0% found this document useful (0 votes)
28 views32 pages

Structural Analysis

The document outlines the structural design analysis for a proposed two-storey residential building prepared by Civil Engineer Julie Anne Claire A. Lorilla. It details design criteria including loading specifications, material properties, and soil bearing pressures, as well as specific calculations for reinforced concrete footings. The analysis ensures that the design meets safety and structural integrity requirements for the building located in Sindangan, Zamboanga del Norte.

Uploaded by

alemarforex01
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views32 pages

Structural Analysis

The document outlines the structural design analysis for a proposed two-storey residential building prepared by Civil Engineer Julie Anne Claire A. Lorilla. It details design criteria including loading specifications, material properties, and soil bearing pressures, as well as specific calculations for reinforced concrete footings. The analysis ensures that the design meets safety and structural integrity requirements for the building located in Sindangan, Zamboanga del Norte.

Uploaded by

alemarforex01
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 32

STRUCTURAL

DESIGN ANALYSIS

PROPOSED TWO(2)-STOREY
RESIDENTIAL BUILDING

Prepared by:

JULIE ANNE CLAIRE A. LORILLA


Civil Engineer
PRC No.: 162198 Validity: JULY 6,2021

PTR No.: 2185852 Date JANUARY 4, 2021


Issued:
TIN No.: 739-542-579 Place
Issued:
DESIGN CRITERIA
I. DESIGN LOADING
1. DEAD LOADS
A. Concrete = 24.00 kN/m³
B. Soil = 18.30 kN/m³
C. Steel = 77.00 kN/m³
D. CHB 100mm thk. = 2.15 kPa
E. CHB 150mm thk. = 2.75 kPa
F. Wall Finish = 0.50 kPa
For each face plastered, 0.24 kPA
G. Floor / Floor Finish = 1.85 kPa
Ceramic/Quarry Tile, 0.45 kPa
Mortar, 0.35 kPa / 12.50 mm thk.
Thickness: 50.00 mm thk.
H. Ceiling = 0.20 kPa
Gypsum board (per mm thickness), 0.008 kPa
Thickness: 12.50 mm thk.
Suspended Steel Channel System, 0.10 kPa

2. LIVE LOADS
A. Residential
1) Basic Floor = 1.90 kPa
Area 2.90
= kPa
2) Exterior
Balconies = 1.90 kPa
3) Deck = 1.90 kPa
4) Storage = 1.00 kPa

II. DESIGN STRESSES


1. CONCRETE
A. For Footing, Columns, Beams, and fc' = 20.70 MPa
Slabs.
Compressive Strength @ 28 DAYS

2. REINFORCING STEEL BAR


A. For Footing, Columns and Beams
For bars 16mmØ and Greater Intermediate Grade fy = 275.00 MPa
Deformed Bar
B. For Slab on Fill, Suspended Slabs, Ties and Stirrups
For bars 12mmØ and Lower Intermediate Grade fy = 230.00 MPa
Deformed Bar
C. For Trusses, Purlins, Bracings and Struts fy = 248.00 MPa

III. DESIGN SOIL BEARING


1. ALLOWABLE SOIL BEARING PRESSURE qa = 96.00 kP
a
NOTE: No Footing Shall Rest on Fill
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F1
Location: B3
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 2.10 m Service LC, Po = 232.032 kN
Width, W= 2.10 m Ftng. Self Wt. Wfn 37.044 kN
=
Depth, d= 0.350 m Total, Po Po t 269.076 kN
=
Eff. Depth, d eff. 0.267 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 369.000 kN
Min. Fdn. Depth D min. = 1.16 m Ftng. Self Wt. Wfu 44.453 kN
=
Column, b= 0.350 m Total, Pu Pu t 413.453 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 2.01 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 2.01 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.555 kN/m² b. Along Width
a. Along Length,
USBP, qu = 93.754A = W x
kN/m² A= Ly
= 2.10 x 0.608 = 2.10 x 0.608
= 1.277 m² = 1.277 m²
Vu = qu A Vu = qu A
= 93.75 x 1.277 = 93.75 x 1.277
= 119.724 kN = 119.724 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 2.10 x 0.267 / 6 = √20.70 x 2.10 x 0.267 / 6
= 425.172 kN = 425.172 kN
x = L/2 - b/2 - d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 2.10/2 - 0.350/2 -
0.267 = 0.75 x 425.17 / 119.72 = 2.10/2 - 0.350/2 - 0.267 = 0.75 x 425.17 / 119.72
= 0.608 m = 2.66 >1 .'. Adequate! = 0.608 m = 2.66 >1 .'. Adequate!
Punching Shear:
x= b+ d A LW - xy Vc = √fc' bo d / 3
=
= 0.350 + 0.267 = (2.10 x 2.10) - (0.617 x 0.617) = √20.70 x 2.468 x 0.267 / 3
= 0.617 m = 4.029 m² = 999.356 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.267 = 93.75 x 4.029 = 0.75 x 999.36 / 377.74
= 0.617 m = 377.735 kN = 1.98 >1 .'. Adequate!
bo = 2x + 2y
= (2 x 0.617) + (2 x 0.617)
= 2.468 m
Reinforcing Steel Bars:
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 93.75 x 1.838 = 93.75 x 1.838
= 172.320 kN-m = 172.320 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 172.32x10^6 / = 172.32x10^6 /
(0.90 x 2.10 x 0.267²) (0.90 x 2.10 x 0.267²)
= 1.2789 MPa = 1.2789 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.2789) / (0.85 x [(2 x 1.2789) / (0.85 x
20.70)]} 20.70)]}
x = L/2 - b/2
= 0.004833 = 0.004833
= 2.10/2 - 0.350/2
use ρ = 0.005091 use ρ 0.005091
= 0.875 m =
A= Wx As = ρ W d y = W/2 - As = ρ L d
= 2.10 x 0.875 h/2
= 1.838 m² = 0.005091 x 2.10 x 0.267 = 2.10/2 - 0.350/2 = 0.005091 x 2.10 x 0.267
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F1
Location: B4
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 2.00 m Service LC, Po = 191.277 kN
Width, W= 2.00 m Ftng. Self Wt. Wfn 33.600 kN
=
Depth, d= 0.350 m Total, Po Po t 224.877 kN
=
Eff. Depth, d eff. 0.267 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 304.000 kN
Min. Fdn. Depth D min. = 1.07 m Ftng. Self Wt. Wfu 40.320 kN
=
Column, b= 0.350 m Total, Pu Pu t 344.320 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.84 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.84 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.555 kN/m² b. Along Width
a. Along Length,
USBP, qu = 86.080A = W x
kN/m² A= Ly
= 2.00 x 0.558 = 2.00 x 0.558
= 1.116 m² = 1.116 m²
Vu = qu A Vu = qu A
= 86.08 x 1.116 = 86.08 x 1.116
= 96.065 kN = 96.065 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 2.00 x 0.267 / 6 = √20.70 x 2.00 x 0.267 / 6
= 404.926 kN = 404.926 kN
x = L/2 - b/2 - d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 2.00/2 - 0.350/2 -
0.267 = 0.75 x 404.93 / 96.07 = 2.00/2 - 0.350/2 - 0.267 = 0.75 x 404.93 / 96.07
= 0.558 m = 3.16 >1 .'. Adequate! = 0.558 m = 3.16 >1 .'. Adequate!
Punching Shear:
x= b+ d A LW - xy Vc = √fc' bo d / 3
=
= 0.350 + 0.267 = (2.00 x 2.00) - (0.617 x 0.617) = √20.70 x 2.468 x 0.267 / 3
= 0.617 m = 3.619 m² = 999.356 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.267 = 86.08 x 3.619 = 0.75 x 999.36 / 311.52
= 0.617 m = 311.524 kN = 2.41 >1 .'. Adequate!
bo = 2x + 2y
= (2 x 0.617) + (2 x 0.617)
= 2.468 m
Reinforcing Steel Bars:
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 86.08 x 1.650 = 86.08 x 1.650
= 142.032 kN-m = 142.032 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 142.03x10^6 / = 142.03x10^6 /
(0.90 x 2.00 x 0.267²) (0.90 x 2.00 x 0.267²)
= 1.1069 MPa = 1.1069 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.1069) / (0.85 x [(2 x 1.1069) / (0.85 x
20.70)]} 20.70)]}
x = L/2 - b/2
= 0.004160 = 0.004160
= 2.00/2 - 0.350/2
use ρ = 0.005091 use ρ 0.005091
= 0.825 m =
A= Wx As = ρ W d y = W/2 - As = ρ L d
= 2.00 x 0.825 h/2
= 1.650 m² = 0.005091 x 2.00 x 0.267 = 2.00/2 - 0.350/2 = 0.005091 x 2.00 x 0.267
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F3
Location: A3
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.80 m Service LC, Po = 157.666 kN
Width, W= 1.80 m Ftng. Self Wt. Wfn 31.104 kN
=
Depth, d= 0.400 m Total, Po Po t 188.770 kN
=
Eff. Depth, d eff. 0.317 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 281.000 kN
Min. Fdn. Depth D min. = 1.10 m Ftng. Self Wt. Wfu 37.325 kN
=
Column, b= 0.250 m Total, Pu Pu t 318.325 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.69 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.69 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.270 kN/m² b. Along Width
a. Along Length,
USBP, qu = 98.248A = W x
kN/m² A= Ly
= 1.80 x 1.233 = 1.80 x 0.408
= 2.219 m² = 0.734 m²
Vu = qu A Vu = qu A
= 98.25 x 2.219 = 98.25 x 0.734
= 218.012 kN = 72.114 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.80 x 0.317 / 6 = √20.70 x 1.80 x 0.317 / 6
= 432.679 kN = 432.679 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.80 - 0.250 -
0.317 = 0.75 x 432.68 / 218.01 = 1.80/2 - 0.350/2 - 0.317 = 0.75 x 432.68 / 72.11
= 1.233 m = 1.49 >1 .'. Adequate! = 0.408 m = 4.50 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.80 x 1.80) - (0.409 x 0.667) = √20.70 x 1.485 x 0.317 / 3
0.317/2
= 0.409 m = 2.967 m² = 713.920 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.317 = 98.25 x 2.967 = 0.75 x 713.92 / 291.50
= 0.667 m = 291.502 kN = 1.84 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.409) + 0.667
Reinforcing Steel Bars: = 1.485 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 98.25 x 2.790 = 98.25 x 1.305
= 274.112 kN-m = 128.214 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 274.11x10^6 / = 128.21x10^6 /
(0.90 x 1.80 x 0.317²) (0.90 x 1.80 x 0.317²)
= 1.6838 MPa = 0.7876 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.6838) / (0.85 x [(2 x 0.7876) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.80 - 0.250 = 0.006448 = 0.002931
= 1.550 m use ρ = 0.006448 use ρ 0.005091
A= Wx =
= 1.80 x 1.550 As = ρ W d y = W/2 - As = ρ L d
h/2
= 2.790 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F3
Location: C3
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.80 m Service LC, Po = 148.402 kN
Width, W= 1.80 m Ftng. Self Wt. Wfn 31.104 kN
=
Depth, d= 0.400 m Total, Po Po t 179.506 kN
=
Eff. Depth, d eff. 0.317 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 255.000 kN
Min. Fdn. Depth D min. = 1.05 m Ftng. Self Wt. Wfu 37.325 kN
=
Column, b= 0.250 m Total, Pu Pu t 292.325 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.65 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.65 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.270 kN/m² b. Along Width
a. Along Length,
USBP, qu = 90.224A = W x
kN/m² A= Ly
= 1.80 x 1.233 = 1.80 x 0.408
= 2.219 m² = 0.734 m²
Vu = qu A Vu = qu A
= 90.22 x 2.219 = 90.22 x 0.734
= 200.207 kN = 66.224 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.80 x 0.317 / 6 = √20.70 x 1.80 x 0.317 / 6
= 432.679 kN = 432.679 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.80 - 0.250 -
0.317 = 0.75 x 432.68 / 200.21 = 1.80/2 - 0.350/2 - 0.317 = 0.75 x 432.68 / 66.22
= 1.233 m = 1.62 >1 .'. Adequate! = 0.408 m = 4.90 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.80 x 1.80) - (0.409 x 0.667) = √20.70 x 1.485 x 0.317 / 3
0.317/2
= 0.409 m = 2.967 m² = 713.920 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.317 = 90.22 x 2.967 = 0.75 x 713.92 / 267.70
= 0.667 m = 267.695 kN = 2.00 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.409) + 0.667
Reinforcing Steel Bars: = 1.485 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 90.22 x 2.790 = 90.22 x 1.305
= 251.725 kN-m = 117.742 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 251.73x10^6 / = 117.74x10^6 /
(0.90 x 1.80 x 0.317²) (0.90 x 1.80 x 0.317²)
= 1.5463 MPa = 0.7233 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.5463) / (0.85 x [(2 x 0.7233) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.80 - 0.250 = 0.005894 = 0.002687
= 1.550 m use ρ = 0.005894 use ρ 0.005091
A= Wx =
= 1.80 x 1.550 As = ρ W d y = W/2 - As = ρ L d
h/2
= 2.790 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F4
Location: B1
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.70 m Service LC, Po = 134.888 kN
Width, W= 1.70 m Ftng. Self Wt. Wfn 24.276 kN
=
Depth, d= 0.350 m Total, Po Po t 159.164 kN
=
Eff. Depth, d eff. 0.267 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 237.000 kN
Min. Fdn. Depth D min. = 1.04 m Ftng. Self Wt. Wfu 29.131 kN
=
Column, b= 0.250 m Total, Pu Pu t 266.131 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.55 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.55 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.555 kN/m² b. Along Width
a. Along Length,
USBP, qu = 92.087A = W x
kN/m² A= Ly
= 1.70 x 0.458 = 1.70 x 1.083
= 0.779 m² = 1.841 m²
Vu = qu A Vu = qu A
= 92.09 x 0.779 = 92.09 x 1.841
= 71.736 kN = 169.532 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.70 x 0.267 / 6 = √20.70 x 1.70 x 0.267 / 6
= 344.187 kN = 344.187 kN
x = L/2 - b/2 - d
FS = фVc / Vu y= W-h- FS = фVc / Vu
= 1.70/2 - 0.250/2 - d
0.267
= 0.75 x 344.19 / 71.74 = 1.70 - 0.350 - 0.267 = 0.75 x 344.19 / 169.53
= 0.458 m
= 3.60 >1 .'. Adequate! = 1.083 m = 1.52 >1 .'. Adequate!
Punching Shear:

