PCC Module 1
PCC Module 1
whleh is a un cHon 9
SntormaNon 4
vaiablea,
more independent
signals
Analog ig nal Digitat 6iqna
-sig nal havinq conHnous -siqnals havlg ouy
valueQ Rntte numbev s
-have 1nnihe number of valueA,
different yaluea, - not cotthuous si
eq. m0st of the hingqs two dishnct alues
Obsesved in the. naural
onalag signad,
SOUrce computer, Ato D
s0urce - sinal 4enerabors,
rans ducer s ete. converhey
NooF valuep fite (2 8,16 etc)
st Inro duetion
The psiniples 9. wosking compuers,
municaion
the
system6, tntesnet, emall et e
And
are baged
th ese
systems
pmnuiples
ave
9 dgital techniques. A
to Digltal bystem,
Elechronic cal w
atoy2
in this, the input is glven with the help
) Switche, Th is is conveted into elecm'col sig nalo
which have 2 d is crehe values, 0y levels -Low & HIGH
the 2 lewelo,
The
signad will always bees &Dhe
the achu al value6 the is immate tal as
signal.
tonq as it is within the speded angeLoo
HIGHIlevel, This ty pe o sign al is known as Digit a
& the ckt ingid e calc atoy sed to
signala the
Digital cisuits.
procer s th ese signals ave kn0 wn as
A cal catoy is an erample e dgtal systemo,
tollows t
Moct inkormaion procensig syohems
1, roro switchea whi
which ane binay device,
are more eliabte.
ja. Bin any signals
deu'sion makin9 procergew Yequred
l3The bagic
digital syshe ms a re
binang
By
bigital signals Has thwo oTs hehe
HrGH
-A digital sig nal
voluen lewels are
Digital
Analog sigma TH
als
A
tu
1
- There
dinerent gepresentañons digitat
signals
PosiTIVE Lo GIC NEGATIVE
LOGIe
SV
3:5V 3-sV
word
Combinatnaihoonn 8 6its
Byte eombi 4 bls
9it- a binany diqo ort
HGH eel
ombimation o, 1GbiMbits.ag
are not
N! are
diherent or Sam e kor ald types ckts
The two
dinrnt logie tamlieg.
also 6e diserere bysiqnal lew els HIQHe Lo can
binavy epresenhed the binany ignap
A
- Sin ce dgit (o or )is &omp
two digital
possible lewel algnal reyed only
can have
one n the
can be w ed Gin avy Number 6yster
7oY the
syshem s. anagysis
|The two 1ewels:CoY s ta hes
can also be
as oN OFR
TRUE oY fALSE. designared
4
Numbesing ays hem i- A no.
OY
6yotem
num erals.
is
dgnedy oig'ts
(CDecim al Number yahemi
The numbe 64shem in which an
ten
osdered sel
Symbals ’ O,, 2, 3,4, S, G, 7, 8*& 9 known
digits a re used to speeky any number.
The adix oy bae this number 6ysrem is to
Any numbey is coltechon these digits.
e.g 1982 .365.
- Ha hou al pavt
3nhger Radix
Pavt Point/dewmal point
-Some the other commonly uoed number system
are Binay. Octal, herade im al
-The knowledqe s th ese number ysems is veny"
ewsenial koY undevstan ding. analy sing &desigaing
dig ital syshema,
-The in otmahon available the km s) numeras,
alphabets the sp eaal ehava chers ov in quy
thee must be converhed n
tombin a hon'
komat te th a unigue eombinaH on Os 4
Co de.
a Co dinq sch eme, kno wn a The pvo cens
Co ding is knowh encodig
Numbe 5yshem ls an o rea' set symbols
knowh as) digits wi ules
anthm etic opeyahonS ike addiin
deyinedmulH°Y tipergormin,
canon et
A colletion ) thee digits makea numbey
which t
genesal has too parts stege &Hrava
Set apart by e radix point (-) te
Numb er
ase oy symbols weght ansign
syshe Yadix(b) ws ed to posiH on
(di os d-)
Binany
3569.25
-
O,, 2,3,..?
becmal O,l,2,..g to 39 74,59
2
Binany
o ctal 8
2 O,I
O,,2,3,..7
3569.25
39 74,5
becmal O,1,2,..9
3FAg -S6
Hexa- ol,2,...3,
deeim al A,B, D,E, F
o
o o
7
oo
o-
-- 9
o
-o
o
-o 1 2
Con version
2) Binary - bo Deima|
converhed into it
Any binay number can be
eqwvalent deimal number uslng the welghts assignd
to eaeh bít posiHon.
numbers.
jollowlng bimany
(3)1o
+{1*2)
=128+64 +32 4 |G+8t4t 2+|
= (53)o
: (45 (5625)ie
Cuoo. to1)2 +
((xa)+(ox
i .(Ix2 +(Ux)+ (oxa')+ (oxa') +
8 t 0 t o¢|+ ot O 2S+0t 0.o6 25
= (9. 3|2S)10
(o.totor)2
(in +(o*2y+(ixaS)
E (ox2°) + (i* 2')+ (o*i") +
13
2 CLSO)
2 3 = (oD,
CM S)
(o.65t2 s)io
O.Gs2s x 2 = I32s0
0312sOX 2
I2So00
(.6562Sho=
062so0x 2 =
02s000 X2 0.Soo00 CLSB) cfrachional conversid
is generay camie
2 58
:2 29
2 I4
2
CI1,, =(loto),
2
’1Cmso)
*or4ero= C?)4 0-84X2 l e 8
Coiroi)a
fracioal Pavt
9nteyer Pavt
2 625
p
2 2
(2s0 = (lldo)2
-:(25. s); =(I|oot. 2!
