SUMMATION NOTATION AND
MEASURES OF CENTRAL
TENDENCY
Introduction: Notation and Average
SUMMATION NOTATION
An Overview
N O TAT I O N S A N D S Y M B O L S
Suppose that a variable X is the variable of interest, and that n
measurements are taken. The notation 𝑋1 , 𝑋2 , … , 𝑋𝑛 will be used to
represent the n observation.
Let the Greek letter Σ indicate the “summation of”, thus, we can
write the sum of n observation as
𝑛
𝑋𝑖 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 .
𝑖=1
I L L U S T R AT I O N S : E X PA N D T H E
F O L L O W I N G S U M M AT I O N N O TAT I O N
1. σ5𝑖=1 𝑋𝑖 6. σ3𝑎=1 𝑌𝑎 2
σ6
2. σ1000
𝑗=2 𝑌𝑗
7. 𝑖=4 𝑋𝑖 + 𝑌𝑖
3. σ10
𝑘=2 𝑍 𝑘 8. σ15
𝑖=10 𝑋𝑖 𝑌𝑖
3 2 𝐴𝑖
σ
4. 𝑎=1 𝑌𝑎 9. 8
σ𝑖=1
𝐵𝑖
σ5
5. 𝑖=1 2𝐴𝑖 3
10. 𝑖=1 𝐷 𝑖+2
σ
I L L U S T R AT I O N S : E X P R E S S T H E
F O L L O W I N G I N S U M M AT I O N N O TAT I O N
1. 𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋50
𝐴6 3 +𝐴7 3 +𝐴8 3
2. 5
3. (𝐾2 + 𝐾3 )(𝑃4 + 𝑃5 )
4. 1 + 2 + 3 + ⋯ + 1000
5. 𝑍3 + 𝑍5 + 𝑍7 + ⋯ + 𝑍13
T H E O R E M S O N S U M M AT I O N
N O TAT I O N
1. If c is a constant, then
𝑛
𝑐 = 𝑛𝑐
𝑖=1
2. If c is a constant, then
𝑛 𝑛
𝑐𝑥𝑖 = 𝑐 𝑥𝑖
𝑖=1 𝑖=1
T H E O R E M S O N S U M M AT I O N
N O TAT I O N ( C O N T I N U AT I O N )
3. The summation of the sum of two or more variable is the sum of their
summations. Thus,
𝑛 𝑛 𝑛
(𝑥𝑖 ±𝑦𝑖 ) = 𝑥𝑖 ± 𝑦𝑖
𝑖=1 𝑖=1 𝑖=1
4. The summation of a variable and a constant is the sum of their
summations. Thus,
𝑛 𝑛
(𝑥𝑖 ± 𝑐) = 𝑥𝑖 ± 𝑛𝑐
𝑖=1 𝑖=1
T H E O R E M S O N S U M M AT I O N
N O TAT I O N ( C O N T I N U AT I O N )
5. σ𝑛𝑖=1(𝑥𝑖 ± 𝑐)2 = σ𝑛𝑖=1 𝑥𝑖 2 ± 2𝑐 σ𝑛𝑖=1 𝑥𝑖 + 𝑛𝑐 2
6. If n is a positive integer, then
𝑛(𝑛+1)
a. σ𝑛𝑖=1 𝑖 = 2
𝑛 2 𝑛(2𝑛+1)(𝑛+1)
b. σ𝑖=1 𝑖 =
6
𝑛2 (𝑛+1)2
c. σ𝑛𝑖=1 𝑖 3 = 4
𝑛 𝑛+1 2𝑛+1 (3𝑛2 +3𝑛−1)
d. σ𝑛𝑖=1 𝑖 4 = 30
A S S I G N M E N T : E VA L U AT E T H E
F O L LOW I N G B Y A P P LY I N G T H E O R E M S O F
S U M M AT I O N N O TAT I O N
The number of computer units (in thousands) manufactured by XYZ
Company is given as follows : 𝑋1 = 10; 𝑋2 = 12; 𝑋3 = 14; 𝑋4 =
10; and 𝑋5 = 15. Determine the exact value of the following,
a. σ5𝑖=1 𝑋𝑖
b. σ3𝑖=1 2𝑋𝑖
c. σ5𝑖=3 𝑋𝑖 − 4