x= b+ d A LW - xy Vc = √fc' bo d / 3
=
= 0.250 + 0.267 = (1.70 x 1.70) - (0.517 x 0.484) = √20.70 x 1.485 x 0.267 / 3
= 0.517 m = 2.640 m² = 601.314 kN
y= h + Vu = qu A FS = фVc / Vu
d/2
= 0.350 + = 92.09 x 2.640 = 0.75 x 601.31 / 243.11
0.267/2
= 0.484 m = 243.110 kN = 1.86 >1 .'. Adequate!
bo = x + 2y
Reinforcing Steel Bars: = 0.517 + (2 x 0.484)
a. Along Length, = 1.485 m

b. Along Width,
Mu = qu A Mu = qu A
= 92.09 x 1.233 = 92.09 x 2.295
= 113.543 kN-m = 211.340 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 113.54x10^6 / = 211.34x10^6 /
(0.90 x 1.70 x 0.267²) (0.90 x 1.70 x 0.267²)
= 1.0410 MPa = 1.9376 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
x = L/2 - b/2
[(2 x 1.0410) / (0.85 x [(2 x 1.9376) / (0.85 x
= 1.70/2 - 0.250/2 20.70)]} 20.70)]}
= 0.725 m = 0.003905 = 0.007483
A= Wx use ρ = 0.005091 use ρ = 0.007483
= 1.70 x 0.725 As = ρ W d y= W-h As = ρ L d
= 1.233 m² = 0.005091 x 1.70 x 0.267 = 1.70 - 0.350 = 0.007483 x 1.70 x 0.267
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F5
Location: C4
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.70 m Service LC, Po = 134.888 kN
Width, W= 1.70 m Ftng. Self Wt. Wfn 27.744 kN
=
Depth, d= 0.400 m Total, Po Po t 162.632 kN
=
Eff. Depth, d eff. 0.317 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 237.000 kN
Min. Fdn. Depth D min. = 1.07 m Ftng. Self Wt. Wfu 33.293 kN
=
Column, b= 0.250 m Total, Pu Pu t 270.293 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.57 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.57 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.270 kN/m² b. Along Width
a. Along Length,
USBP, qu = 93.527A = W x
kN/m² A= Ly
= 1.70 x 1.133 = 1.70 x 0.358
= 1.926 m² = 0.609 m²
Vu = qu A Vu = qu A
= 93.53 x 1.926 = 93.53 x 0.609
= 180.133 kN = 56.958 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.70 x 0.317 / 6 = √20.70 x 1.70 x 0.317 / 6
= 408.641 kN = 408.641 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.70 - 0.250 -
0.317 = 0.75 x 408.64 / 180.13 = 1.70/2 - 0.350/2 - 0.317 = 0.75 x 408.64 / 56.96
= 1.133 m = 1.70 >1 .'. Adequate! = 0.358 m = 5.38 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.70 x 1.70) - (0.409 x 0.667) = √20.70 x 1.485 x 0.317 / 3
0.317/2
= 0.409 m = 2.617 m² = 713.920 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.317 = 93.53 x 2.617 = 0.75 x 713.92 / 244.76
= 0.667 m = 244.760 kN = 2.19 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.409) + 0.667
Reinforcing Steel Bars: = 1.485 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 93.53 x 2.465 = 93.53 x 1.148
= 230.544 kN-m = 107.369 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 230.54x10^6 / = 107.37x10^6 /
(0.90 x 1.70 x 0.317²) (0.90 x 1.70 x 0.317²)
= 1.4995 MPa = 0.6983 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.4995) / (0.85 x [(2 x 0.6983) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.70 - 0.250 = 0.005707 = 0.002592
= 1.450 m use ρ = 0.005707 use ρ 0.005091
A= Wx =
= 1.70 x 1.450 As = ρ W d y = W/2 - As = ρ L d
h/2
= 2.465 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F6
Location: C1
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.50 m Service LC, Po = 102.598 kN
Width, W= 1.50 m Ftng. Self Wt. Wfn 21.600 kN
=
Depth, d= 0.400 m Total, Po Po t 124.198 kN
=
Eff. Depth, d eff. 0.317 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 183.000 kN
Min. Fdn. Depth D min. = 1.05 m Ftng. Self Wt. Wfu 25.920 kN
=
Column, b= 0.250 m Total, Pu Pu t 208.920 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.37 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.37 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.270 kN/m² b. Along Width
a. Along Length,
USBP, qu = 92.853A = W x
kN/m² A= Ly
= 1.50 x 0.933 = 1.50 x 0.833
= 1.400 m² = 1.250 m²
Vu = qu A Vu = qu A
= 92.85 x 1.400 = 92.85 x 1.250
= 129.994 kN = 116.066 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.50 x 0.317 / 6 = √20.70 x 1.50 x 0.317 / 6
= 360.566 kN = 360.566 kN
x= L-b-d
FS = фVc / Vu y= W-h- FS = фVc / Vu
= 1.50 - 0.250 - d
0.317
= 0.75 x 360.57 / 129.99 = 1.50 - 0.350 - 0.317 = 0.75 x 360.57 / 116.07
= 0.933 m
= 2.08 >1 .'. Adequate! = 0.833 m = 2.33 >1 .'. Adequate!
Punching Shear:

x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.50 x 1.50) - (0.409 x 0.509) = √20.70 x 0.918 x 0.317 / 3
0.317/2
= 0.409 m = 2.042 m² = 441.332 kN
y= h + Vu = qu A FS = фVc / Vu
d/2
= 0.350 + = 92.85 x 2.042 = 0.75 x 441.33 / 189.61
0.317/2
= 0.509 m = 189.606 kN = 1.75 >1 .'. Adequate!
Reinforcing Steel Bars: bo = x + y
a. Along Length, = 0.409 +
0.509)
= 0.918 m