O(o625)io
frachiohal Payt
8nheger pavt
O62s Y2 i25o
2
O"250 x2 = 0-Soo O
2 S
0-SoOX2 l00o
2 2
(o-s25io =(o12
|Cio62ro (Qlo. lo1,
x 2 = 37S0
O:683
D SOo *2
(os8s)
(37.3),o
O31X2 0 6 2
2 37
2 I8 O62% 2 =l24
0·24*2 =048
2
2 o.8X2 =
2 2
(o"31) (0.010 o),
(37))o = (00l0) 2
(37.3Die = ( (ool0).oto02
An o th er MeHhodi
(30),-=6 + 8+4 t 2
(301
MSB (C8)ro
0ndicaten that it is a tve number,
6) Þ(o00
Magnituoe =
.
cm)z (-),,
Gne's Com plement Represen tahon
2 oO10
-8
-?
1ol0
-5
-4
-3
-2
the numbers.
eomplemen t
Fin d the 2's ) oololo|
glooto
Num ber
's complem.
Add
Number Number
2's comple 2's comple.
-i) o 0o00)
O0tooo0
its twe's
clmplement krm.
) eamy is adwaya dds vavded.
(-40o
Ans iS = 00|6 = (+221
dis card So Ang is tn bue koYm,
Ans is = 00O0
(0)o
discaid camy
Advantag Digital drcuits a
aith meHc opera Hon
wed perjorming
the ckt designed binany
91 posstble to wwe subhahon also We
t2 5= 0 0| +
5-0l0/
t(-4)
fo d in
NO camy ADsis 16 -ie foym
Ex 1? Knd s complemant the polloung numbes.
(-12`)6
22s 2 125
2 12 2
2
2 S
2
224&
2 148 com plementing a nuMber twice
2 74 is the
-oviqinal number ibse
2 37
2
2
2
(49,6=eolo1000)
's comple (110 01 ol)
numb ers
Rnd ds complement % tollouhg
34 LSD
o,o.,O
MS6
I ’ (-3)n
2 25
2
2:
(s)6= loo1!
's compl ement
of(si),
i 3 0 )t6
130
LSB
2
232
2 2
MIB
IO000010 = o000 I000 0 9.! 0
Cwe have to wwe l2 bis)(a the 8 6ik are equived to
vepreoen t 128)
i's eomplement ot (13),
in the
in esut, camy is notgeneva hed
neg aHve din ts one's complemen t
(-c)ho=(1001)2
camy ’ an is in is mplement
(toll(o000)2
(D, is also comct ao in is complemen t (-o),o
exOpeigormg CHio-(6)ro wsing ts eomp lement meid,
's comp)ement of cc),, = .
(4)
camy
ans is io is complemet
s coupl. of pve reonlt e(0o1o) ie (-21a
cany mea
lnis complenant
forrn,
t Bmany Mulip lieaHon:
ErO MiNy (41 by (8
(9 =
(8 ),, - (I000) (7
Ginay Division
Ex tI1HTo.J4010}
ito)no .toi)uLo!
one
()
( o o)t Cl61),=
Remainder e (olo 0),
si'gned number
kormt
. (-9io is (otooo
sepresen hed by
) tn epre.
scomplemen
) In e's , complem ent
t
TBinay At th met'
mehc
Binany Addihon -
uleo
binay addihoy
Avqend Adden d
cang Result
numb ers
Fx Ad d the
i) |o(
binag
(+) ( be
ca my
camy
)
1
111|IOolo
division, deima Same Binany
Division
produt : Knal *
. 9
c]
o) bytooj MuIHply Ex
), by
(mutnpti
cato muliplicand erecHy o) by
as SQme
bingy,each OY
licat zero ether product
s the paial -9
n
muliplia
hon, deimal
to similg is E
MulHplication: Bin
( I|oII Ex
38 ",
,,(I10),
((oollo (a8),o
Subhahend Minuend
(23),,1 (38),
9ubrat Ex)
choy Subha ay Bin *
Ex 1) Divide I0olol by
(0o.)
', 38
Bin qy Muliplicaion
T is similar to deim al mutipliahon.
-9 n binay ,each þaial produet is ethey zero
SQme as the (uiwplio
by ), guliplieand (mulhplica
Ex 19 MuIHply
Binay Division i
Same
deimal division.
Ex 1) Diyide
247
30
3
SSoo o S
c) (3 2 87. 5Io0098)1o
inarg Convevsion :
Octal numbers can be
eonerted nto equival en t binay numbers by replacng
each o ctat
digit y its 3 - blt euvalent
BnanY
binarg
& de im al équivatent of otat Numbers
eum al
Biuey
3
4
S
6
7
(2
I2
13
36) = (
to Conversion:
numb eYs an be
einay
eonveted into equivalent octal wumbers by making
& m
three bits shahn9_krom LSB
the numbey2
towav ds MSB k tnte 9ev part
| th.en vepleun9 ath gvoup three b'ts by rs
Tepres entaion.
