Solution 2105623 Merged
Solution 2105623 Merged
Class 11 - Mathematics
Time Allowed: 3 hours Maximum Marks: 164
a) x ≥ 3 b) − 3 ≤ x ≤ 3
c) - 3 < x < 3 d) x ≥ − 3
2. If a, b, c are real numbers such that a > b, c < 0 [1]
a) ac > bc b) ac ≥ bc
c) ac < bc d) ac ≠ bc
3. The solution set of the inequation: is: [1]
2x−1 3x
− + 1 < 0, x ∈ W
3 5
a) null set b) x ∈ S
le
c) x ∈ W d) x ∈ N
dh
4. If x and a are real numbers such that a > 0 and |x| > a, then [1]
a) x ∈ [−∞, a] b) x ∈ (-a, a)
Pa
c) x ∈ (10, ∞) d) x ∈ [10, ∞)
7. Solutions of the inequalities comprising a system in variable x are represented on number lines as given below, [1]
then
c) x ∈ [– 3, 1] d) x ∈ [– 4, 3]
1/5
Tapasya Batch
a) x ≥ 5 b) -5 ≤ x ≤ 5
c) x ≤ -5 d) - 5 < x < 5
10. If x and b are real numbers . If b > 0 and |x| > b , then [1]
a) x ∈ (−∞, −b) ∪ (
b, ∞) b) x ∈ [−∞, b)
c) x ∈ (−b, b) d) x ∈ (−b, ∞)
c
> b
c
and ac > bc. [1]
(b) The half plane of y ≥ 1 does not contain the origin. [1]
12. Solve: [1]
3x−2 4x−3
≤
5 2
15. Solve inequation and represent the solution set on the number line: 5x + 2 < 17 where x ∈ Z [1]
16. Solve: 4x - 2 < 8, when x ∈ R. [1]
17. Solve: 12x < 50, when x ∈ Z. [1]
18. Solve: - 4x > 30, when x ∈ Z. [1]
19. Solve inequation and represent the solution set on the number line: 3x + 8 > 2, x ∈ R [1]
20. Solve: 12 + 1 5
6
x ≤ 5 + 3x when x ∈ R [1]
21. Solve inequation and represent the solution set on the number line: 5x + 2 < 17 where x ∈ R [1]
le
22. Solve: 3x - 7 > x + 1 [1]
23. Solve: - 4x > 30, when x ∈ N. [1]
dh
24. Solve the inequalities: 2 ⩽ 3x − 4 ⩽ 5 [1]
25. Solve: -4x > 30, when x ∈ R [1]
Pa
33. Solve the given system of equations in R. 10 < - 5 (x - 2 ) < 20. [2]
34. Find all pairs of consecutive odd natural numbers, both of which are larger than 10, such that their sum is less [2]
than 40.
35. Solve the linear inequality 4x + 2 ≥ 14. [2]
36. Solve the inequality 1
(
3x
+ 4) ≥
1
(x − 6) for real x. [2]
2 5 3
37. Solve
|x|−1
≥ 0, x ∈ R − {−2, 2} [2]
|x|−2
|x|−2
≥ 1 where x ∈ R, x ≠ 2. [2]
2/5
Tapasya Batch
42. Solve the system of inequations 2x - 1 > x + Represent the solution set on the number line [2]
7−x
> 2, x ∈ R
3
47. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. [3]
If the perimeter of the triangle is at least 61 cm. Find the minimum length of the shortest side.
48. Solve the inequality and show the graph for the solution on number line: x
≥
(5x−2)
−
(7x−3)
[3]
2 3 5
3
>
x
2
+ 1 for real x. [3]
51. Solve the following linear inequations: [3]
i. 2x − 4 ⩽ 0
54. To receive grade A in a course one must obtain an average of 90 marks or more in five papers, each of 100 [3]
marks. If Tanvy scored 89, 93, 95 and 91 marks in first four papers, find the minimum marks that she must score
in the last paper to get grade A in the course.
2
55. solve:
x −2x+5
2
>
1
[3]
3x −2x−5 2
58. Solve
8x +16x−51
2
> 3 [3]
2x +5x−12
60. Solve 1
≥ 1, x ∈ R − [−2, 2] . [3]
2−|x|
61. Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less [3]
than 23.
[3]
|x|−1
62. Slove: ≥ 0 x ∈ R, x ≠ ±2
|x|−2
3/5
Tapasya Batch
65. Solve
|x+2|−x
< 2, x ∈ R . [3]
x
66. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more [3]
than 11.