b. Along Width,
Mu = qu A Mu = qu A
= 92.85 x 1.875 = 92.85 x 1.725
= 174.099 kN-m = 160.171 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 174.10x10^6 / = 160.17x10^6 /
(0.90 x 1.50 x 0.317²) (0.90 x 1.50 x 0.317²)
= 1.2833 MPa = 1.1807 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
x= L-b = [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
= 1.50 - 0.250 - √1 -
= 1.250 m [(2 x 1.2833) / (0.85 x [(2 x 1.1807) / (0.85 x
20.70)]} 20.70)]}
A= Wx
= 0.004850 = 0.004448
= 1.50 x 1.250
use ρ = 0.005091 use ρ = 0.005091
= 1.875 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F7
Location: A2
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.50 m Service LC, Po = 95.397 kN
Width, W= 1.50 m Ftng. Self Wt. Wfn 18.900 kN
=
Depth, d= 0.350 m Total, Po Po t 114.297 kN
=
Eff. Depth, d eff. 0.267 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 179.000 kN
Min. Fdn. Depth D min. = 0.96 m Ftng. Self Wt. Wfu 22.680 kN
=
Column, b= 0.250 m Total, Pu Pu t 201.680 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.31 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.31 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.555 kN/m² b. Along Width
a. Along Length,
USBP, qu = 89.636A = W x
kN/m² A= Ly
= 1.50 x 0.983 = 1.50 x 0.308
= 1.475 m² = 0.462 m²
Vu = qu A Vu = qu A
= 89.64 x 1.475 = 89.64 x 0.462
= 132.213 kN = 41.412 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.50 x 0.267 / 6 = √20.70 x 1.50 x 0.267 / 6
= 303.694 kN = 303.694 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.50 - 0.250 -
0.267 = 0.75 x 303.69 / 132.21 = 1.50/2 - 0.350/2 - 0.267 = 0.75 x 303.69 / 41.41
= 0.983 m = 1.72 >1 .'. Adequate! = 0.308 m = 5.50 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.50 x 1.50) - (0.384 x 0.617) = √20.70 x 1.385 x 0.267 / 3
0.267/2
= 0.384 m = 2.013 m² = 560.822 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.267 = 89.64 x 2.013 = 0.75 x 560.82 / 180.44
= 0.617 m = 180.437 kN = 2.33 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.384) + 0.617
Reinforcing Steel Bars: = 1.385 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 89.64 x 1.875 = 89.64 x 0.863
= 168.068 kN-m = 77.356 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 168.07x10^6 / = 77.36x10^6 /
(0.90 x 1.50 x 0.267²) (0.90 x 1.50 x 0.267²)
= 1.7463 MPa = 0.8038 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.7463) / (0.85 x [(2 x 0.8038) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.50 - 0.250 = 0.006701 = 0.002993
= 1.250 m use ρ = 0.006701 use ρ 0.005091
A= Wx =
= 1.50 x 1.250 As = ρ W d y = W/2 - As = ρ L d
h/2
= 1.875 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F7
Location: A4
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.50 m Service LC, Po = 104.453 kN
Width, W= 1.50 m Ftng. Self Wt. Wfn 18.900 kN
=
Depth, d= 0.350 m Total, Po Po t 123.353 kN
=
Eff. Depth, d eff. 0.267 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 194.000 kN
Min. Fdn. Depth D min. = 1.04 m Ftng. Self Wt. Wfu 22.680 kN
=
Column, b= 0.250 m Total, Pu Pu t 216.680 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 1.36 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 1.36 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.555 kN/m² b. Along Width
a. Along Length,
USBP, qu = 96.302A = W x
kN/m² A= Ly
= 1.50 x 0.983 = 1.50 x 0.308
= 1.475 m² = 0.462 m²
Vu = qu A Vu = qu A
= 96.30 x 1.475 = 96.30 x 0.462
= 142.045 kN = 44.492 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.50 x 0.267 / 6 = √20.70 x 1.50 x 0.267 / 6
= 303.694 kN = 303.694 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.50 - 0.250 -
0.267 = 0.75 x 303.69 / 142.05 = 1.50/2 - 0.350/2 - 0.267 = 0.75 x 303.69 / 44.49
= 0.983 m = 1.60 >1 .'. Adequate! = 0.308 m = 5.12 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.50 x 1.50) - (0.384 x 0.617) = √20.70 x 1.385 x 0.267 / 3
0.267/2
= 0.384 m = 2.013 m² = 560.822 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.267 = 96.30 x 2.013 = 0.75 x 560.82 / 193.86
= 0.617 m = 193.856 kN = 2.17 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.384) + 0.617
Reinforcing Steel Bars: = 1.385 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 96.30 x 1.875 = 96.30 x 0.863
= 180.566 kN-m = 83.109 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 180.57x10^6 / = 83.11x10^6 /
(0.90 x 1.50 x 0.267²) (0.90 x 1.50 x 0.267²)
= 1.8762 MPa = 0.8636 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.8762) / (0.85 x [(2 x 0.8636) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.50 - 0.250 = 0.007231 = 0.003221
= 1.250 m use ρ = 0.007231 use ρ 0.005091
A= Wx =
= 1.50 x 1.250 As = ρ W d y = W/2 - As = ρ L d
h/2
= 1.875 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F8
Location: C5
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.20 m Service LC, Po = 47.571 kN
Width, W= 1.20 m Ftng. Self Wt. Wfn 10.368 kN
=
Depth, d= 0.300 m Total, Po Po t 57.939 kN
=
Eff. Depth, d eff. 0.217 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 86.400 kN
Min. Fdn. Depth D min. = 0.76 m Ftng. Self Wt. Wfu 12.442 kN
=
Column, b= 0.250 m Total, Pu Pu t 98.842 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 0.93 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 0.93 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.840 kN/m² b. Along Width
a. Along Length,
USBP, qu = 68.640A = W x
kN/m² A= Ly
= 1.20 x 0.733 = 1.20 x 0.208
= 0.880 m² = 0.250 m²
Vu = qu A Vu = qu A
= 68.64 x 0.880 = 68.64 x 0.250
= 60.403 kN = 17.160 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.20 x 0.217 / 6 = √20.70 x 1.20 x 0.217 / 6
= 197.458 kN = 197.458 kN
x= L-b-d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.20 - 0.250 -
0.217 = 0.75 x 197.46 / 60.40 = 1.20/2 - 0.350/2 - 0.217 = 0.75 x 197.46 / 17.16
= 0.733 m = 2.45 >1 .'. Adequate! = 0.208 m = 8.63 >1 .'. Adequate!
Punching Shear:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.20 x 1.20) - (0.359 x 0.567) = √20.70 x 1.285 x 0.217 / 3
0.217/2
= 0.359 m = 1.236 m² = 422.889 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.217 = 68.64 x 1.236 = 0.75 x 422.89 / 84.84
= 0.567 m = 84.839 kN = 3.74 >1 .'. Adequate!
bo = 2x + y
= (2 x 0.359) + 0.567
Reinforcing Steel Bars: = 1.285 m
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 68.64 x 1.140 = 68.64 x 0.510
= 78.250 kN-m = 35.006 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 78.25x10^6 / = 35.01x10^6 /
(0.90 x 1.20 x 0.217²) (0.90 x 1.20 x 0.217²)
= 1.5387 MPa = 0.6883 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 1.5387) / (0.85 x [(2 x 0.6883) / (0.85 x
x= L-b 20.70)]} 20.70)]}
= 1.20 - 0.250 = 0.005864 = 0.002554
= 0.950 m use ρ = 0.005864 use ρ 0.005091
A= Wx =
= 1.20 x 0.950 As = ρ W d y = W/2 - As = ρ L d
h/2
= 1.140 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:

DESIGN ANALYSIS OF REINFORCED CONCRETE FOOTING


Footing: F9
Location: C5
I. FOOTING PROPERTIES
Design Footing: Unfactored Loads:
Length, L= 1.20 m Service LC, Po = 28.486 kN
Width, W= 1.20 m Ftng. Self Wt. Wfn 10.368 kN
=
Depth, d= 0.300 m Total, Po Po t 38.854 kN
=
Eff. Depth, d eff. 0.217 m Factored Loads:
=
Fdn. Depth, D= 1.50 m Service LC, Pu = 55.300 kN
Min. Fdn. Depth D min. = 0.51 m Ftng. Self Wt. Wfu 12.442 kN
=
Column, b= 0.250 m Total, Pu Pu t 67.742 kN
=
h= 0.350 m Minimum Footing
Dimension:
Material Length, L= 0.76 m
Properties:
Concrete, fc' = 20.70 Mpa Width, W= 0.76 m
Steel, fy = 275.00 Mpa Steel
Requirements:
Reduction Factor: Reinf Steel Bar Dia Ø= 16 mm
Bending, ф= 0.90 ρ bal = 0.85 β fc' 600 / fy(600+fy)
Shear, ф= 0.75 = 0.037292
bot steel cover, sc = 0.075 m ρ min = 1.40 / fy = 0.005091
II. DETAILED
Bearing Pressure:
CALCULATIONS ρ max = 75% ρ bal 0.027969
Wide Beam Shear: =
ESBP, qe = 66.840 kN/m² b. Along Width
a. Along Length,
USBP, qu = 47.043A = W x
kN/m² A= Ly
= 1.20 x 0.258 = 1.20 x 0.208
= 0.310 m² = 0.250 m²
Vu = qu A Vu = qu A
= 47.04 x 0.310 = 47.04 x 0.250
= 14.583 kN = 11.761 kN
Vc = √fc' W d / 6 Vc = √fc' L d /
6
= √20.70 x 1.20 x 0.217 / 6 = √20.70 x 1.20 x 0.217 / 6
= 197.458 kN = 197.458 kN
x = L/2 - b/2 - d
FS = фVc / Vu y = W/2 - h/2 - d FS = фVc / Vu
= 1.20/2 - 0.250/2 -
0.217 = 0.75 x 197.46 / 14.58 = 1.20/2 - 0.350/2 - 0.217 = 0.75 x 197.46 / 11.76
= 0.258 m = 10.16 >1 .'. Adequate! = 0.208 m = 12.59 >1 .'. Adequate!
Punching Shear:
x= b+ d A LW - xy Vc = √fc' bo d / 3
=
= 0.250 + 0.217 = (1.20 x 1.20) - (0.467 x 0.567) = √20.70 x 2.068 x 0.217 / 3
= 0.467 m = 1.175 m² = 680.572 kN
y= h + d Vu = qu A FS = фVc / Vu
= 0.350 + 0.217 = 47.04 x 1.175 = 0.75 x 680.57 / 55.28
= 0.567 m = 55.276 kN = 9.23 >1 .'. Adequate!
bo = 2x + 2y
= (2 x 0.467) + (2 x 0.567)
= 2.068 m
Reinforcing Steel Bars:
a. Along Length,
b. Along Width,
Mu = qu A Mu = qu A
= 47.04 x 0.570 = 47.04 x 0.510
= 26.815 kN-m = 23.992 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 26.82x10^6 / = 23.99x10^6 /
(0.90 x 1.20 x 0.217²) (0.90 x 1.20 x 0.217²)
= 0.5273 MPa = 0.4718 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
[(2 x 0.5273) / (0.85 x [(2 x 0.4718) / (0.85 x
20.70)]} 20.70)]}
x = L/2 - b/2
= 0.001947 = 0.001739
= 1.20/2 - 0.250/2
use ρ = 0.005091 use ρ 0.005091
= 0.475 m =
A= Wx As = ρ W d y = W/2 - As = ρ L d
= 1.20 x 0.475 h/2
= 0.570 m² = 0.005091 x 1.20 x 0.217 = 1.20/2 - 0.350/2 = 0.005091 x 1.20 x 0.217
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE COLUMN