FoY kYa eion al pavt, the qvoupi4 6 Hh ree bits are
mad e sfein q rom the binany paiht
(o. 5
= C0:si4) 2
3 6
3 . 2
Ex 2) SubhaL t
a)(37) Prom (s32g b) (95)g hm (2¬)8
(s3)8 Oololo|
(2¢)3
compl. comp
of (a
(4)8 Ttake a's Lomp
ais caid eamy of euit
u3ed to ehheo
Th is num b ey system is homally 1ong
string s binay da ta into digital syshm tike a
MiwocomputeÝ.
This makes the task enterin binay data n a
mirogohap uer eanier.
Thererone, the knowledge ok octal numb er Sgsem is
vey impstant the' uent use micopvo cens ors
other digital ckts.
4
combinai ons n 4obit
binang
numbeYs can be enheed tn he
binany
COmphe x 1'5 the 6rim hewadecimaw (hex) digits.
Bnay&deimal e wvalents o hexadecim al nubers
2
3
Ot0.o
5
7 7
g
A
B
C 12
D 13
E
2) (0.F232,e
(oxie +(ExI+ (2x1+(?x1E
(o .443 0216.
(sB.834)o
2
9
28 13 ’ D
)95-s216
(S ’ F
|(95-s)io = (s F 8)e
42 3
2
2 ’ 2
(61so (2A3) e
A 2
oDl,oo10:
) (oA25) 1c= A 2 S
2
d) IA 3. BA)1G
A
A
3inary to Hexadecimal
convers ion
can be co
Gin avy numbers
nveshed into the eg wival en t
hexade cmu
hum ber6
by mak ing eroups ku bits sta vhnq Bom
LSO movinq to wards M8B
Tepladngea ch gnp 5% kou bis b its
vepresen ta ion . hezadeum al
Foy racHonat
pavt, th e above
stahn9 Rom the bit hext to theprocedne is repeate=
moving towards the vight. 6inqy point &
erOneonvert the. elte wing bmany numbevs to they
3 2 (32 B E)s
2 A (2gAF) I6
d) (0.0001L1O01 I6192
4
o1EB4ic
-
-
D A
2 6 - (2DE. CAS),
A
(IEL-99 A)
Ex O Add (F2e & BADIC
bu
3 1S
-S.C 2's com plement of (s C)
3
4looo|e2's complement oF(ren
CO
atsca vd cany
Muliplicaion & division can also be perkomed wing
the
6inany Yepren entaho heradecmal numb ers &
then m akin 4 & mulhplica h'on d divisioh gules .
numbev6.
biaany
cODES
4.0
8
9
|12
14
15:
P
odel,
weghhed
oh
Nh¡h
3 ' ( s -3) Co
de
Ex CESS Th is is anathe
type Bco ode,
bich each de dmal d'git s code d into -blt bin any
leading last
appended,
h ray todes w| be egual to th e
Gray tode woxds G an (nl) blt gyay code, ) tten
ord er Cassuminq miy plaud bet
Prst Gray codes) wth a
pperded,
Ex) Detesmlne a) 1 blt 6) 2 bit c) 3 bit
Gray cod es &
tabuw are along with theiy eguvalen t decdmal numbevs
a) bt ay code is comshu Ched
Decimal No.
Oe (above)
4
Repreeen t the. deimal number 2nin
) E cess3 ta de
binany gor nm
c0de
V)
Hexade mal
1) GCD Code 2
(0.olo: o )
Cers-3).. Co de
fiv) Ga ode.
,i 8 bits a ne eq uined to epenent 24.
GYay code is conshy cted e27i's bheryore s bit
I010
represented
V)octai code
c221 = (33)8 = (011 o)
3 3
v) Hexadecina
((8), =(0o0. o
441 : )396
U) Octal eode
6) ) 409c - I000 oo0000 000
) 4o9c e ot o00000 1001olt0
) 4094 = o|lo00 |o0|00|
iv) 4o9C Io000)8 e o ol 00o 000 000 oo0
) 409G (Io00)., 000t. oD00 0000: 0000
Alphanumevc co des
-St is u6ed in
many computers to
Yepresent alphanumenc chesaehers & 6ymbols nresn
can be caued htexn al code.
-Friquehtty, thete is a need to represent more
than
64harachess ineludinq the lower case letters &
6peial conhol ch ara Chers- Koy the
dgita! ta erma hon. brangmis6ion ).
-For this Teason, the ollowihg 2 code are
used, 1ormaliy
n
olo
co de
Hg b paHern or bih ang code
conversionh
Gray- to- Ginany
are sa me. 80 wie
S hep The MSB B aray
net biC k 4Tay ode.
Add binony MS8 to the mes,
Record the result b ghove he ca
this pYocerS unH LSB is Yeached
3) corinue
Bi B6
B3 G2
araycode
ay Convers
cor ion]:
8iMay tb G
is
Reecord the MS3:as it
shep O netposihon, re cording the
.Add this bit to the
sum &hglegy e caunHl my
completed.