67. Solve the following system of linear inequalities [5]
-2- and 3 - x < 4(x-3)
x 1+x
≥
4 3
[5]
|x+3|+x
68. Solve for x, x+2
>1
69. Solve the following system of linear inequalities. [5]
2(2x + 3) - 10 < 6(x - 2)
and
2x−3 4x
+ 6 ≥ 2+
4 3
72. Read the following text carefully and answer the questions that follow: [4]
In drilling world’s deepest hole, the Kola Superdeep Borehole, the deepest manmade hole on Earth and deepest
artificial point on Earth, as a result of a scientific drilling project, it was found that the temperature T in degree
Celsius, x km below the surface of Earth, was given by:
T = 30 + 25 (x – 3), 3 < x < 15.
i. Find the depth, x will lie between 200o C and 300o C. (1)
ii. Solve forx.-9x + 2 > 18 (1)
iii. If |x| < 5 then find the value of x lies in the interval. (2)
OR
Graph the inequality on the number line: x > −32 (2)
73. Read the following text carefully and answer the questions that follow: [4]
A company produces certain items. The manager in the company used to make a data record on daily basis about
the cost and revenue of these items separately. The cost and revenue functions of a product are given by C(x) =
20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold.
4/5
Tapasya Batch
The company manager wants to know:
i. If the job takes n hours, for how many values of n for which the scheme I will give the plumber the better
wages? (1)
ii. Solve for x: 3x - 91 > -87 and 17x - 16 > 18. (1)
iii. Show the graph represents the system of inequalities. y ≥ x + 2 and y ≥ 3x (2)
−1
OR
Solve: f(x) = {(x - 1) × (2 - x)}/(x - 3) ≥ 0. (2)
5/5
Tapasya Batch
Solution
LINEAR INEQUALITY
Class 11 - Mathematics
1.
(c) - 3 < x < 3
Explanation:
We have |x| < a ⇔ −a < x < a
2.
(c) ac < bc
Explanation:
The sign of the inequality is to be reversed (< to > or > to <) if both sides of an inequality are multiplied by the same negative
real number.
⇒ x + 10 < 0
le
⇒ x < -10, but given x ∈ W
|x| > a
⇒ x < -a or x > a
5.
(b) 2 < x < 6
Explanation:
x-2>0
⇒ x>2
⇒ x ∈ (2, ∞)
Now 3x < 18
⇒ x < 6
⇒ x ∈ (−∞, 6)
6.
(c) x ∈ (10, ∞)
Explanation:
- 3x + 17 < - 13
⇒ - 3x + 17 - 17 < - 13 - 17
⇒ - 3x < - 30
−3x −30
⇒ >
−3 −3
1 / 20
Tapasya Batch
⇒ x > 10
⇒ x ∈ (10, ∞)
7. (a) x ∈ (– ∞ , – 4] ∪ [3, ∞ )
Explanation:
Common solution of the inequalities is from – ∞ to – 4 and 3 to ∞
{(– ∞ , – 4] ∪ [3, ∞ )} ∩ {(– ∞ , – 3] ∪ [1, ∞ )} = (– ∞ , – 4] ∪ [3, ∞ )
8.
(b) (−∞, −2) ∪(−1, 1) ∪(2, ∞)
Explanation:
|x|−1
Given |x|−2
≥ 0, x ≠ ±2
|x|−1
≥ 0
|x|−2
a
⇒ |x| - 1 ≥ 0 and |x| - 2 ≥ 0 or |x| - 1 ≤ 0 and |x| - 2 ≤ 0 [∵ b
≥ 0 ⇒ (a ≥ 0 and b ≥ 0) or (a ≤ 0 and b ≤ 0)]
⇒ |x| ≥ 1 and |x| ≥ 2 or |x| ≤ 1 and |x| ≤ 2
⇒ |x| ≥ 2 or |x| ≤ 1 [∵ |x| ≥ a ⇒ x ≥ a or x ≤ -a and |x| ≤ a ⇒ −a ≤ x ≤ a ]
⇒ x ≥ 2 or x ≤ -2 or −1 ≤ x ≤ 1
9.
(d) - 5 < x < 5
Explanation:
le
|x| < 5
⇒ -5 < x < 5
dh
Explanation:
Pa
5
−
2
5
≤
4x
2
−
3
2
3x 4x −3 2
⇒ − ≤ +
5 2 2 5
6x−20x −15+4
⇒ ≤
10 10
⇒ -14x ≤ -11
⇒ 14x ≥ 11
11
⇒ x≥ 14
Therefore, [ 11
14
, ∞) is the solution set.