Column: C2
Location: A3
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.25 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.35 m = 1.84%
0
Main 2, fy = 275 MPa Length, L = 3.00 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 MB1 RSBØ = 16 mm From Frame Analysis
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 MB2 RSBØ = 16 mm Pu kN 75.700 14.45
Shear, ф = 0.85 Qty = 4 pcs Mux kN-m 17.800 3.21
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 18.200 6.26

Mz(kN-m)
My(kN-m) Fx(kN)
2 2 100 75.7
2 0 11.5
20 13.8 0 12.1 0 84.1 100
16 10 10
1
0
20 06 00 30
0 3 06 20 3 06 26 -7.92 1 2 -7.92 0 6
6 1 2 3 0 30 3
1 -7.57 50
10 0 10
10 20 - 2 10 10
2 -18.2 20 0 0 0
17.8
0
II. DETAILED CALCULATION
A. Compression B. Tension
Controlled Contolled
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 1562.88 kN Layer 1: 3 d1' = 0.058 d1 = 0.067 Layer 3 d1' = 0.058 d1 0.117
1: =
Pu = Φ Pn Layer 2: 0 d2' = 0.000 d2 = 0.000 Layer 0 d2' = 0.000 d2 0.000
2: =
= 1094.02 kN Layer 3: 0 d3' = 0.000 d3 = 0.000 Layer 0 d3' = 0.000 d3 0.000
3: =
Stirrups Summary: d' = 0.058 c= 0.087 fs' = 200.0 d' = 0.058 c= 0.132 fs' = 336.3
: 0 6
16Db 256 mm 1 at 50 d= 0.192 a= 0.074 fs = 724.1 d = 0.292 a= 0.112 fs = 727.2
= 4 7
48db 480 mm 8 at 100 Cs 1 = 120.6 Ts 1 165.8 Cc = 455.7 Cs 1 = 165.88 Ts 1 165.88 Cc 492.6
= 4 = 8 1 = = 6
least = 250 mm rest at 250 Cs 2 = 0.00 Ts 2 0.00 Mnx = 63.40 Cs 2 = 0.00 Ts 2 0.00 Mny = 126.5
= = 1
Smax = 250 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 57.06 Cs 3 = 0.00 Ts 3 0.00 Muy = 113.8
= = 6

Column: C-1
Location: Ground Floor Column @ Grid A2
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.25 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.35 m = 2.76%
0
Main 2, fy = 275 MPa Length, L = 3.20 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 Main 1, RSBØ 16 mm From Frame Analysis
=
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 Main 2, RSBØ 16 mm Pu kN 265.000 4.57
=
Shear, ф = 0.85 Qty = 8 pcs Mux kN-m 34.300 1.66
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 29.900 3.81

Mz(kN-m)
My(kN-m) Fx(kN)
4 34.3 300 265 300
29.9 30 0 24 276
30 40
200
20 17.4 20 2 2 200
0 0 100
10 10 100
10 0 2 20
06 2 06 106 1 2 33.2 0 06 1006 1 2 0 6
1 2 0
10 2 2 100 -31 3-3.12 100
33.2 10 0 -20.3 0
20 -28.8 200 200
20 4 4
30 - -21.3 0 0 300

II. DETAILED CALCULATION


Project
A. Compression B. Tension
Name:
Controlled Contolled
Location:
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 1728.49 kN Layer 1: 3 d1' = 0.058 d1 = 0.067 Layer 3 d1' = 0.058 d1 0.117
1: =
Pu = Φ Pn Layer 2: 0 d2' = 0.000 d2 = 0.000 Layer 0 d2' = 0.000 d2 0.000
2: =
= 1209.94 kN Layer 3: 0 d3' = 0.000 d3 = 0.000 Layer 0 d3' = 0.000 d3 0.000
3: =
Stirrups Summary: d' = 0.058 c= 0.087 fs' = 200.0 d' = 0.058 c= 0.132 fs' = 336.3
: 0 6
16Db 256 mm 1 at 50 d= 0.192 a= 0.074 fs = 724.1 d = 0.292 a= 0.112 fs = 727.2
= 4 7
48db 480 mm 8 at 100 Cs 1 = 120.6 Ts 1 165.8 Cc = 455.7 Cs 1 = 165.88 Ts 1 165.88 Cc 492.6
= 4 = 8 1 = = 6
least = 250 mm rest at 250 Cs 2 = 0.00 Ts 2 0.00 Mnx = 63.40 Cs 2 = 0.00 Ts 2 0.00 Mny = 126.5
= = 1
Smax = 250 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 57.06 Cs 3 = 0.00 Ts 3 0.00 Muy = 113.8
= = 6
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE COLUMN


Column: C1
Location: B3
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.30 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.30 m = 1.79%
0
Main 2, fy = 275 MPa Length, L = 3.00 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 MB1 RSBØ = 16 mm From Frame Analysis
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 MB2 RSBØ = 16 mm Pu kN 55.300 20.23
Shear, ф = 0.85 Qty = 4 pcs Mux kN-m 36.300 2.43
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 14.200 6.21

Mz(kN-m)
My(kN-m) Fx(kN)
2 2 80 66.2 8
40 36.3 32.1 14.2 0 55.3 0
0 13.1
40
10 10 4 4
20 0 0
20 08 0 3
0 3 07 20 07 208 -1.65 1 2 0 07
8 1 2 3 0 -
30 40 1.653
20 1 2 3
10 -15 10
2 2 8 8
40 - -33.4 40
0 0 0 0
35.5
II. DETAILED CALCULATION
A. Compression B. Tension
Controlled Contolled
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 1598.07 kN Layer 1: 3 d1' = 0.058 d1 = 0.09 Layer 3 d1' = 0.058 d1 0.092
2 1: =
Pu = Φ Pn Layer 2: 0 d2' = 0.000 d2 = 0.00 Layer 0 d2' = 0.000 d2 0.000
0 2: =
= 1118.65 kN Layer 3: 0 d3' = 0.000 d3 = 0.00 Layer 0 d3' = 0.000 d3 0.000
0 3: =
Stirrups Summary: d' = 0.058 c= 0.109 fs' = 280.7 d' = 0.058 c= 0.109 fs' = 280.7
: 3 3
16Db 256 mm 1 at 50 d= 0.242 a= 0.093 fs = 732.1 d = 0.242 a= 0.093 fs = 732.1
= 1 1
48db 480 mm 8 at 100 Cs 1 = 165.8 Ts 1 165.8 Cc = 490.9 Cs 1 = 165.88 Ts 1 165.88 Cc 490.9
= 8 = 8 0 = = 0
least = 300 mm rest at 256 Cs 2 = 0.00 Ts 2 0.00 Mnx = 98.02 Cs 2 = 0.00 Ts 2 0.00 Mny = 98.02
= =
Smax = 256 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 88.22 Cs 3 = 0.00 Ts 3 0.00 Muy = 88.22
= =

Column: C-1
Location: Ground Floor Column @ Grid A2
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.35 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.35 m = 1.97%
0
Main 2, fy = 275 MPa Length, L = 3.20 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 Main 1, RSBØ 16 mm From Frame Analysis
=
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 Main 2, RSBØ 16 mm Pu kN 354.000 4.39
=
Shear, ф = 0.85 Qty = 8 pcs Mux kN-m 41.200 4.09
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 68.200 2.47

Mz(kN-m)
My(kN-m) Fx(kN)
60 60 400 354
80 68.2 8 400
40 38.2 34.4 40 370
47.7 0 20 20
4 4 20 20 0 0
0 0
10 07 20 00 20
0 2 08 10 08 17 -9.7 0 8
7 1 2 33.2 0 20 1 2
33.2 20
1 2 3-
20 93.. 20
40 40 -27.9 40 0 0
-49 -41.2
60 60 40 40
80 - 8 0 0
61.7 0
II. DETAILED CALCULATION
Project
A. Compression B. Tension
Name:
Controlled Contolled
Location:
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 2221.15 kN Layer 1: 3 d1' = 0.058 d1 = 0.11 Layer 3 d1' = 0.058 d1 0.117
7 1: =
Pu = Φ Pn Layer 2: 2 d2' = 0.058 d2 = 0.11 Layer 2 d2' = 0.058 d2 0.117
7 2: =
= 1554.81 kN Layer 3: 0 d3' = 0.000 d3 = 0.00 Layer 0 d3' = 0.000 d3 0.000
0 3: =
Stirrups Summary: d' = 0.058 c= 0.132 fs' = 336.3 d' = 0.058 c= 0.132 fs' = 336.3
: 6 6
16Db 256 mm 1 at 50 d= 0.292 a= 0.112 fs = 727.2 d = 0.292 a= 0.112 fs = 727.2
= 7 7
48db 480 mm 8 at 100 Cs 1 = 165.8 Ts 1 165.8 Cc = 689.7 Cs 1 = 165.88 Ts 1 165.88 Cc 689.7
= 8 = 8 2 = = 2
least = 350 mm rest at 256 Cs 2 = 110.5 Ts 2 110.5 Mnx = 187.4 Cs 2 = 110.58 Ts 2 110.58 Mny = 187.4
8 = 8 6 = 6
Smax = 256 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 168.7 Cs 3 = 0.00 Ts 3 0.00 Muy = 168.7
= 1 = 1
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: 2FB-1
Location: 3-AB
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa

Shear, fy = 230.00 Mz(kN-m) Mz(kN-m)