Rcid s cesslve sum s
JL
(otto)gra
Ctolt), ’
Codea -
Comeehng
ErroY DetecHn9 angmihed frm
arr t be
When binay signalato another lo ca Hon Cneel vey)
hansmitev) ele cal
One lo cahon ( ocuY beeause
ra nsmiee
bransmission emrs
noise in
byansmission
th e
m.
channel. Due o
bransmited as a
beecelved
a
sig nau
vie versa. e ceived
i5 Ehe
to dere et the emY
t is desised ¢ comeet it.
data woyd lo cae its bit postHon
to deimal g'
Con sider a eco code (comeoponding
tool is ransmtbed is eceved a lo|.
- - -
6e
sin ce an invalid Bco co de, there7ore it To
detected by the Yeceive. But 91 it is eeelued as
which is a valid %c0 code koY deçmal I, he
sereier may inter pret rt as deim a t &th e
is ndt dere ched.
to0t ( =(9),)’o0gr ( (6)
To th at Che
ery ald ay
avoid its
inorect in
herpre taion by he eceveY,
the code muet poss es the
o cu Yen ce Sk any propety that the
code woYd inb
single rans koYMs a valid
Foy n-6it
inval'd eode woYd.
ode = 24
desired to make possible comnbinaions
this code
code, owy halk 5 he
shoul d be Jndvd ed to possible 2 comb
inqhons,
he code.
eans, Ranerha. bit ie t bbit
attq ch ed tb
SLtode to make the bits
number k
wa b o n t o make he, number
ones In the n
sesut n q Cn+12 bit code een ov odd , it will ceranly
benas e o d ehe chihg code.
Pashy Pahy
D P D C B A B A
O,
1
oy?:
bit CP)'o
padhy
a S to make
a
so
Table showS code word the
at tach ed to eeY odd
even & o dd
numbev o
especHely. emor, the
th ere is
ony
One
end by Pahy -code
eheek.
the Yecei vih4
is dete cted a t check mehod onty
Can d'etet emy in
The pay
mitted wod at ther Ye eceivhng en d. 91
the ons
chauged 4 h e r e the
lo cate the bit which has
does Hot emse.
queshon come on
1
Erroy cone in g Co den
adding singie pasihy it
messag e be9 ransmih
along with the ingomahon,
posihoh c n be dehe ched
bit
Qn emoY n single
- The pathy check giveg
in koYmai oh that The
income et. 9t can not lo cate
the teceiv ed mess age
th e bit þosihon in whi ch eor bas occuved &therekO
canh ot Comet the erov.
(ACh
Let us con sid ey e 4obit bin any word ol0 is
tronsihed along uls an ewen paMy 6 t . DUe to
4
Ham minq Co de 2
EHDIN0nq Co de code.
comecH
Pahy bits to
conshmched by addin g
'n7ormaHon
es$g So S tu be able to lo cate
bihsp sihoh n Whi c emoy o CcuY 6.
(
Ashy e on
aHa mming co deto
QSUme k- pat hy bi'ts. P , , ..
added to
ticode.
n-bt message to (n +l<)- 6/t
euma'
w)v6e
alyeo.
Thg de cim al umbey is he posiHsn lo ca hon
The paihy bits P, Pa an placed in lo oa ong"
to the
- valve (o oy ) ane
as to make the Hammih9
aasigned
Co de pamny bits s
Panhy 0V odd Dnd wh en an emoY Occuye
the
paihy
number w}) take on the va lue
posihon
lo caioh the bib.
0ssigned b the
9n case BeD ode with three pavihy bits tye
are seve n eY posiHons.
Eror posHoy
o (no em)
2, 3, (, ? Yegwres P, e | 0 1c
Cuoolt
P, h,
fo, 3. S,?
Minim um distan co
bhe
Hammlng coda seguene o olto is hansmHed
l due to e Y in ohe poslH on it is rceved s
oIo
tocateeg the po Sfhon he emY 6't uie paihy chece
Agiven he method koY Obtalnin 4 cont sey ence.
P n
,3,5 posho
2, 3,
lo cath of eoY is 1n 3posha
receed
To comt the
eny b t
s
Ceepl@mentd. .! comeet messge
eiled.
1 1.
".
2 s,
!3,S?
P, =
2 3
po
n,
2 3
(olo) = oosihon (u
CometAato
S
9 Encode data fio0 in pauhy
3bits even poM Hammiing.
P,
2 3
I3
Pa
1
Chapher 11(lart A) Boolean Algebra
Gasic Diqltal circuits]
9n the digjtal syshem there
ave
baaic apevations perkot med , yYeapeutve
complexities of the system. Th ese operaHons m
be yeqwred to be
peromed a number of hmes
ege digta sysem like dia)tal computer ov a
h a
Tuh Table
NOTA
= A
Yeruals NOT A
(Yegudo complemen
Truth table
lo 'calEq
Symbal
tnverey
bD ag an
The N 0T opesaHon is alsa reyered
ay comp leme ntaHon. bubble,
NAND operahoh.
g ahe 7o llo wed by
known aS
CN2) AND
fig shows an N ile
a NOT gate. destbed in the
is ekt can be
The operaion 9, th
ghe
B.. N
(A- B...
olp NOT g ae Y = Y'=
A
A
N AND symbol
NOTaperaion 4s NOT- AND 6peraho
fig
A B
Trut Table
Desivahah
S
Ba3ic log2c
gaheo
opexatiang usiy owy NAND
A
Realizaton of N OT
qate uglu
A
NAND gare
Ye AB
RealizaHon o
ND 9are ualug NANDare
A
Ye AtB
Realizaion of OR
2ahe NAND gate
NOR opesaH on:
The N0T- OR
opesa hGh is kyown as
INOR operahon.