13. Given 12x < 50
⇒
12x
<
12
[divide both sides by 12]
50
12
25
∴ x <
6
x∈R
When x is a real number, the soluṁṁtion of the given inequation is(−∞, 25
6
) .
2 / 20
Tapasya Batch
4+2x x
14. 3
≥
2
− 3 ,
8 + 4x ≥ 3x -18
8 + x ≥ -18
x ≥ -26
Thus, the solution set of the given incquation is [−26, ∞) .
15. Given, 5x + 2 < 17
Subtracting 2 from both the sides in the above equation,
⇒ 5x + 2 – 2 < 17 – 2
⇒ 5x < 15
⇒ x<3
Since x is an integer.
Therefore, possible values of x can be
x = {…, -2, -1, 0, 1, 2}
⇒ 4x < 10
⇒ <
4x
4
[divide both sides by 4]
10
4
5
∴ x <
2
x∈R
le
When x is a real number, the solution of the given inequation is(−∞, 5
2
) .
17. Given 12x < 50
dh
⇒ <
12x
12
[divide both sides by 12]
50
12
25
∴ x <
6
x∈Z
Pa
As 4 < 25
6
< 5 , when x is an integer, the maximum possible value of x is 4.
Thus, the solution of the given inequation is {…, -2, -1, 0, 1, 2, 3, 4}.
18. Given, -4x > 30
−30
⇒ x <
4
[divide both sides by -4]
−15
⇒ x <
2
If x ∈ Z, ⇒ x ∈ {… , −10, −9 − 8}
19. Given, 3x + 8 > 2, x ∈ R
Subtracting 8 from both the sides in above equation
⇒ 3x + 8 – 8 > 2 – 8
⇒ 3x > - 6
Dividing both the sides by 3 in above equation
3x −6
⇒ >
3 3
Thus, x > -2
x ∈ (-2, ∞ )
5
20. 12 + 1 6
x ≤ 5 + 3x when x ∈ R
11x
⇒ 12 +
6
≤ 5 + 3x
⇒ 72 + 11x ≤ 30 + 18x
⇒ 7x ≥ 42
⇒ x ≥ 6
3 / 20
Tapasya Batch
21. Given, 5x + 2 < 17
Subtracting 2 from both the sides in above equation
⇒ 5x + 2 – 2 < 17 – 2
⇒ 5x < 15
Dividing both the sides by 5 in above equation
5x 15
⇒ <
5 5
⇒ x<3
Therefore, x ∈ (-∞ , 3)
22. ⇒ 3x - x > 1 + 7
⇒ 2x > 8
8
⇒ x> 2
⇒ x>4
∴ (4, ∞ ) is the solution set.
4
[divide both sides by 4]
30
4
15
⇒ −x >
2
15
∴ x < −
2
[multiply both sides by -1]
x∈N
As natural numbers start from 1 and can never be negative, when x is a natural number, the solution of the given inequation is ϕ.
24. We have 2 ⩽ 3x − 4 ⩽ 5
⇒ 2 + 4 ⩽ 3x ⩽ 5 + 4 ⇒ 6 ⩽ 3x ⩽ 9
⇒ 2 ⩽ x ⩽ 3
le
25. Now, -4x > 30
−30 −15
⇒ x < =
4 2
dh
15
If x ∈ R, ⇒ x ∈ (−∞, − 2
)
10
x< 4
[divide both sides by 4]
5
x< 2
As 2 < 5
2
< 3 , when x is a natural number, the maximum possible value of x is 2 and we know the natural numbers start from 1.
[divide both sides by 4]
Thus, the solution of the given inequation is {1, 2}.