Reduction
MPa
Factor:
60 54.1 60 10 93.4
Flexure, ф = 0.90 β = 0.85 0 100
Torsion, ф = 0.85 steel cover = 0.040 40 40
5
m 20 8.07 20 0
50
Shear, ф = 0.85 max. agg. size = 0.025 m 25
06 20 20
Type of 007
Continuous 2 20 0. 07 20.219 1 2 2.63 0 8
Beam - 0.975 20
Beam: 0 5 5 -29
11.8
Dimensions: 40 0 -4 -50.3 50
Width, b = 0.250 m Length, L = 2.85 m 40 9.8
-54.4 60 10 10
Height, h = 0.400 m h min. = 0.333 0 0
m Reinf. Steel Bar Diameter:
Flexure = 16
mm Fy(kN) Fy(kN)
Shear = 10 150 10 10
mm 150 115 106 0 0
100 100
Effective Depth (m): 46.9 5
50 50 20.6 0
d1' = 0.058 m d1 = 0.342 50
m
2006 20 7 00 208
d2' = 0.099 m d2 = 0.301 0. 0.97 0 7 1 2 2.63 0
m 50 - -20.6
5 5 2 5 5
d3' = 0.140 m d3 = 0.260 20.4 -20.4 50
0 0
m 100
100
Result Stresses (from Frame Analysis): 10 -99.8 100
0
Stresses Left Midspan Right
- Mu 54.10 25.00 93.40
+ Mu 11.80 54.40
29.00
Vu 115.00 0.00 99.80

III. DETAILED CALCULATION


A. Design for Flexure
If pmin < pact < pmax, Singly Reinforced Beams (SRB) LEFT SUPPORT
If pact > pmax, Doubly Reinforced Beams (DRB) TOP BARS: BOTTOM BARS:
• Calculate ρ bal 0.85fc'β600 / fy(600+fy) = 0.037292 5 Layer 1 3 Layer
= 1
• Calculate ρ min 1.4 / fy = 0.005091 2 Layer 2 0 Layer
= 2
• Calculate ρ max = 0.75 p bal = 0.027969 0 Layer 3 0 Layer
Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right FACTOR OF SAFETY:
Support FS = 1.84 FS = 4.09
Area of Steel 1 As1 1005.310 603.186 1005.310
MIDSPAN
Area of Steel 2 As2 402.124 0.000 402.124
TOP BARS: BOTTOM BARS:
Area of Steel 3 As3 0.000 0.000 0.000
3 Layer 1 5 Layer
Steel Ratio ρ 0.017102 0.007055 0.017102 1
act 0 Layer 2 2 Layer
Reinf. Beam Type Singly R.B. Singly R.B. Singly R.B. 2
Stress Block a 87.990 37.710 87.990 0 Layer 3 0 Layer
Depth
Extreme Comp. Fiber to Neutral Axis c 103.518 44.365 103.518
FACTOR OF SAFETY:
Nominal Moment Mn 110.807 53.602 110.807
FS = 1.93 FS = 1.83
Design Moment Mu 99.730 48.250 99.730
RIGHT SUPPORT
Bottom Bar Reinforcements
TOP BARS: BOTTOM BARS:
Positive Moment (+Mu) Left Support Midspan Right
5 Layer 1 3 Layer
Support
1
Area of Steel 1 As1 603.186 1005.310 603.186
2 Layer 2 0 Layer
Area of Steel 2 As2 0.000 402.124 0.000 2
Area of Steel 3 As3 0.000 0.000 0.000 0 Layer 3 0 Layer
Steel Ratio ρ 0.007055 0.017102 0.007055
act FACTOR OF SAFETY:
Reinf. Beam Type Singly R.B. Singly R.B. Singly R.B. FS = 1.07 FS = 1.66
Stress Block a 37.710 87.990 37.710

B. Design for
Stirrups
• Calculate S = Av Fy d / Vs -153 mm
• Applied Force Vu max = 115.00 kN =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -80.82 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 115.00 > .'.
91.85 Required • Calculate Smax d/2 171 mm
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: 2FB-2
Location: 3-BC
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa

Shear, fy = 230.00 Mz(kN-m)


Reduction
MPa
Factor:
8 66.6 8
Flexure, ф = 0.90 β = 0.85 0 51.3 0
Torsion, ф = 0.85 steel cover = 0.040
4 4
m 0 0
Shear, ф = 0.85 max. agg. size = 0.025 m 1.3
0 9 2
Type of Continuous 208 1 2 3 3.33 0 09
Beam: Beam
4 -22.7 -27.9 -22.9 40
Dimensions: 0
Width, b = 0.250 m Length, L = 4.00 m
8 8
Height, h = 0.400 m h min. = 0.333 0 0
m Reinf. Steel Bar Diameter:
Flexure = 16
mm Fy(kN)
Shear = 10 10
100
mm 0
Effective Depth (m): 5 5
d1' = 0.058 m d1 = 0.342 0 13.7 0
m
200 2 09
d2' = 0.099 m d2 = 0.301 8 -13.7 1 2 3 3.33 0
m
50 50
d3' = 0.140 m d3 = 0.260 -55.7
m
Result Stresses (from Frame Analysis): 100
Stresses Left Midspan Right
- Mu 66.00 0.00 51.30
+ Mu 22.70 27.90 22.90
Vu 73.40 0.00 59.90

III. DETAILED CALCULATION


A. Design for Flexure
If pmin < pact < pmax, Singly Reinforced Beams (SRB) LEFT
SUPPORT If pact > pmax, Doubly Reinforced Beams (DRB) TOP BARS: BOTTOM BARS:
• Calculate ρ bal = 0.85fc'β600 / fy(600+fy) 0.037292 4 Layer 1 3 Layer 1
= 0.005091 2 Layer 2 0 Layer 2
• Calculate ρ min = 1.4 / fy 0.027969 0 Layer 3 0 Layer 3
=
6 Total 3 Total
• Calculate ρ
max = 0.75 p bal
= Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right Support
Area of Steel 1 FACTOR OF SAFETY:
804.248 804.248
FS = 1.31 FS = 2.13
As1
603.186
Area of Steel 2 As2 402.124 0.000
Area of Steel 3 As3 402.124
MIDSPAN
Steel Ratio ρ 0.000 0.000 0.000
TOP BARS: BOTTOM BARS:
act 0.014750 0.007055
3 Layer 1 4 Layer 1
Reinf. Beam Type 0.014750
0 Layer 2 2 Layer 2
Stress Block Depth a Singly R.B. - Singly
R.B. 0 Layer 3 0 Layer 3
Extreme Comp. Fiber to Neutral Axis c
75.420 37.710 75.420 3 Total 6 Total
Nominal Moment
88.729 44.365 88.729
96.415 53.602 96.415
Mn
86.780 48.250 86.780
Design Moment Mu
Bottom Bar Reinforcements
FACTOR OF SAFETY:
Positive Moment (+Mu) Left Support Midspan Right Support
FS = - FS = 3.11
Area of Steel 1 As1 Nominal Moment Mn
603.186 804.248 603.186
Area of Steel 2 As2 Design Moment Mu TOP BARS: BOTTOM BARS:
0.000 402.124 0.000
Area of Steel 3 As3 4 Layer 1 3 Layer 1
0.000 0.000 0.000
Steel Ratio ρ 2 Layer 2 0 Layer 2
0.007055 0.014750 0.007055
act 0 Layer 3 0 Layer 3
Singly R.B. Singly R.B. Singly R.B.
Reinf. Beam Type 6 Total 3 Total
37.710 75.420 37.710
Stress Block Depth a
44.365 88.729 44.365
Extreme Comp. Fiber to Neutral Axis c
FACTOR OF SAFETY:
FS = 1.69 FS = 2.11
Project
53.610 96.420 48.250 86.780 48.250
Name: RIGHT SUPPORT
53.610
Location:

B. Design for • Calculate S = Av Fy d / Vs -96 mm


Stirrups =
• Applied Force Vu max = 73.40 kN • Check Vs < 1/3 √fc'bd -129.76 < .'. Smax =
= 129.67 d/2
• Calculate Vc = 1/6 √fc'bd = 216.11 kN
• Calculate Smax d/2 171 mm
• Check Vu < 1/2 ΦVc = 73.40 < .'. Not = =
91.85 Required
• Summar
• Calculate Vn = Vu/ф = 86.35 kN y
• Calculate Vs = Vn - Vc = -129.76 kN
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: 2FB-3
Location: 1-BC
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa

Shear, fy = 230.00 Mz(kN-m)


Reduction
MPa
Factor:
8 8
Flexure, ф = 0.90 β = 0.85 61.5 0
0
Torsion, ф = 0.85 steel cover = 0.040 54.9
4
m 0 4
Shear, ф = 0.85 max. agg. size = 0.025 m 1.
0 6 2
Type of Continuous 202 1 2 3 3.85 0 03
Beam: Beam
4 -21.7 -25.5 -22.4
Dimensions: 0 40
Width, b = 0.250 m Length, L = 4.00 m
8 8
Height, h = 0.400 m h min. = 0.333 0 0
m Reinf. Steel Bar Diameter:
Flexure = 16
mm Fy(kN)
Shear = 10
mm
Effective Depth (m):
d1' = 0.058 m d1 = 0.342
m
2
d2' = 0.099 m d2 = 0.301 0
m
d3' = 0.140 m d3 = 0.260
m
Result Stresses (from Frame Analysis):
Stresses Left Midspan Right
- Mu 61.50 0.00 54.90
+ Mu 21.70 25.50 22.40
Vu 73.40 0.00 59.90
8 73.4 8
0 0
4 4
0 11.4 0
Project 03 0 2
Name: 2 1 2 3 3.8 0
-11.4
Location: 40 5
III. DETAILED CALCULATION
A. Design for Flexure
8
If pmin < pact < pmax, Singly Reinforced Beams (SRB) LEFT -59.9
0
SUPPORT If pact > pmax, Doubly Reinforced Beams (DRB) TOP BARS: 80
BOTTOM BARS:
• Calculate ρ bal = 0.85fc'β600 / fy(600+fy) 0.037292 3 Layer 1 3 Layer 1
= 0.005091 2 Layer 2 0 Layer 2
• Calculate ρ min = 1.4 / fy 0.027969 0 Layer 3 0 Layer 3
=
5 Total 3 Total
• Calculate ρ
max = 0.75 p bal
= Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right Support
Area of Steel 1 FACTOR OF SAFETY:
603.186 603.186
FS = 1.19 FS = 2.22
As1
603.186
Area of Steel 2 As2 402.124 0.000
Area of Steel 3 As3 402.124
MIDSPAN
Steel Ratio ρ 0.000 0.000 0.000
TOP BARS: BOTTOM BARS:
act 0.012399 0.007055
3 Layer 1 3 Layer 1
Reinf. Beam Type 0.012399
0 Layer 2 2 Layer 2
Stress Block Depth a Singly R.B. - Singly
R.B. 0 Layer 3 0 Layer 3
Extreme Comp. Fiber to Neutral Axis c
62.850 37.710 62.850 3 Total 5 Total
Nominal Moment
73.941 44.365 73.941
81.328 53.602 81.328
Mn
73.200 48.250 73.200
Design Moment Mu
Bottom Bar Reinforcements
FACTOR OF SAFETY:
Positive Moment (+Mu) Left Support Midspan Right Support
FS = - FS = 2.87
Area of Steel 1 As1
603.186 603.186 RIGHT SUPPORT
Area of Steel 2 As2 603.186 TOP BARS: BOTTOM BARS:
Area of Steel 3 As3 0.000 402.124 0.000 3 Layer 1 3 Layer 1
Steel Ratio ρ 0.000 0.000 0.000 2 Layer 2 0 Layer 2
act 0.007055 0.012399 0 Layer 3 0 Layer 3
Reinf. Beam Type 0.007055 5 Total 3 Total
Stress Block Depth a Singly R.B. Singly R.B. Singly
Extreme Comp. Fiber to Neutral Axis c R.B. 37.710 62.850 37.710
FACTOR OF SAFETY:
Nominal Moment 44.365 73.941 44.365 FS = 1.33 FS = 2.15
53.610 81.330 53.610
Mn 48.250 73.200 48.250
Design Moment Mu