A
NOR Opevaion as
NOT OR Operaion
NORSymbol
Tuth Teble
olp of oR gate y'= At 8t. N
(Y euals NoT
O1P of N0t qahe Y =.Ý'= At6+.. N (A ORG))
of oR o peraHon uslkg
RealizahHon
YA8
A
N
#|EXCLUSIVE- dR- dPERATIO GR
The EXCLUSI VE
used in dig ital ck ts.
widely
CEX-OR?opesaton is
-9t is not a basic aperahon e can be
untvers
perjomed
qaes AND, OR l NOT OV
using the be sic
NAND 0Y NOR.
:gates A Y= A X-0R 8
LogBe,egvahas
symbg
Truth fable
+ From the uth table it is obsesved th gt wh en boh
Hhe ipS ave same (o ort) t e olp is o, whereas
when th e i/ps are not same Cone ) them s 0 &
oth ev he is ) the op
is 1,
EX CLUSIV E NoR
oPeRATIO N
BY
log tc Eg2
Twth Fg ble
-9t is inversi oh
when both the Et-OR.
ps ave
d wh en bo th the
/ps are Mdt same th e o p is 'o
( co mmuta Hve ta -
8ooleRn Algebra
9n the middle 4 (9" cen ny, an
mameaiu'an George Goole deweloped
Eng lish veables, khowy
rules kY
Menipula hon & % binay
the bq 81s
GooleQn Algebva '. This 's
caleul atoys ete.
compues ,
d'gtal syems ke can be represen ted by 4 leltey
8 inavy verables The vayiables ean
an A, , X,,Y, .:
Symbo) such he twoposslble
values qt
have one k
Álgebsaic Theorems
6oolean
Theores
THm No.
A +o A
A-| A
.2
A+1=
|·3
A + A = A
A:A = A
A+A =|
1.8
A.(B+ ) = A8 +AC
A+ Bc: (A 8)(A t c)
At A8 = A
12 A (Atg) =A
I.13 A+ A8 = (A+B)
A (At3)= Ag
1.15 AB+ AB = A
CA+ 8). CA +3) =A
AB + e (A +) (A+ B).
I-18 (A+B) (A+ ) AC t t
AB + +B C= AB +Ac
120
t. 2)
|22
(AtB)(
A.B.C. e)Bt c) (A+B) (Ã+c)
TheOYe ms
Atto Bto+,.
(.8
ach S he involve a single Vadable
theovems can be yroved by
eweny p05STble value
TM the vaiable. consida g
AtocA
hene pro ved,
Theonems 1.9 to l20 in
ean 6e
proved volve moYe
makihgBCe (A+
A+
a brut table.
B) (A+ ) can be
by makín the uth table pYoved
A C BC
AtBC A+B
(A+B) (A+c)
arr ang d
A+BtC= (A#B) +C I
(A tB), c 74
74
A4 B+C
A At B. 'RH,3.
(4) A+ B+ AB AtB
LHS (A +6) (A+ C) LHS A+A8+ AB
A At AC+ 3A+3 C A+ B (A+A)
A + AC + BAt8C
R,s
simpliy
(12) z=A+ B) (A+ G+0)D
-(+) (a5ts Dt oD)
= ABDt B tD
A(B+B)
BD
Dug
(a
A-B-c (A +B+c)
(c) A fAgc). AGc = A+B + (A-B-8)
A +8+c
(2) ( A B+AG )ABC)
hed
ABTABC)
A BGC
) y= A
(Gtc) (AB+AC)
A
CcÃ+B).(6+))
AB+AC
AG.Ac
A+6) (â+¬)
AG
y= cC ABC + ABc)
AB+ A (8+c)
AB+ AB
A(G+ 3 E ) E )
ACG+) A(st6)(et?)
=a()(6tT))
C,AB
O show that
(A+8) 6t c) (¢ tA) = Bc+ AC+AB
(AB+B+ ACt Be](tA)
AG+6+AC+ BC]¢tA)
-fettat)3ttt)
- (8+ GctAC) (e +A)
=(6 (I++AC)CctA).
B(+ AcCtAi3t AAC.
source
S6ura
a Swi tch eg t se'es 6witch es io parawel
log ic ANO
logic OR,
30urce
|L= CA+6).c|
NAND
NOR eNOR UsinY gate
th Realizaian of ExOR
A Y=
Y= À+ - eghot NORgahe
=A+B (De-Mo vq ass Th
take doub le inversian RHS
Y=(e). (oB)
-Y- (AB.(a)
Yz A
-
ing NA
8Ex NOR using ND
NAND|
AG
Ex NoR
D
usenq NAND gahe
NoR EOR
vAND
60olean er pressi on or
NANO
ta ke double invessi
RHS
this is the reuired
eapnasioh
A
_Y =
(DeMovgads T)
-(
Y= (A +3).( At6)
=(A +)+ (Ãt8) take doublo lnverslo ot RHs we set
(A t2)+ A+) This is the xoa uivod odneian
( 6 + 6(
+ Ã+0)
(A+8)
A (A+O)+
(ExNOR ugina Nok gates
(A+D)
Ex- N0R
0R Melng NoR
N gares
SA hn o Exprusion Gater:
mplementation using
Reduce
lowing eapnasion, inog lemest it uging baaic bgjc
the eliaing o
b Eh en implement E using only NAND gare.