27. x + 3 > 0
x > -3
x ∈ (−3, ∞)
Also. 2x < 14
x<7
x ∈ (−∞, 7)
Thus, the solution of the given set of inequalities is the intersection (-3, ∞ ) ∩ (−∞ , 7) = (-3, 7}
Therefore, x ∈ (-3, 7) Thus, the solution of the given set of inequalities is (-3, 7)
28. Let the third pH value be x
Given that first pH value = 8.48
and second pH value = 8.35
8⋅48+8⋅35+x
∴ The average value of pH = 3
4 / 20
Tapasya Batch
29. Here 5x − 3 ⩾ 3x − 5
⇒ 5x − 3x ⩾ −5 + 3
⇒ 2x ⩾ −2
30. We have, 4x - 1 ≤ 0
⇒ 4x ≤ 1
⇒x ≤ ⇒ x ∈ (-∞ , ] ...... (i)
1 1
4 4
Also, 3 - 4x < 0
⇒ 0 > 3 - 4x
⇒ 4x > 3
⇒x >
3
⇒ x ∈ ( , ∞ ) ......(ii)
3
4
3
Hence, the solution set of inequalities is the intersection of (i) and (ii). But, (- ∞ , 1
4
) ∩ ( , ∞) = ϕ
4
⇒ x ∈ (2, ∞ )
Also. 3x < 18
⇒ x<6
le
⇒ x ∈ (-∞ , 6)
3x−6 10−5x
⇒ ≥
5 3
⇒ 9x + 25x ≥ 50 +18
⇒ 34x ≥ 68
34x 68
⇒ ≥
34 34
⇒ x≥2
⇒ x ∈ [2, ∞ )
Hence, [2, ∞ ) is the solution set of the given inequation. This solution set can be graphed on real line as shown in Figure.
⇒ 2 ≤ -(x - 2)
⇒ 2 ≤ -x + 2
⇒ 2 - 2 ≤ -x
⇒ 0 ≤ -x .
x ≥ 0 ......(i)
Consider the second inequation,
- 5(x - 2) < 20
⇒ -5x + 10 < 20
⇒ -5x < 20 - 10
⇒ -5x < 10
⇒ -x < 2
x > - 2 .......(ii)
5 / 20
Tapasya Batch
From (i) and (ii),
(- 2, 0) is the solution set of the simultaneous equations.
34. Let x be the smaller of the two consecutive odd natural numbers. Then the other odd integer is x+2.
It is given that both the natural number are greater than 10 and their sum is less than 40.
∴ x > 10 and, x + x + 2 < 40
⇒ 10 < x < 19
⇒ 4x ≥ 12
⇒
4x
4
≥
12
4
[dividing both sides by 4]
∴ x ≥ 3
Hence, the dark portion on the number line represents the solution of given inequality.
36. Here 1
2
(
3x
5
+ 4) ⩾
1
3
(x − 6)
le
3x x
⇒ + 2 ⩾ − 2
10 3
3x x
⇒ − ⩾ −2 − 2
10 3
dh
9x−10x
⇒ ⩾ −4
30
−x
⇒ ⩾ −4
30
−x ⩾ −120
y−1
⇒
y−2
≥ 0
⇒ y ≤ 1 or y > 2
⇒ |x| ≤ 1 or |x| > 2
⇒ (-1 ≤ x ≤ 1) or (x < -2 or x > 2)
⇒ x ∈ [-1, 1] or x ∈ (−∞ , -2) ∪ (2, ∞ )
5
+ 3
⇔
13
5
< x and x < 17
6 / 20
Tapasya Batch
13 17
⇔ < x <
5 5
13 17
= {x ∈ R : < x < }
5 5
39. Now,
3
x−2
<1
3
x−2
-1<0
3−(x−2)
x−2
<0
3−x+2
x−2
<0
5−x
x−2
<0
x−5
x−2
>0
Case 1: x - 5 > 0 and x - 2 > 0
⇒ x > 5 and x > 2
⇒ x>5
Case 2: x - 5 < 0 and x - 2 < 0
⇒ x < 5 and x < 2
⇒ x < 2
⇒ 3x – 3+ 3 ≤ 2x – 6+ 3
⇒ 3x ≤ 2x – 3
⇒ 3x – 2x ≤ 2x – 3 – 2x
le
⇒ x ≤ -3
∴ The solutions of the given inequality are defined by all the real numbers less than or equal to -3.
−1
⇒ − 1 ≥ 0
|x|−2
Pa
−1−(|x|−2)
⇒ ≥ 0
|x|−2
1−|x|
⇒ ≥ 0
|x|−2
|x|−1
⇒ ≤ 0
|x|−2
y−1
⇒
y−2
≤ 0 where y = |x|
⇒ 1 ≤ y < 2 {see figure}
⇒ 1 ≤ |x| < 2 [∵ y = |x|]
⇒ |x| < 2 ⇒ -2 < x < 2
and ⇒ |x| ≥ 1
x ≤ -1 or x ≥ 1
⇒ x ∈ (-2 , -1] ∪ [1 , 2)
Hence, the solution set of the given inequation is (-2, -1] ∪ [1, 2)
42. we have
7−x
2x − 1 > x +
3
> 2
7−x 7x
⇒ 2x − 1 > x +
3
and x + 3
> 2
7−x
Now, 2x − 1 > x + 3
= 6x - 3> 3x + 7 - x
⇒ 6x - 3 > 2x + 7
⇒ 4x - 3 > 7
⇒ 4x > 10
5
⇒ x >
2
5
x ∈ ( , ∞)
2
7 / 20
Tapasya Batch
7−x
and x + 3
> 2 = 3x + 7- x > 6
⇒ 2x + 7 > 6
⇒ 2x > -1
−1
⇒ x >
2
−1
⇒ x ∈ ( , ∞)
2
5 −1 5
= ( , ∞) ∩ ( , ∞) = ( , ∞)
2 2 2
(i) when x is a natural number then values of x that make the statement true are 1, 2, 3, 4. The solution set of inequality is {1, 2, 3,
4}
(ii) When x is an integer then values of x that make the statement true are . . . , -2, -1, 0, 1, 2, 3, 4.