B. Design for • Calculate S = Av Fy d / Vs -96 mm


Stirrups =
• Applied Force Vu max = 73.40 kN • Check Vs < 1/3 √fc'bd -129.76 < .'. Smax =
= 129.67 d/2
• Calculate Vc = 1/6 √fc'bd = 216.11 kN
• Calculate Smax d/2 171 mm
• Check Vu < 1/2 ΦVc = 73.40 < .'. Not = =
91.85 Required
• Summar
• Calculate Vn = Vu/ф = 86.35 kN y
• Calculate Vs = Vn - Vc = -129.76 kN
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: 2FB-4
Location: C-13
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa

Shear, fy = 230.00 Mz(kN-m)


Reduction
MPa
Factor:
6 51.5 60
Flexure, ф = 0.90 β = 0.85 0 38.1
Torsion, ф = 0.85 steel cover = 0.040 40
4
m 20
0
Shear, ф = 0.85 max. agg. size = 0.025 m
2 20
Type of Continuous 20 0 1 2 09
Beam: Beam -20.6 3.17
-19.4
03 3
20 4
Dimensions:
Width, b = 0.250 m Length, L = 4.00 m
2 0
Height, h = 0.400 m h min. = 0.333 0 6
m Reinf. Steel Bar Diameter:
Flexure = 16
mm Fy(kN)
Shear = 10 8 8
mm 0 54 0
Effective Depth (m): 4 4
d1' = 0.058 m d1 = 0.342 0 12.6 0
m
2 0 2 09
d2' = 0.099 m d2 = 0.301 0 3 1 2 3
3.1 0
m -12.6
40 7
d3' = 0.140 m d3 = 0.260
m
Result Stresses (from Frame Analysis): 8 -61.5
0
Stresses Left Midspan Right 80
- Mu 38.40 0.00 51.50
+ Mu 20.60 20.60 19.40
Vu 54.00 0.00 61.50

III. DETAILED CALCULATION


A. Design for Flexure
If pmin < pact < pmax, Singly Reinforced Beams (SRB) LEFT SUPPORT
If pact > pmax, Doubly Reinforced Beams (DRB) TOP BARS: BOTTOM BARS:
• Calculate ρ bal 0.85fc'β600 / fy(600+fy) = 0.037292 4 Layer 1 3 Layer 1
= 0 Layer 2 0 Layer 2
• Calculate ρ min 1.4 / fy = 0.005091
= 0 Layer 3 0 Layer 3
• Calculate ρ max = 0.75 p bal = 0.027969 4 Total 3 Total
Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right Support FACTOR OF SAFETY:
Area of Steel 1 As1 804.248 603.186 804.248 FS = 1.64 FS = 2.34
Area of Steel 2 As2 0.000 0.000 0.000 MIDSPAN
Area of Steel 3 As3 0.000 0.000 0.000 TOP BARS: BOTTOM BARS:
Steel Ratio ρ 0.009406 0.007055 0.009406 3 Layer 1 4 Layer 1
act 0 Layer 2 0 Layer 2
Reinf. Beam Type Singly R.B. - Singly R.B.
0 Layer 3 0 Layer 3
Stress Block a 50.28 37.710 50.280
3 Total 4 Total
Depth 0
Extreme Comp. Fiber to Neutral Axis c 59.15 44.365 59.153
3 FACTOR OF SAFETY:
Nominal Moment Mn 70.07 53.602 70.079
FS = - FS = 3.06
9
Design Moment Mu 63.08 48.250 63.080 RIGHT SUPPORT
0 TOP BARS: BOTTOM BARS:
Bottom Bar Reinforcements
4 Layer 1 3 Layer 1
Positive Moment (+Mu) Left Support Midspan Right Support
0 Layer 2 0 Layer 2
Area of Steel 1 As1 603.186 804.248 603.186
0 Layer 3 1 Layer 3
Area of Steel 2 As2 0.000 0.000 0.000
4 Total 4 Total
Area of Steel 3 As3 0.000 0.000 201.062
Steel Ratio ρ 0.007055 0.009406 0.010148
FACTOR OF SAFETY:
act
Reinf. Beam Type Singly R.B. Singly R.B. Singly R.B. FS = 1.22 FS = 3.04

B. Design for
Stirrups
• Calculate S = Av Fy d / -86 mm
• Applied Force Vu max = 61.50 kN Vs =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -143.76 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 61.50 < .'. Not
91.85 Required • Calculate Smax d/2 171 mm
= =
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: 2FB-5
Location: A'-34
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa

Shear, fy = 230.00 Mz(kN-m)


Reduction
MPa
Factor:
4 32.2
Flexure, ф = 0.90 β = 0.85 0 30.3
40
Torsion, ф = 0.85 steel cover = 0.040
2
m 0
Shear, ф = 0.85 max. agg. size = 0.025 m 1.7
0 8 2
Type of Continuous 207 -6.03 1 2 3 - 0 11
Beam: Beam 5 2
2 -17.8 6.45
3.
Dimensions: 0 0
Width, b = 0.250 m Length, L = 4.00 m 5
4 4
Height, h = 0.400 m h min. = 0.333 0 0
m Reinf. Steel Bar Diameter:
Flexure = 16
mm Fy(kN)
Shear = 10 6 6
47.1
mm 0 0
Effective Depth (m):
4 4
d1' = 0.058 m d1 = 0.342 2 20
m 0 3.58
2 2 11
d2' = 0.099 m d2 = 0.301 0 07 -3.44 1 2 3 0
m 3.55
2
d3' = 0.140 m d3 = 0.260 20
m 0
40
Result Stresses (from Frame Analysis): 4
Stresse Left Midspan Right -46.1
s
- Mu
III. DETAILED 30.30
CALCULATION 0.00 32.20
+ Mu
A. Design for Flexure 6.03 17.80 6.45
LEFT SUPPORT
If pmin Vu
< pact < pmax,47.10 0.00 (SRB)
Singly Reinforced Beams 46.10
TOP BARS: BOTTOM BARS:
If pact > pmax, Doubly Reinforced Beams (DRB)
4 Layer 1 3 Layer 1
• Calculate ρ bal 0.85fc'β600 / fy(600+fy) = 0.037292
= 0 Layer 2 0 Layer 2
• Calculate ρ min 1.4 / fy = 0.005091 0 Layer 3 0 Layer 3
= 4 Total 3 Total
• Calculate ρ max = 0.75 p bal = 0.027969
Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right Support FACTOR OF SAFETY:
Area of Steel 1 As1 804.248 603.186 804.248 FS = 2.08 FS = 8.00
Area of Steel 2 As2 0.000 0.000 0.000 MIDSPAN
Area of Steel 3 As3 0.000 0.000 0.000 TOP BARS: BOTTOM BARS:
Steel Ratio ρ 0.009406 0.007055 0.009406 3 Layer 1 4 Layer 1
act 0 Layer 2 0 Layer 2
Reinf. Beam Type Singly R.B. - Singly R.B.
0 Layer 3 0 Layer 3
Stress Block a 50.28 37.710 50.280
3 Total 4 Total
Depth 0
Extreme Comp. Fiber to Neutral Axis c 59.15 44.365 59.153
3 FACTOR OF SAFETY:
Nominal Moment Mn 70.07 53.602 70.079
FS = - FS = 3.54
9
Design Moment Mu 63.08 48.250 63.080 RIGHT SUPPORT
0 TOP BARS: BOTTOM BARS:
Bottom Bar Reinforcements
4 Layer 1 3 Layer 1
Positive Moment (+Mu) Left Support Midspan Right Support
0 Layer 2 0 Layer 2
Area of Steel 1 As1 603.186 804.248 603.186
0 Layer 3 0 Layer 3
Area of Steel 2 As2 0.000 0.000 0.000
4 Total 3 Total
Area of Steel 3 As3 0.000 0.000 0.000
Steel Ratio ρ 0.007055 0.009406 0.007055
FACTOR OF SAFETY:
act
Reinf. Beam Type Singly R.B. Singly R.B. Singly R.B. FS = 1.96 FS = 7.48

B. Design for
Stirrups
• Calculate S = Av Fy d / -77 mm
• Applied Force Vu max = 47.10 kN Vs =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -160.70 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 47.10 < .'. Not
91.85 Required • Calculate Smax d/2 171 mm
= =
• Calculate Vn = Vu/ф = 55.41 kN
• Summar
• Calculate Vs = Vn - Vc = -160.70 kN y
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE BEAM


Beam: RB-1
Location: A-34
I. BEAM PROPERTIES
Material Properties: Shear and Moment Diagram:
Concrete, fc' = 20.70 MPa Flexure, fy = 275.00 MPa
Mz(kN-m)
Shear, fy = 230.00 MPa
Reduction Factor:
3 30
0 22.1 20.8
Flexure, ф = 0.90 β = 0.85 20
Torsion, ф = 0.85 steel cover = 0.040 2
0 10
m
30 2.06
Shear, ф = 0.85 max. agg. size = 0.025 1 3011
m 1 2 3 3.54
0 -6.9
Type of Continuous Beam -9.12 -7.46
Beam: 08 2
Dimensions: 1 0
Width, b = 0.200 m Length, L = 4.00 m
0 3
Height, h = 0.300 m h min. = 0.333
m Reinf. Steel Bar Diameter:
Flexure = 16 Fy(kN)
mm 29.5
3 30
Shear = 10 0
mm 20
2
Effective Depth (m): 4.06 10
0
d1' = 0.058 m d1 = 0.242
m 3 1 3011
d2' = 0.099 m d2 = 0.201
0 0 -4.06 1 2 3.54 10
3
m
d3' = 0.140 m d3 = 0.160
08 20
m 1 -28.3 30
Result Stresses (from Frame Analysis): 0
Stresses Left Midspan Right
- Mu 22.10 0.00 20.80
+ Mu 6.90 9.12 7.46
Vu 29.50 0.00 28.30