Y= (AG+ A+6) A8
A AB
-D
Realizaton uginq
uslnq basic gakey
Y= 6le+D) Y=
al",.
(
- A+G
= A+B ()
peMergoist
Ye (AB).(o)
A8+C
(A6+c) D
Y= (A +¼+c) tb
tiagrammo way
* Logic Diagram- this is a i/p-
showing th e olp zelahonghip.
A
combinaHonae1 ckt have
olps .
sìmpled.
slmpliy the eg, But canonical
9t is
vaiable'r
it Con tains
redun dqn s
apposite sìmpligeahon. so
Many tima, swi tehing e's w then in s0P or Dos rm
ar n ot
cangnca. That means eb term may not contajn
l the ilp vaiab e,
But A+A =A
Yz (A+6) (B+ c)
z(A¢B+ ce) (8tc A
POs
Y A+BCt ABC
ACB+ BCC+) +Bc(At ) f ABC
= ABC+ ABt ABC+ ABCt B A+ GCA+
ABc
standavd sup
n' number
FoY
vamablea
wiM be 2".
the number 9 mintevms
vaiable s
Minhe vms Mahms
AJ B.C
mi MI
A+B+C = Mo
ABC -M, Ä+64. =M,
m2
ABC m
1
my
ABC
1 A BC z
mL B C= M
A++= M.
Ye M2 Mo Mc
O Algevaic simpliaHen
pliyahen ving kevnough maps
9wne- M¢-dvskey Memod
OAlqekxoic sim pliarion -.
the given expressien in to soP omy vein
SOP
) Ye Eml4,) simpliy
Ye mgt my t m
= AB7t ABCt A BC
ABC + AC ( 8+8 =)
t3c)e (a+B) (A+)
7(At (At B) : ( A+ B) (A tÃ)(A+ B)
y A+ B)
TMO3, s) simpliy
,M3. My
(A+
But AA=0,
(AtG+C(A
(AB+ ¿(A+ +
(A + +)
(AtG+
ACtAB+8t
(A+8+
(A+Ael)
tt
(c+z)
e KarnaK¡h Mep[impli7cahan
K-Map
approech to simplica hon 60oleen eaprosion.
- Sn this technique, the in ormahon cmtoin ed in abut
table oY aValoble Ih PoS Ov SoP is epennd
K- Map.
This rechnique is 9eneray wsed up o six vaiable
g@shows the K-MaR two, three
-9n an n-vamable k-map there are 2
-Eac cel eomeop ons to one the combinahons s
vamable, sin ce there ane 2"
combinahons
For ea ch tow 9 the mth table, or each minterm ¢
o ea ch maxteym th ee is one speHe cel tb he
K-Map
Gray cod e hgs been wwed kY
the
the ideagano cltn.
two vaiable k.Map 3- vayiable kmap
4aable kMap
AB
A+B
AB
A+B
Minrerm
to 2 eonmesþon din g
Vamable kM ap
Maxexm
ABC
ABC ABC
Minteym comeopondig9
to,3 vanable kmap
Co
ABTDABB ooAt8tC+D|A+ãt C+ol A+8+ c+ Ato++0
ED ABCD ABTD al A+bFeD A+6+c +o A+8+c
At9+c+O
ABCD ABCD
SOp
Ye c+ A
Comesponding to.rows
suppose olp y is O
JFoy 4vaiables)i
o, $,?,9, l2, 14, 1S
AB
co
|S
13
+ Abco
= Em(0, 5, ,9, 12, 14, 15)
sim plicahon logical unuions ugi k-Map
number
egure minimum
i/ps to be gat, sueh an nprnsion mingimu
npwsion,
b as the minimized
uy minimizlng a given onprnsion in soP
he kmen
9iven trut table, we have to prepae
kSF then look ksv combin ahion 6 me kmap
combine .the on en in SUch a
-We have t that
The veA Uin g enprnsion is minimum
- To ollowin9 agor) Can b wed
aehlee this, the
L
the ones which can not be eombinRd
pime implicants.
9dentiY the oneg that can be eomined in
grsups
Ss two in ohly One Encivde suei gYo ups k nes.
gden hty the ones th qt cah be combìned with three
o her Ohe
to make a group tour adj a cent oheg
Jn ohe way. enurle su ch gvoups onea,
4) 9den hky the ones that Can be com bin ed with seen
other gnes, to make a
gYoup 8 adyacent onea ih
Enirde such groups ohea,
Ager idenhhying the essenial gp % 2,4 a 8 on ea 'b
there sHI vemains SOme oh es which
have not been
en urd ed then these are tD be
comb in ed with eaeh oher
already encireded ane.
-The logic ncion consisHng the ensenhal pvime impliog
abtained in sheps I to 4 & the pime implicgns obBeinedio
shep S will be the minimi zed
kunetion,
k-Map
two vanable
Vaiables in
Nying
Quad
Vaviab le
Paiv
10 A
A8Co0
lo
stinimìza on oF 2vaes)e logic fun ti on uslny k Map:-
- (A, S O:E (o,i, 2, 3,
5) Ex2E (A.8.c)= Eml, 2, 3,?)