The solution set of inequality is {..., -2, -1, 0, 1, 2, 3, 4}
44. Let x be the smaller of the two consecutive odd positive integers. Then, the other odd integers is x + 2.
It is given that both the integers are smaller than 18 and their sum is more than 20. Therefore,
x + 2 < 18 and, x + (x + 2) > 20
⇒ x < 16 and 2x + 2 > 20
x < 0 and x ≥ -2
x ∈ [-2,0)
when x < -2 then |x + 2| = -(x + 2)
Pa
−x−2−x
< 0
x
−2x−2
< 0
x
x+1
> 0
x
x ∈ (−∞ , 0) ∪(1, ∞ )
Hence, the solution is (−∞ , 0) ∪(1, ∞ ).
46. When,
7x−1
< −3
2
7x−1
⇒ ( ) (2) < −3(2)
2
⇒ 7x -1 < -6
⇒ 7x – 1 + 6 < -6 + 6
⇒ 7x + 5 < 0
⇒ 7x + 5 – 5 < 0 – 5
⇒ 7x < - 5
7x −5
⇒ <
7 7
−9
Therefore, x < 7
Now when,
3x+8
5
+ 11 < 0
3x+8
⇒
5
+ 11 -11 < 0 – 11
3x+8
⇒
5
< -11
3x+8
⇒ (
5
) (5) < -11(5)
⇒ 3x + 8 < -55
⇒ 3x + 8 – 8 < -55 – 8
8 / 20
Tapasya Batch
⇒ 3x < -63
3x −63
⇒
3
<
3
therefore,
⇒ x < -21
−9
Combining both conditions x < -21 and x < 7
⇒ x < -21
⇒ x∈ (-∞ , -21)
2
⩾
3
−
5
x 5x 2 7x 3
⇒ ⩾ − − +
2 3 3 5 5
15x−50x+42x −10+9
⇒ ⩾
30 15
7x −1
⇒ ⩾
30 15
⇒ x<2
i. If x is a real number,
Thus solution set of the given inequation is (−∞, 2)
ii. If x is an integer,
Thus solution set of the given inequation is (−∞, 1]
iii. If x is a natural number,
Thus solution set of the given inequation is [1].
50. Here x
3
>
x
2
+ 1
x x
⇒ − > 1
3 2
2x−3x
⇒ > 1
6
−x
⇒ > 1
6
⇒ x ⩽ 2
9 / 20
Tapasya Batch
ii. Here -5x + 15 < 0
⇒ −5x < −15
⇒ x>3
Thus solution set of the given inequation is (3, ∞)
52. Since the give inequality is symmetrical in a, b, c there is no loss of generality in assuming that a ≥ b ≥ c.
∴ a2(a - b)(a - c) + b2(b - c)(b - a) + c2(c - a)(c - b)
= (a - b) {(a2(a - c) - b2(b - c)} + c2(c - a) (c - b)
= (a - b) {(a3 - b3) - c(a2 - b2)} + c2(a - c) (b- c)
= (a - b) {(a - b)(a2 + ab + b2) - c(a - b)(a + b)} + c2(a - c) (b - c)
= (a - b)2 {(a2 + ab + b2 - c(a + b)} + c2(a - c) (b - c)
= (a - b)2 {a2 + ab + b2 - ca - bc} + c2 (a - c) (b - c)
= (a - b)2 {a(a - c) + b (b - c) + ab} + c2(a - c) (b - c)
which is non-negative because each term of RHS is nonnegative since a ≥ b ≥ c and a, b, c be non-negative
Thus, a2(a - b)(a - c) + b2(b - c)(b - a) + c2(c - a)(c - b) ≥ 0.
