Ê ps ˆ¸
coth (πs) Ì s + w cosech Á ˝
Ë 2w ˜¯ ˛
29. 30.
4 s +1
2 2
s +w Ó 2
1
1 π
−2 π s 2 (
31. 1− e−π s ) − e−π s
1− e
s s
1 πs
34. tanh
s 2
2
1 π −π s
35. 2 (e−π s −1) + e (e−π s −1) / (1− e−2 π s )
2
s s
1 1 3 3 1
36. − + −
8 (s − 3) 2
(s −1) 2
(s + 1) 2
(s + 3) 2
1 3( s 2 − 4) ( s 2 − 36)
37. +
4 ( s 2 + 4) ( s 2 + 36)
2 2
1 ( s 2 − 4) ( 2 )
38. − s − 64 2
2 ( s 2 + 4) ( s 2 + 64)
2
s s 1 s (48 − s 2 )
39. s + 40. −
( s 2 + 36)2
( s 2 + 4)
2
s 3 ( s 2 + 16)3
9 ( s 2 − 3) 1− 3s 2 18(s 2 + 4 s + 1)
41. + 42.
( s 2 + 9)
3
( s 2 + 1)
3
(s 2 + 4 s + 13)3
s 2 − 6s − 7 1 1
43. 44. +
(s 2 − 6 s + 25) 2 (s + 1) 3
(s + 5)3
s−2 s+2
45. 3 2 −
(s − 4 s + 13) 2 (s 2 + 4 s + 13) 2
Laplace Transforms 5.117
2
46. (1− cos a t )
t
2 −bt 2
47. (e − cos a t ) 48. (cos t − e 2t )
t t
2 2a 1 t
49. sinh a t − cosh at + a δ (t ) 50. sin
t2 t t 2
1 −2 t 1 −bt
51. − ⋅ e sin 3t 52. − e sin at
t t
2 t t
53. − sin sinh 54. 0
t 2 2
1
55. 56. log 3
2
1 b
57. log 2 58. log
2 a
π s + 1
59. 60. log
8 s
1 s 2 + a 2 1 s 2 + 16
s 2 s 2
61. log 62. log
2 4
1 s 2 + 16 s
log 64. s log + cot −1 s
63.
4 s 2 + 4 s +1
2
t t
65. sin t 66. sinh at
2 2a
t 2t 1
67. e sin t 68. sin at − t sin a t
2 a
t −4t
69. e−3t(1 + t) sin t 70. e sinh t.
2
Exercise 5(c)
t2 1 s
8. No; 1* t = ≠t 10. 11.
2 s−a s + a2
2
t t
2
2
12. 13. t (1 − t) e−2t 14. e + 2 t + 1
s ( s 2 + 4) 2
1 at
15. e (a sin b t + b cos b t ) 16. 2 e−2t − e−t
b
5.118 Mathematics II
1 1 s −1 1 s 2 + 1
17. cot −1 s 18. log 19. log
s s s s s
1 1 2
20. 21. . 22.
s (s + 1) 2 s (s 2 + 2 s + 2) (s 2
+ 1)
2
1 1
23. (1− e−at ). 24. e−at + t − 1 25. (cosh a t −1)
a a2
1
26. 1 − cos t 27. 1;0 28. ; 0 30. sin t
2
1 t 1
31. (e − e−3t ). 32. t et 33. 2 (1− cos a t )
4 a
34. e −t + t − 1 35. sin t − cos t + e −t
2a s 2s3 2a s 2
36. ; ;
(s 2 + a 2 ) (s 2 + a 2 ) (s 2 + a 2 )
2 2 2
s2 + a2 2a s 2 2a 3
37. ; ;
(s 2 − a 2 ) (s 2 − a 2 ) (s 2 − a 2 )
2 2 2
1 1
38. (e−bt − e−at ); (a e−at − b e−bt )
a −b a −b
1 t 1 1 9
39. e − e 2 t + e 3 t ; e t − 4e 2 t + e 3 t
2 2 2 2
1 1 1 1
40. sin b t − sin a t ; 2 (cos b t − cos a t );
a 2 − b 2 b a a − b2
1
(a sin at − b sin bt )
a − b2
2
1 t
41. (sin 2 t + 2 t sin 2 t ); (cos 2 t − t sin 2 t ); e−3t sin 2 t
4 4
1 1 t −at
42. (sinh a t + a t cosh a t ); (a t sinh a t + 2 cosh a t ); e sinh at
2a 2 2a
1 1
43. sin t sinh t ; (sin t cosh t + cos t sinh t ); cos t cosh t
2 2
2 (s −1) 2 3s 2 − 4 s + 2
44. 45. 46.
s ( s 2 − 2 s + 2) ( s 2 − 2s + 2) s 2 ( s 2 − 2 s + 2)
2 2 2
1 −1 s + 2 1 s + 2
47. cot 48. cot −1
s 3 s+2 3
3 s 2 + 4 s + 13 6 −1 s + 2
49. log − cot
26
s 2
13 3
Laplace Transforms 5.119
50. 2 − t − 2 e−t
4 −3t /2 3 −5t /3 7 73
51. e − e + t−
9 25 15 225
1
52. [4 − e−3t (3 sin 4 t + 4cos 4 t )]
100
1
53. e − t (1 − cos t) 54. (1− 2t − cos 2 t + sin 2 t )
4
1 1
55. (sin 3t − 3 t cos 3 t ) 56. (2 − 2 cos 3 t − 3 t sin 3 t )
54 162
1 −3 t 1
57. e (sin t − t cos t ) 58. (a t cosh a t − sinh a t )
2 2a 3
1
59. (2 − 2 cosh a t + a t sinh a t )
2a 4
1 −2 t
60. e (2 t cosh 2 t − sinh 2 t )
16
1 1
63. (cos t − sin t − e−t ) 64. (sin a t + sinh a t )
2 2a
1 1
65. (cos 2t − cos 5 t ) 66. (sin a t + a t cos a t )
5 2a
1
67. (sin 2 t − 2 t cos 2 t ) 68. 2 e − t + sin 2 t − 2 cos 2 t
16
e−t 2 1
69. (t + 4 t + 6) + t − 3 70. (sin t cosh t − cos t sinh t )
2 4
Exercise 5(d)
1. x = e − t − cos t + sin t 2. x = t e t 3. y = e t − t − 1
4. y = 1 − e −t 5. y = (1 − t)e −t 6. x = 2t
7. x = cos t 8. x = e 2 t 9. y = 1 + 2t
t2 t3
10. y = 1 + 11. f (t) = cos t + sin t 12. y = t +
2 6
1
13. x = t 2 − 2t + 3 − e −2t 14. y = (13e−t −10t e−t + 12e 4t )
25
5 −t 1 − 3 t
15. x = e − e − 2 cos t + sin t
2 2
2 −2 t 4 t
16. y = e + e − 3 cos 2t + sin 2t
3 3
−2 t 3 t
17. x = e cos t − sin t + (sin t + cos t )
2 2
5.120 Mathematics II
3
37. x = t + sin 2 t 38. y (t) = e −t (1− t)2
2
1 −1 2 8 3 2
t + 2t + t
12
39. x (t )=
π 3
40. y (t) = 1