10
2
(6C + 6c) +A (6 +6 c
F(A, 8,c)= E m(o, l,4 3, 4 )
A
3
Éx) fA,6 , C)= Sm(o,i, 3, S,6, 7)
AS
(Ga
logic uno9 4 k. Map
*;MinimtzaHon o 6r vanable
5, 7, 8,9,1", 4)
Sm (o,, 9,3,
ot
ABCD
GB+CD+ A D+ eD+
|+(A,G, G, 0)
5,13, 1s)
Ex2) Y= Em (0., 2,
A 3 2
(ate+c)
4
|o8
(4f8+T)D
|Y D(A+ 6+)
Em (l, 3, 4, 5,7,
3,1, 13,s)
oo
C
ErS) E
m(l,2.9, o,, 4,1S)
A
O0
12 13
Bbo B(OD)
= Ac t D+ cD
AB
Miaimize the legic unu fea, or (D2m(o,, 2,3, s
Pospom
|,14)
F (A,, c. o) =TM[4, qio, l2, 13,15)
0) -
oolo
O6
D
13
X
rerms 0 bruth table. eq, com eldey th e tnuth table:
9|ps olp
B C
A
10
4
12
13
12,13,142+ d (o2,s)
7T M (4, C,
8,9, lo,
(
Y- (õ+D). (
5-VaYioble K-Map
23 22
2)
1
3) B0
o) |24
28 27 24
C
25
24
|2
13
18
BC DE
Bc
22
23
2!
30
40)
)3
28
27
ABE
2?)
F(A,B,c,D,E) - Sm (oi, 7,9,, 13,15,le,?, 23, 2 5,
Ex29 simpl
|2
oo1
22
28 29 3) 3
24
252?| 2(
F
F(A,B, C,D,E) Em (o, 2,S, 7, 13, 1S, 18, 20, 2, 23, 258, 29, 3D
JA=0|
00
25 2.
G-Vanable K-Map
1.0
33
ool 39
39
13
|44
1)
-
lo/40
ico\oo ol 51
Oo/ic
S2 S3 SS
of B 6)
61,
|27
J24
Desiq Eramples
A yithahc Ycuts t
s ÄB +AB
2
Truh sa ble
addev
ealizaHon af half
adder.
ip termìnol is add ed & this ckt
for this purpose, a third
is used add An Bnd chol
humbers A &8 op.
where An Bn = n o1der blts h-1)ord4
dihon
Cn Camy gene s a d trm the ad
bits.
vegmea tb as wl addev
This ckt is Yepmed
foy Sug
9/pS
2
An Bn Sn Oo
o
0
ol ps.
trth tabie
An B
An
Bn
Bn
Cnl
NAND-NAND Reazahon of Sn
Hal Subbractos
A logic ckt the subhaion 4 8 (sub ba hend)
Ydi frr A(minuend where A eB ahe l-bit numbers is 8efered
hal-svbhrachry.
c(bono w) oe the two i/Ps.
AO
A
Fu
D(bi) c chogo)
A
buth-tgble
A
(4)Fuw Subhar:
Jugt like a
guwse 'a
ult adde, we
ming mulHbib subhachon wb
çubhe ctoy ck t oy pevo
bìt posiion alss be there.
a beON Bom the preulouo An (minuen d), Bnf&t,
have 3)ps
-A RWll subta ttoy Il) two lp
the presiou s shage)
hend) b Ch-i ( bonow om
2 The kemap Ko Co is
Adder
S
A HAI A S
3 HA 2
cin
SUM
D
futl addev two hale adders
Proof
same 93
obrained for FA
C= (A6) in t AB
= Bin t AB+ A in t ( + )
Co= & Gnt A + AGn, -proVed
chrl
subha
hals
u8/mg
Subhachry A 0i,
Futl
H.S_.)
A 8
( G)8), pìteren
subhoe
futl subha doy
BI Same as
Pvoof: eg)Bin = A 3 expesSioh fo
DE (A olpof F-s.
+
= (As tAB) ·Bjn
(A+A3 + A 8
= AB8in + B 8in
pnved
6egment beoder
- A drgital display that consists t
is mormall y used to delmal
LED
segmen ts icplay
rals ib digital 8yshm. Most pam1l)ler emamples are
econl
c cal aulahoys d watcses where one- 7-
*gment displag
One numwal o th vouyh 3.
to be
8i
ie fo usiny s aisplouy (data) device, the data has
cenverhed some Gde to the co de yeq wired k
binavy
dlsploy
cede uged ig nayval B cD.
Sout, Usually . the oinay
Aa a) 6hows the disploy deyice
6) shows the "segments which must be illy minahed or
eA ch Syifhe numeYals 4 fi'g ) gives the display sys em
eas
sion f
f-s, el lc
ot umexals
a)
1se, 'splay
6) display
A(MSB)
B CD to
BCD Sewen
mentb eeo
dev
) dlsplay syahey
ABCD are 4ip S & it is the náhsal Bo code
numerals 0 Hrough 9.
-k-Maps or ea ch ot the olps through 9 are geo
below.