53. Here 3x + 8 > 2
⇒ 3x > 2 − 8 ⇒ 3x > −6
89+93+95+91+x
5
≥ 90
Multiplying both the sides by 5 in the above equation
89+93+95+91+x
⇒(
5
) (5) ≥ 90(5)
⇒ 368 + x ≥ 450
Subtracting 368 from both the sides in the above equation
⇒ 368 + x – 368 ≥ 450 – 368
⇒ x ≥ 82
Therefore, Tanvy should score a minimum of 82 marks in her last paper to get grade A in the course.
2
x −2x+5 1
55. Solve 2
>
2
3x −2x−5
2
x −2x+5 1
>
2 2
3x −2x−5
2
x −2x+5 1
⇒ − > 0
2 2
3x −2x−5
2 2
2(x −2x+5)−(3x −2x−5)
⇒ > 0
2
2(3x −2x−5)
2
− x −2x+15
⇒ > 0
2(3x2 −2x−5)
2
−( x +2x−15)
⇒ > 0
2
2(3x −2x−5)
2
x +2x−15
⇒ < 0
3x2 −2x−5
(x+5)(x−3)
⇒ < 0
(x+1)(3x−5)
On equating all factors to zero, we get x = - 5, -1 ,5 / 3, 3. Plotting these points on number line
10 / 20
Tapasya Batch
5
x ∈ (−5, −1) ∪ ( , 3)
3
3
6
The solution sets of inequations (i) and (ii) are represented graphically on the real line in the above figure.
Clearly, the intersection of these solution sets is the set [2,4].
Hence, the solution set of the given system of inequations is the interval [2,4].
(2x−1) (3x−2) (2−x)
57. Here 3
⩾
4
−
5
2x 1 3x 2 2 x
⇒ − ⩾ − − +
3 3 4 4 5 5
2x 3x x −2 2 1
⇒ − − ⩾ − +
3 4 5 4 5 3
40x−45x−12x −30−24+20
⇒ ⩾
60 60
−17x −34
⇒ ⩾
60 60
⇒ x ⩽ 2
dh
Thus the solution set is (−∞, 2]
58. Solution We have,
2
8x +16x−51
> 3
2
2x +5x−12
Pa
2
8x +16x−51
⇔ − 3 > 0
2
2x +5x−12
2 2
8x +16x−51−6x −15x+36
⇔ > 0
2
2x +5x−12
2
2x +x−15
⇔ > 0
2
2x +5x−12
2
2x +6x−5x−15
⇔ > 0
2
2x +8x−3x−12
(x+3)(2x−5)
⇔
(x+4)(2x−3)
> 0 ...(i)
Sign of expression on number line
Hence
x ∈ (−∞, −4) ∪ (−3, 3/2) ∪ (5/2, ∞)
59. Here x + x
2
+
x
3
< 11
6x+3x+2x
⇒ < 11
6
11x
⇒ < 11
6
2−x
-1≥0⇒ 2−x
≥ 0
∴ (x - 1 ≥ 0 and 2 - x > 0) or (x - 1 ≤ 0 and 2 - x < 0)
11 / 20
Tapasya Batch
⇒ (x ≥ 1 and x < 2) or (x ≤ 1 and x > 2)
⇒ (1 ≤ x < 2)
⇒ x ∈ (1, 2)
−1−x 1+x
⇒
2+x
≥ 0⇒ 2+x
≤ 0
⇒ (1 + x ≤ 0 and 2 + x > 0) or (1 + x ≥ 0 and 2 + x > 0)
⇒ (-2 < x ≤ -1) ⇒ x ∈ (-2, -1)
2
21
⇒ 5 < x <
2
21
⇒ 5 < x <
2
⇒ x = 6, 8, 10
Thus required pairs of even positive integers are (6, 8), (8, 10), and (10, 12).