III. DETAILED CALCULATION


A. Design for Flexure
If pmin < pact < pmax, Singly Reinforced Beams (SRB) LEFT
SUPPORT If pact > pmax, Doubly Reinforced Beams (DRB) TOP BARS: BOTTOM BARS:
• Calculate ρ bal = 0.85fc'β600 / fy(600+fy) 0.037292 2 Layer 1 2 Layer 1
= 0.005091 2 Layer 2 0 Layer 2
• Calculate ρ min = 1.4 / fy 0.027969 0 Layer 3 0 Layer 3
=
4 Total 2 Total
• Calculate ρ
max = 0.75 p bal
= Top Bar Reinforcements
Negative Moment (-Mu) Left Support Midspan Right Support
Area of Steel 1 FACTOR OF SAFETY:
402.124 402.124
FS = 1.71 FS = 3.27
As1
402.124
Area of Steel 2 As2 402.124 0.000
Area of Steel 3 As3 402.124
MIDSPAN
Steel Ratio ρ 0.000 0.000 0.000
TOP BARS: BOTTOM BARS:
act 0.018311 0.008308
2 Layer 1 2 Layer 1
Reinf. Beam Type 0.018311
0 Layer 2 2 Layer 2
Stress Block Depth a Singly R.B. - Singly
R.B. 0 Layer 3 0 Layer 3
Extreme Comp. Fiber to Neutral Axis c
62.850 31.425 62.850 2 Total 4 Total
Nominal Moment
73.941 36.971 73.941
42.039 25.024 42.039
Mn
37.840 22.530 37.840
Design Moment Mu
Bottom Bar Reinforcements
FACTOR OF SAFETY:
Positive Moment (+Mu) Left Support Midspan Right Support
FS = - FS = 4.15
Area of Steel 1 As1 Nominal Moment Mn
402.124 402.124 402.124
Area of Steel 2 As2 Design Moment Mu TOP BARS: BOTTOM BARS:
0.000 402.124 0.000
Area of Steel 3 As3 2 Layer 1 2 Layer 1
0.000 0.000 0.000
Steel Ratio ρ 2 Layer 2 0 Layer 2
0.008308 0.018311 0.008308
act 0 Layer 3 0 Layer 3
Singly R.B. Singly R.B. Singly R.B.
Reinf. Beam Type 4 Total 2 Total
31.425 62.850 31.425
Stress Block Depth a
36.971 73.941 36.971
Extreme Comp. Fiber to Neutral Axis c FACTOR OF SAFETY:
25.030 42.040 25.030
FS = 1.82 FS = 3.02
Project
22.530 37.840 22.530
Name: RIGHT SUPPORT
Location:
B. Design for • Calculate S = Av Fy d / Vs -100 mm
Stirrups =
• Applied Force Vu max = 29.50 kN • Check Vs < 1/3 √fc'bd -87.63 < .'. Smax =
= 73.40 d/2
• Calculate Vc = 1/6 √fc'bd = 122.34 kN
• Calculate Smax = d / 2 121 mm
• Check Vu < 1/2 ΦVc = 29.50 < .'. Not =
51.99 Required
• Summar
• Calculate Vn = Vu/ф = 34.71 kN y
• Calculate Vs = Vn - Vc = -87.63 kN
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:

DESIGN ANALYSIS OF STEEL


DESIGN ANALYSIS OF PURLIN
I. MATERIAL PROPERTIES
Section: LC 100 x 50 x 15 x 2.0mm thk. Cee Purlins
Weight, Wt 3.51 kg/m Bay Length = 4.00 m
=
Section Modulus, Sx 16.20 x 10³ Spacing = 0.70 m
= mm³
Sy 5.20 x 10³ Roof Slope = 5.47 degree
= mm³
Flexural Stress, Fy 248.00 MPa Roof Dead Load = 0.10 kPa
=
Allowable Fbx = 0.66 Fy 163.68 MPa Roof Live Load = 1.00 kPa
Stresses: =
Fby = 0.75 Fy 186.00 MPa Wind Pressure = 1.60 kPa
=
II. DESIGN LOAD COMBINATIONS
A. Weight of Purlin
DL 3.51 x = 34.43 N/m Wpn = 34.43 cos 5.47° = 34.27 N/m
= 9.81
Wpt = 34.43 sin 5.47° = 3.28 N/m
B. Roof Loads
DL 0.70 x = 70.00 N/m Wrn = DL + LLR + = 1,330.00 N/m
= 0.10 0.5WL
LLR 0.70 x = 700.00 N/m = 1,330.00 cos = 1,323.94 N/m
= 1.00 5.47°
WL 0.70 x = 1,120.00 N/m Wrt = DL + LLR = 770.00 N/m
= 1.60
= 770.00 sin 5.47° = 73.40 N/m
III. DESIGN MOMENT
Mpx Wpn L² / 8 = 68.54 N-m Mrx = Wrn L² / 8 = 2,647.88 N-m
=
Mpy Wpt L² / 32 = 1.64 N-m Mry = Wrt L² / 32 = 36.70 N-m
=
IV. RESULT STRESSES
fbpx Mpx / Sx = 4.23 MPa fbrx = Mrx / Sx = 163.45 MPa
=
fbpy Mpy / Sy = 0.32 MPa fbry = Mry / = 14.12 MPa
= 0.5Sy
V. INTERACTION CRITERION
Note: 1/3 increase in allowable stresses is allowed.
fbpx + fbrx fbpy + fbry
+ ≤ 1.00
Fbx + 1/3 Fbx Fby + 1/3
Fby
4.23 + 163.45 0.32 +
+ 14.12 ≤ 1.00
163.68 + 54.56 186.00 +
62.00
0.83 < 1.00 .'. Adequate

DESIGN ANALYSIS OF TRUSS/RAFTER


I. MATERIAL PROPERTIES
Section: 2 L - LC 150 x 65 x 20 x 2.0mm thk. Cee Purlins
Weight, Wt = 4.76 kg/m Length = 3.60 m
Section Modulus, Sx = 28.60 x 10³ mm³ Tributary Width = 2.00 m
Sy = 8.10 x 10³ mm³ Roof Slope = 6.55 degree
Flexural Stress, Fy = 248.00 MPa Roof Dead Load = 0.10 kPa
Allowable Stresses: Fbx = 0.66 Fy = 163.68 MPa Roof Live Load = 1.00 kPa
Fby = 0.75 Fy = 186.00 MPa Wind Pressure = 1.60 kPa
II. DESIGN LOAD COMBINATIONS
A. Weight of Purlin
Wt = 34.43 x 2.00 x = 482.02 N Wpn = 482.02 cos 6.55° = 478.87 N/m
7
DLp = 482.02 / 3.60 = 133.89 N/m
B. Weight of Rafter/Truss
DLr/t = 4.76 x 9.81 x 2 = 93.39 N/m Wpn = 93.39 cos 6.55° = 92.78 N/m
C. Roof Loads
DL = 0.10 x 2.00 = 200.00 N/m Wrn = DL + LLR + 0.5WL = 3,800.00 N/m
LLR = 1.00 x 2.00 = 2,000.00 N/m = 3,800.00 cos 6.55° = 3,775.20 N/m
WL = 1.60 x 2.00 = 3,200.00 N/m
III. DESIGN MOMENT allowe =
Mpx = Wpn L² / 8 = d.
926.07 N-m
IV. RESULT STRESSES MPa fbrx
Mrx = = Mpx / 2Sx =
fbpx = Mpx / 2Sx = 16.19 Wrn L² /
V. INTERACTION CRITERION
Note: 1/3 increase in allowable stresses is 8
Project
Name:
6,115.82 106.
Location: 92 N-m MPa

fbx + frx
Fbx + 1/3 ≤ 1.00

Fbx
16.19 +
106.92 ≤ 1.00
163.68 +
54.56

0.56 < 1.00 .'. Adequate


Project PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name: SINDANGAN, ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Location: Engineer:

DESIGN ANALYSIS OF REINFORCED CONCRETE SLAB


TWO-WAY SLAB DESIGN
Slab: S-1
Location: AB-23
Slab Slab Properties: Span 0.75 ≈ 0.75
Type: Ratio:
Short Span = 3.00 m Ca dl 0.036 Ca ll = 0.04 Ca = 0.061
+ Mu = + Mu 9 - Mu
3 One Long Edge Long Span = 4.00 m Cb dl 0.013 Cb ll = 0.01 Cb = 0.036
Discontiuous = 6
Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
DSBØ = 10 mm d eff. @ short 0.100 ρmin = 0.00609 Assumptio ρact As Smax
= n,
Material Unfactored Loads: d eff. @ long 0.090 ρmax = 0.03525 1/2 of 0.0030 305.0 258
Properties: = ρmin 5 0
Concrete, fc' 20.70 MPa Dead Load = 11.07 kN/m Along Short Along Long Span:
= Span:
Steel, fy = 230.0 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
0
Reduction Factor: Factored Loads: Mid 5.64 0.0027 609.0 129 Mid 2.27 0.0013 548.1 143
7 0 7 0
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 8.96 0.0044 609.0 129 Cont. 5.29 0.0032 548.1 143
6 0 2 0
steel cover, sc 0.020 m Live Load = 3.04 kN/m Discont. 1.88 0.0009 609.0 129 Discont. 0.76 0.0004 548.1 143
= 1 0 5 0

Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.88 ≈ 0.85
Type: Short Span = 3.70 m Ratio: Ca dl = 0.036 Ca ll = 0.043 Ca = 0.066
Two Adjacent Edges + + Mu - Mu
Mu
4 Long Span = 4.20 m Cb dl = 0.019 Cb ll = 0.023 Cb = 0.034
Discontinuous Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
DSBØ = 10 mm d eff. @ short = 0.100 ρmin = 0.00609 Assumption, ρact As Smax
Material Properties: Unfactored Loads: d eff. @ long = 0.090 ρmax = 0.03525 1/2 of ρmin 0.00305 258
305.00
Concrete, fc' = 20.70 MPa Dead Load = 11.07 kN/m Along Short Span: Along Long Span:
Steel, fy = 230.00 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
Reduction Factor: Factored Loads: Mid 8.33 0.00414 609.00 129 Mid 4.97 0.00302 143
548.10
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 14.75 0.00749 749.00 105 Cont. 7.60 0.00468 143
548.10
steel cover, sc = 0.020 m Live Load = 3.04 kN/m Discont. 2.78 0.00135 609.00 129 Discont. 1.66 0.00100 143
548.10

Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.79 ≈ 0.75
Type: Ratio:
Short Span = 3.00 m Ca dl 0.036 Ca ll = 0.04 Ca = 0.061
+ Mu = + Mu 9 - Mu
3 One Long Edge Long Span = 3.80 m Cb dl 0.013 Cb ll = 0.01 Cb = 0.036
Discontiuous = 6
Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
DSBØ = 10 mm d eff. @ short 0.100 ρmin = 0.00609 Assumptio ρact As Smax
= n,
Material Unfactored Loads: d eff. @ long 0.090 ρmax = 0.03525 1/2 of 0.0030 305.0 258
Properties: = ρmin 5 0
Concrete, fc' 20.70 MPa Dead Load = 11.07 kN/m Along Short Along Long Span:
= Span:
Steel, fy = 230.0 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
0
Reduction Factor: Factored Loads: Mid 5.64 0.0027 609.0 129 Mid 2.27 0.0013 548.1 143
7 0 7 0
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 8.96 0.0044 609.0 129 Cont. 5.29 0.0032 548.1 143
6 0 2 0
steel cover, sc 0.020 m Live Load = 3.04 kN/m Discont. 1.88 0.0009 609.0 129 Discont. 0.76 0.0004 548.1 143
= 1 0 5 0

Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.95 ≈ 0.95
Type: Ratio:
Short Span 3.60 m Ca dl = 0.030 Ca ll 0.035 Ca 0.05
Two Adjacent Edges + + - Mu 0
4 = Long 3.80 m Mu Cb dl = 0.024 Mu = Cb 0.029 =
Discontinuous Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
0.04
DSBØ = 10 mm d eff. @ short = 0.100 ρmin = 0.00609 Assumption, ρact As Smax
Material Properties: Unfactored Loads: d eff. @ long = 0.090 ρmax = 0.03525 1/2 of ρmin 0.00305 258
305.00
Concrete, fc' = 20.70 MPa Dead Load = 11.07 kN/m Along Short Span: Along Long Span:
Steel, fy = 230.00 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
Reduction Factor: Factored Loads: Mid 6.54 0.00323 609.00 129 Mid 5.94 0.00363 143
548.10
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 10.58 0.00529 609.00 129 Cont. 9.52 0.00591 143
548.10
steel cover, sc = 0.020 m Live Load = 3.04 kN/m Discont. 2.18 0.00106 609.00 129 Discont. 1.98 0.00119 143
548.10
ONE-WAY SLAB DESIGN
Slab: -
Location: -
Material Unfactored Loads: Slab Properties: Main Bar: Temp.
Properties: Bar:
Concrete, fc' = 0.00 MPa Dead Load = 0.00 kN/m Short Span = 0.00 m d eff. = 0.000 d eff. = 0.000
Steel, fy = 0.00 MPa Live Load = 0.00 kN/m Slab thk. = 0.000 m Mu = 0.00 Mu = 0.00
DSBØ = 0 mm ρact = 0.0000 ρact = 0.0000
0 0
Reduction Factor: Factored Loads: Steel Reinforcements: As = 0.00 Ast = 0.00
Bending, Φ = 0.00 Dead Load = 0.00 kN/m ρmin = 0.0000
Smax = 0 Smax = 0
0
steel cover, sc = 0.000 m Live Load = 0.00 kN/m ρmax = 0.0000
0
Project Owner:
Name:
Location: Civil
Engineer:
DESIGN ANALYSIS OF REINFORCED CONCRETE STAIR
REINFORCED CONCRETE SLAB
Location: Landing to Up Location: Landing to Down Stair
Stair
Slab Properties: Slab Properties:
Considering 1m Considering 1m strip,
strip,
Length = 3.80 m Rise = 0.200 m Length 2.200 m Rise = 0.200 m
0 =
Slab thk = 0.15 m Tread 0.250 m Slab thk 0.150 m Tread 0.250 m
0 = = =
Steps 16 set Steps 4 set
= =
Material Properties: Reduction Factor: Material Reduction Factor:
Properties:
Concrete, fc' = 20.7 MPa Bending, Φ 0.900 Concrete, fc' 20.70 MPa Bending, Φ 0.900
0 = = =
Main Steel, fy 75.00 MPa steel cover, sc 0.020 m Main Steel, fy 275.00 MPa steel cover, sc 0.020 m
= 2 = = =
Sec. Steel, fy =30.00 MPa Sec. Steel, fy 230.00 MPa
2 =
Unfactored Loads: Factored Loads: Unfactored Factored Loads:
Loads:
Dead Load = 7.23 kN/m Dead Load 8.68 kN/m Dead Load 5.79 kN/m Dead Load 6.95 kN/m
= = =
Live Load = 1.90 kN/m Live Load 3.04 kN/m Live Load 1.90 kN/m Live Load 3.04 kN/m
= = =
Steel Steel Reinforcements:
Reinforcements:
ρ min = 0.005091 ρ max = 0.027969 ρ min = 0.005091 ρ max 0.027969
=
Main Main
Bars, Bars,
Main RSBØ 12 mm d eff. = 0.124 m Main RSBØ 16 mm d eff. 0.122 m
= = =
Negative Moment, Positive Moment, Negative Positive Moment,
Moment,
- Mu 14.10 kN-m + Mu 21.15 kN-m - Mu 4.03 kN-m + Mu 6.04 kN-m
= = = =
ρ= 0.003819 ρ= 0.005823 ρ= 0.001103 ρ= 0.001661
Ast 631.28 mm² As = 722.05 mm² Ast 621.10 mm² As = 621.10 mm²
= =
Smax 179 mm Smax 157 mm Smax 324 mm Smax 324 mm
= = = =
Temperature Bars, Temperature Bars,
Sec. RSBØ = 10 mm Sec. RSBØ 10 mm
=
ρ= 1/2 of ρ As = 315.70 mm² ρ = 1/2 of ρ min As = 310.61 mm²
min
ρ= 0.002546 Smax = 249 mm ρ= 0.002546 Smax 253 mm
=

REINFORCED CONCRETE BEAM


Type of Beam: Simply Supported Beam Steel Reinforcements:
Dimensions: Design for
Flexure,
Width, b = 0.20 m Length, L 1.20 m Main RSBØ 16 mm ρ min 0.005091
0 = = =
Height, h = 0.30 m h min. = 0.100 m d eff. = 0.252 m ρ max 0.027969
0 =
Negative Positive Moment,
Moment,
Material Properties: Reduction Factor: - Mu 1.41 kN-m + Mu 2.11 kN-m
= =
Concrete, fc' = 20.7 MPa Bending, Φ 0.90 ρ act = 0.000090 ρ act = 0.000134
0 =
Main Steel, fy 75.00 MPa Shear, ф = 0.85 As 256.59 mm² As = 256.59 mm²
= 2 =
Sec. Steel, fy =30.00 MPa steel cover, sc 0.040 m Qty 2 L - 16mm RSBØ Qty = 2 L - 16mm RSBØ
2 = =
Design for Shear,
Uniform Distributed Load - 1 (UDL- Sec. RSBØ 10 mm S = AvFyd/Vs -246 mm
1): = =
Unfactored Loads, Factored Loads, Vu = 1.00 kN Vs < √fc'bd/3 -37.04 <
= 76.44
Dead Load = 7.23 kN/m Dead Load 8.68 kN/m Vc = √fc'bd/6 38.22 kN .'. Smax = d/2
= =
Live Load = 1.90 kN/m Live Load 3.04 kN/m Vu < 1/2 ΦVc 1.00 < Smax = d / 2 126 mm
= = 16.24 =
.'. Not Required Summar
y:
Uniform Distributed Load - 2 (UDL- Vn = Vu/ф 1.18 kN 1 @ 50 mm
2): =
Unfactored Loads, Factored Loads, Vs = Vn - Vc -37.04 kN 6 @ 100 mm
=
Dead Load = 5.79 kN/m Dead Load 6.95 kN/m Vs>2/3 √fc'bd -37.04 < 0 @ 150 mm
= = 152.87
Live Load = 1.90 kN/m Live Load 3.04 kN/m .'. Adequate rest @ 120 mm
=
REINFORCED CONCRETE FOOTING
Design Footing: Design Loads: Steel
Requirements:
Length, = 1.20 m Unfactored RSBØ 12 mm ρ min = 0.005091
L Loads, =
Width, W = 0.80 m SLC, Pn = 20.82 kN d eff. 0.169 m ρ max 0.027969
= =
Depth, d = 0.250 m Ftng. Self Wt. = 5.76 kN Wide Beam
Shear,
Fdn. Depth, D = 0.80 m Total, Pn = 26.58 kN Vu = qu A = 6.47 kN
Min. Fdn. Depth = 0.52 m Factored Loads, Vc = 1/6 √fc' W d = 102.52 kN
Column, = 1.20 m SLC, Pu = 26.72 kN FS = ΦVc / Vu = 13.47 >1 .'.
b Adequate!
Column, = 0.15 m Ftng. Self Wt. = 6.91 kN Reinforcing Bars along
h Width,
Total, Pu = 33.63 kN Mu = qu A = 11.38 kN-m
Material Properties: Ru = Mu/Φ L = 0.369 MPa

Concrete, Fc' = 20.70 Mpa Bearing Pressure: ρ act = 0.85fc'/fy [1- = 0.001356
√1-(2Ru/0.85fc')]
Steel, Fy = 275.00 Mpa ESBP, = 79.94 kN/m² As = ρ L d = 688.30 mm²
qe
USBP, = 35.03 kN/m² Qty = As / Ab = 7 L - 12mm RSBØ
qu
Reduction Factor: Reinforcing Bars along Length / Temperature
Bar,
Bending, ф = 0.90 Minimum Footing ρ = 1/2 of ρ min = 0.002546
Dimension:
Shear, ф = 0.85 Length, = 1.20 m Ast = ρ W d = 516.33 mm²
L
steel cover, sc = 0.075 m Width, W = 0.28 m Qty = As / Ab = 5 L - 12mm RSBØ

You might also like