- The enbies io the K-Map to six binary
combin ahons hot used tn
compohdiMg
he truth ta ble are x-dant care.
stgment Decode
Tnts To ble of ptD to 7
olp s
b C d
BC
1
A8 L0 A8
1 3/ 1
X 14
91 To
a - A + BD4 BD t CO
forc
fod
ol
6) 1
X X
forf
AB 11
A
11 X
X
Ac
X
1 X
ce)
(a)
A Cf)
<g)
cOnverey):-
Code
Binay to
aray
Decina NO Ginany 43
7 12
8
J
14
|2
1
2 2
2
13 2
1
10
o)
G,Bo
6
0)
317
.
B. Bo
ay code
P olp
B)
D Go
G,Go
2 3 2
06
s
E,°, , )51
Bo 4 Q44,çot',64,40
B3
9,
two pats -
The wne MeCluekey mehod con sishs k
unhan in
SRpl aneuge au me
minrevm
in
s
table
he
accordlng to t%e numb sinany
Yepoente ion oY m groupS contani Mg
d gorm bh e
Ohes con tain ed
hozon tal lin es
by
The gro ups ore separahd
to he n4mber
Table Gvoupin a minheym aordn g
J)|
3,|
rable combinahon n mìnterm gjp , u
O,, 8, 9
O,8,|,9
, 3,9,|
PIs
,9,3,l|
2 3,7, , IS
3,!, 7, lS
rom tnis tableb'
YEA,,C,D) BTt BD +CD
PI Table
Deimal Nm ers MiHhevm s
3 9
Or1,8,
X
BD
X
3,?,||, 1S
ep1) od 8 mìnhery
B co are egsenial prme iapl'cons.
are con tained One PI Bd minherm 7 &s are contgined
10
number of I's
Tasl a®of 9roups of miutems accor ding to
Vaiables
Group Minhetm
A
14
O,)
O, 2
O, 8
!,3
, S
2, 3
8,9
3,7
3,0
S,7
9,0
Minhe Vanables
Group A
0, ;2, 3
O, , 8,9
0,2, !,3
I,3, S, 7 AD
I,3, 9,1
t,5, 3,7
Table
. omatrhinq posstble in table 9.
The Mnhion f consists q, the prime- implicayt (m,)
Cunehe tk od minem th table )) the te vm
tb he pne mplican ts table O. 9t is given
o,l,2, 3 X X
O, 8, l,9
AD I,3, S, 3
I,9,3,)| X x
Dont ca ne teYmt A
7
14.
, 3
23
3, U (
3 7, 1S
Table 2,3
1, 3, S
, 5, 3,
2 3,7, , 1S
3,1l, ?1s
Next Table ive
Pfable
t
belmal Numbevs
3
(Minteyms)
X
, 2,5"71
1,
Ex4 f(A, G,C,0) 0,, s, l0,12, 13,14,'S
| 100
Group Minheim
vanable.
32 3
12
|3
Dable
,3 À8D
3,|
S, 3
l2, 14
12,13
I3, 1S
A B C b
10,1, 14, 1S AC
t2, 4, I31S AB
12, 13 , 14,S
I0,14, ,1s
PI Tevm MIeym S
Decima NO. -0,
3
Deima
Ea En E, Eo from(i0e to
1
will bex'
dot are
2 eonds.
3
1
7
8
10
(6
tX
0)
11 X
Eo = Bo
Eo
be 'x')
t cene
),14!s
2).d ( o,
Io
9/ps
Eg E2 E, E 83 2 B 86
3
|0
6,6,
00 X
62 (8,9,10)
81*
6 ,2
X 00 K
X
Bo
B
BOto
GTay
Valld Bco ls x'd oH t
Ca re
7
8
8o, ol
Ga Da
D Pe
Go =0 Do t D, Do
D, D,
P2 Ga
)
Code onwehey
8 CD to Gray
Deuign com binahonal ck t Whose i/p is a 4 bit numbev d
olp ls he two's omplem en t P number.
bit Numbel to 2'6 complement of mat ilp numbt,
o|p
9| p
Dlma A3 An A Ao
|2
13
0
00 B2
o)471)7
2
t Ag,fiAo
3
S
2
|2
8
¤1 ( Ao t A) + A, Âo A2
81 = A, Ao
Bo Ao
A Ao
AotA
D
(AotA)A
B
A, Ao
Bo
Number
Number to 2's complement of that ilp
4 bit
I2
4 13
1S
7
+
8
|0
00. o|
00
10
Da 82 + Þ,6)
Do
Do =Bo Bo
D4
D|
simpli y the loge kuneion using Quine Me cusky Meho d
sIA,8,c,D) = Em(2 4, 811, 1s)t dl, lo, 12, 3)
Table!
MinheYms Vauableo
ABC B
1
2
|2
13
Vanable
Gyoup mìnteYm s B
(2, to
(810) ABD
(1 2,13
(I,1s)
2,
4, 12
8,10
812 coveihy ( . 9
A |2,13
163 t02,
S2,0
|02 8) 3
06 8, 2 3
S2 20, Table
tedueion
8 20;2 2
ms
Minte Group
-arieble
|29
lo S
|02
60
39
S2
38
28
20 Table
ehim <edu
A
31
Minrerm3 roup
Vaiable 46
TAB,C,D,E)=
(2Im
2) Gor
l02, 89,52, 28,3 m SOP
cluskey0,
dereomine
the Method
Quine-
Me
mm
per
MinheYMs
20,28, G2, 6o
PI Table
able
20 28|3839 s2 co o2o
39
AGCDEFG I29
38,102
t02, 103
2012 8-5s2 60