|x|−1
62. We have, |x|−2
≥ 0
y−1
⇒
y−2
≥ 0 where y = |x|
or y > 2
le
⇒ y ≤ 1
or |x| > 2
dh
⇒ |x| ≤ 1
6x 1
⇒ − < 0
4x−1 2
12x−4x+1
⇒ < 0
2(4x−1)
8x+1
⇒ < 0
2(4x−1)
8x+1
⇒ < 0
4x−1
4
)
−1 1
⇒ < x <
8 4
−1
⇒ x ∈ (
8
,
1
4
) ........(1)
The second inequation of the given system is
x 1
≥
2x+1 4
x 1
⇒ − ≥ 0
2x+1 4
4x−2x−1 2x−1
⇒ ≥ 0 ⇒ ≥ 0
4(2x+1) 2x+1
2
and x < 2
) or (x ≥
1
2
and x > 2
)
−1
⇒ (x <
2
) or (x ≥
1
2
)
12 / 20
Tapasya Batch
−1
⇒ x ∈ (−∞,
2
) or x ∈ [ 1
2
, ∞) ......(2)
From (1) and (2)
−1 1 −1 1
x ∈ ( , ) ∩ {(−∞, ) ∪ [ , ∞)} = ϕ
8 4 2 2
4
+ >
8
...(i)
3x 39
8
2x−1 x−1 3x+1
12
−
3
<
4
...(ii)
Now, 5x
4
+
3x
8
>
39
8
10x+3x 39
⇒ >
8 8
⇒ 13x > 39
⇒ x > 3
⇒ x ∈ (3, ∞ )
⇒ -2x - 9x < 3 - 3
⇒ -11x < 0
⇒ x > 0
⇒ x ∈ (0, ∞ )
le
So, the solution set of inequation (ii) is the interval (0, ∞ ).
These solution sets are graphed on the real line in Figure (i) and (ii) respectively.
dh
From Fig. (i) and (ii), we observe that the intersection of the solution sets of inequations (i) and (ii) is the interval (3, ∞ )
represented by the common thick line.
Hence, the solution set of the given system of inequations is the interval (3, ∞ ).
Pa
i.
ii.
65. Given:
|x−3|−x
x
< 2, x ∈ R.
Intervals of |x - 3|
|x - 3| = -(x - 3) or (x - 3)
When |x - 3| = x - 3
x-3≥0
Therefore, x ≥ 3
When |x - 3| = -(x - 3)
(x - 3) < 0
Therefore, x < 3
Intervals: x ≥ 3 or x < 3
|x−3|−x
Domain of x
< 2:
|x−3|−x
x
is not defined for x = 0
Therefore, x > 0 or x < 0
Now, combining intervals and domain:
x < 0 or 0 < x < 3 or x ≥ 3
For x = 0
|x−3|−x −(x−3)−x
< 2 < 2
x x
13 / 20
Tapasya Batch
3−4x
< 0
x
Signs of 3 - 4x:
3
3 - 4x = 0 → x = 4
(Subtracting 3 from both the sides and then dividing both sides by -1)
3
3 - 4x > 0 → x < 4
(Subtracting 3 from both the sides and then multiplying both sides by -1)
3
3 - 4x < 0 → x > 4
(Subtracting 3 from both the sides and then multiplying both sides by -1)
Signs of x:
x=0
x<0
x>0
Intervals satisfying the required condition: < 0
3
x < 0 or x > 4
4
<x<3
For, x ≥ 3
le
|x−3|−x (x−3)−x
< 2 → < 2
x x
Signs of -3 - 2x:
−3
-3 - 2x = 0 → x = 2
(Adding 3 to both the sides and then dividing both sides by -2)
−3
-3 - 2x > 0 → x < 2
(Adding 3 to both the sides and then multiplying both sides by -1)
−3
-3 - 2x < 0 → x > 2
(Adding 3 to both the sides and then multiplying both sides by -1)
Signs of x:
x=0
x<0
x>0
Intervals satisfying the required condition: < 0
−3
x <
2
or x > 0
Combining the intervals:
−3
x < or x > 0 and x ≥ 3
2
Therefore,
3
x ∈ (−∞, 0) ∪ ( , ∞)
4
14 / 20
Tapasya Batch
66. Let x and x + 2 be two consecutive odd positive integers
Then x + 2 < 10 and x + x + 2 > 11.
⇒ x < 8 and 2x + 2 > 11
2
9
⇒ < x < 8
2
⇒ x = 5 and 7
Thus required pairs of odd positive integers are 5, and 7.
67. The given system of linear inequalities is
1+x
-2- ≥ x
4
... (i)
3
4 3
⇒ - 28 - 3x ≥ 4x
⇒ - 4 ≥ x or x ≤ - 4 ... (iii)
Thus, any value of x less than or equal to - 4 satisfied the inequality.
So, solution set is x ∈ (−∞, −4]
le
dh
From inequality (ii), we get
3 - x < 4 (x - 3)
⇒ 3 - x < 4x - 12
Pa
⇒ 15 - x < 4x
The solution set of inequalities (i) and (ii) are represented graphically on number line as given below:
∴ x = - 3 is a critical point.
15 / 20
Tapasya Batch
So, here we have two intervals (−∞, −3) and [−3, ∞)
Case I: When - 3 ≤ x < ∞ , then |x + 3| = (x + 3)
|x+3|−2
∴
x+2
>0
x+3−2
⇒
x+2
>0
x+1
⇒
x+2
>0
2
> 0 × (x + 2)2
(x+1)(x+2)
⇒
(x+2)
⇒ (x + 1) (x + 2) > 0
Product of (x + 1) and (x + 2) will be positive, if both are of same sign.
∴ (x + 1) > 0 and (x + 2) > 0
⇒
x+2
−(x+5)
⇒
x+2
>0
x+5
⇒
x+2
<0
2
< 0 × (x + 2)2
(x+5)(x+2)
⇒
x+2
⇒ (x + 5) (x + 2) < 0
Product of (x + 5) and (x + 2) will be negative, if both are of opposite sign.
∴ (x + 5) > 0 and (x + 2) < 0
16 / 20
Tapasya Batch
From inequality (i), we get
2(2x + 3) - 10 < 6(x - 2)
⇒ 4x + 6 - 10 < 6x - 12
⇒ 4x - 4 < 6x - 12
⇒ 4x - 4 + 4 < 6x - 12 + 4 [adding 4 on both sides]
⇒ 4x < 6x - 8
⇒ -2x < -8
⇒ 2x > 8 [dividing both sides by - 1 and then inequality sign will change]
2x 8
⇒
2
> [dividing both sides by 2]
2
∴ x > 4 ...(iii)
Thus, any value of x greater than 4 satisfies the inequality.
∴ Solution set is x ∈ (4, ∞)
⇒ 6x + 63 ≥ 24 + 16x
Thus, any value of x less than or equal to 3.9 satisfies the inequality.
dh
∴ Solution set is x ∈ (−∞, 3.9] .
From Eqs. (iii) and (iv), it is clear, that there is no common value of x, which satisfies both inequalities (iii) and (iv).
Hence, the given system of inequalities has no solution.
70. We have, |x + 1| + |x| > 3
Put x + 1 = 0 and x = 0 ⇒ x = - 1 and x = 0
∴ x = - 1, 0 are critical point.
⇒ - x - 1 - x > 3
⇒ - 2x - 1 > 3
⇒ - 2x > 4
⇒ x < - 2
⇒ x+1+x>3
⇒ 2x + 1 > 3 ⇒ 2x > 2
∴ x > 1
17 / 20
Tapasya Batch
71. We have, 4x
3
−
9
4
<x+ 3
4
... (i)
and 7x−1
3
−
7x+2
6
> x ... (ii)
From inequality (i), we get
16x−27 4x+3
4x
3
−
9
4
<x+ 3
4
⇒
12
< 4
Thus, any value of x less than 9 satisfies the inequality. So, the solution of inequality (i) is given by x ∈ (−∞, 9)
3
- 6
>x⇒ 6
>x
⇒ 7x - 4 > 6x [multiplying by 6 on both sides]
⇒ 7x - 4 + 4 > 6x + 4 [adding 4 on both sides]
⇒ 7x > 6x + 4
OR
The inequality on the number line: x > −32
18 / 20
Tapasya Batch
73. i. We have, profit = Revenue - Cost
= (60x + 2000) - (20x + 4000)
= 40x - 2000
To earn some profit, 40x - 2000 > 0.
⇒ x > 50
Hence, the manufacturer must sell more than 50 items to realise some profit.
ii. 12x + 7 < -11
12x < -11 - 7
12x < -18
−3
x< 2
iii. 5x - 8 > 40
5x > 40 + 8
5x > 48
x> 48
OR
120
⇒ 5>n
∴ n < 5
Therefore, for n < 5 hours, scheme I gives the plumber better wages.
ii. Given: 3x - 91 > -87 and 17x - 16 > 18
3x - 91 > -87...(i)
17x - 16 > 18 ...(ii)
Consider (i),
3x - 91 > -87
Adding 91 to both sides,
⇒ 3x - 91 + 91 > -87 + 91
⇒ 3x > 4
⇒ x> 4
⇒ x > 1.33333
Consider (ii),
17x - 16 > 18
Adding 16 to both sides,
⇒ 17x - 16 + 16 > 18 + 16
⇒ 17x > 34
⇒ x>2
19 / 20
Tapasya Batch
We got x > 1.33333 and x > 2
Hence, x > 2
−1
iii. y ≥ 3
x + 2 and y ≥ 3x
OR
(-∞ , 1] ∪ (2, 3)
le
dh
Pa
20 / 20
Tapasya Batch