Structural Analysis
Structural Analysis
DESIGN ANALYSIS
PROPOSED TWO(2)-STOREY
RESIDENTIAL BUILDING
Prepared by:
2. LIVE LOADS
A. Residential
1) Basic Floor = 1.90 kPa
Area 2.90
= kPa
2) Exterior
Balconies = 1.90 kPa
3) Deck = 1.90 kPa
4) Storage = 1.00 kPa
x= b+ d A LW - xy Vc = √fc' bo d / 3
=
= 0.250 + 0.267 = (1.70 x 1.70) - (0.517 x 0.484) = √20.70 x 1.485 x 0.267 / 3
= 0.517 m = 2.640 m² = 601.314 kN
y= h + Vu = qu A FS = фVc / Vu
d/2
= 0.350 + = 92.09 x 2.640 = 0.75 x 601.31 / 243.11
0.267/2
= 0.484 m = 243.110 kN = 1.86 >1 .'. Adequate!
bo = x + 2y
Reinforcing Steel Bars: = 0.517 + (2 x 0.484)
a. Along Length, = 1.485 m
b. Along Width,
Mu = qu A Mu = qu A
= 92.09 x 1.233 = 92.09 x 2.295
= 113.543 kN-m = 211.340 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 113.54x10^6 / = 211.34x10^6 /
(0.90 x 1.70 x 0.267²) (0.90 x 1.70 x 0.267²)
= 1.0410 MPa = 1.9376 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
= [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
- √1 -
x = L/2 - b/2
[(2 x 1.0410) / (0.85 x [(2 x 1.9376) / (0.85 x
= 1.70/2 - 0.250/2 20.70)]} 20.70)]}
= 0.725 m = 0.003905 = 0.007483
A= Wx use ρ = 0.005091 use ρ = 0.007483
= 1.70 x 0.725 As = ρ W d y= W-h As = ρ L d
= 1.233 m² = 0.005091 x 1.70 x 0.267 = 1.70 - 0.350 = 0.007483 x 1.70 x 0.267
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:
x= b + A LW - xy Vc = √fc' bo d / 3
d/2 =
= 0.250 + = (1.50 x 1.50) - (0.409 x 0.509) = √20.70 x 0.918 x 0.317 / 3
0.317/2
= 0.409 m = 2.042 m² = 441.332 kN
y= h + Vu = qu A FS = фVc / Vu
d/2
= 0.350 + = 92.85 x 2.042 = 0.75 x 441.33 / 189.61
0.317/2
= 0.509 m = 189.606 kN = 1.75 >1 .'. Adequate!
Reinforcing Steel Bars: bo = x + y
a. Along Length, = 0.409 +
0.509)
= 0.918 m
b. Along Width,
Mu = qu A Mu = qu A
= 92.85 x 1.875 = 92.85 x 1.725
= 174.099 kN-m = 160.171 kN-m
Ru = Mu / ф W d² Ru = Mu / ф L d²
= 174.10x10^6 / = 160.17x10^6 /
(0.90 x 1.50 x 0.317²) (0.90 x 1.50 x 0.317²)
= 1.2833 MPa = 1.1807 MPa
ρ act = 0.85 fc'/fy [1- √1 - ρ act = 0.85 fc'/fy [1- √1 -
(2Ru/0.85fc')] (2Ru/0.85fc')]
x= L-b = [0.85(20.70/275.00)] {1 - √1 = [0.85(20.70/275.00)] {1 -
= 1.50 - 0.250 - √1 -
= 1.250 m [(2 x 1.2833) / (0.85 x [(2 x 1.1807) / (0.85 x
20.70)]} 20.70)]}
A= Wx
= 0.004850 = 0.004448
= 1.50 x 1.250
use ρ = 0.005091 use ρ = 0.005091
= 1.875 m²
Project PROPOSED TWO(2) - STOREY RESIDENTIAL Owner JERSON MONTANO
Name: BUILDING :
SINDANGAN, ZAMBOANGA DEL NORTE Civil Engineer: JULIE ANNE LAIRE A. LORILLA
Location:
Mz(kN-m)
My(kN-m) Fx(kN)
2 2 100 75.7
2 0 11.5
20 13.8 0 12.1 0 84.1 100
16 10 10
1
0
20 06 00 30
0 3 06 20 3 06 26 -7.92 1 2 -7.92 0 6
6 1 2 3 0 30 3
1 -7.57 50
10 0 10
10 20 - 2 10 10
2 -18.2 20 0 0 0
17.8
0
II. DETAILED CALCULATION
A. Compression B. Tension
Controlled Contolled
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 1562.88 kN Layer 1: 3 d1' = 0.058 d1 = 0.067 Layer 3 d1' = 0.058 d1 0.117
1: =
Pu = Φ Pn Layer 2: 0 d2' = 0.000 d2 = 0.000 Layer 0 d2' = 0.000 d2 0.000
2: =
= 1094.02 kN Layer 3: 0 d3' = 0.000 d3 = 0.000 Layer 0 d3' = 0.000 d3 0.000
3: =
Stirrups Summary: d' = 0.058 c= 0.087 fs' = 200.0 d' = 0.058 c= 0.132 fs' = 336.3
: 0 6
16Db 256 mm 1 at 50 d= 0.192 a= 0.074 fs = 724.1 d = 0.292 a= 0.112 fs = 727.2
= 4 7
48db 480 mm 8 at 100 Cs 1 = 120.6 Ts 1 165.8 Cc = 455.7 Cs 1 = 165.88 Ts 1 165.88 Cc 492.6
= 4 = 8 1 = = 6
least = 250 mm rest at 250 Cs 2 = 0.00 Ts 2 0.00 Mnx = 63.40 Cs 2 = 0.00 Ts 2 0.00 Mny = 126.5
= = 1
Smax = 250 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 57.06 Cs 3 = 0.00 Ts 3 0.00 Muy = 113.8
= = 6
Column: C-1
Location: Ground Floor Column @ Grid A2
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.25 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.35 m = 2.76%
0
Main 2, fy = 275 MPa Length, L = 3.20 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 Main 1, RSBØ 16 mm From Frame Analysis
=
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 Main 2, RSBØ 16 mm Pu kN 265.000 4.57
=
Shear, ф = 0.85 Qty = 8 pcs Mux kN-m 34.300 1.66
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 29.900 3.81
Mz(kN-m)
My(kN-m) Fx(kN)
4 34.3 300 265 300
29.9 30 0 24 276
30 40
200
20 17.4 20 2 2 200
0 0 100
10 10 100
10 0 2 20
06 2 06 106 1 2 33.2 0 06 1006 1 2 0 6
1 2 0
10 2 2 100 -31 3-3.12 100
33.2 10 0 -20.3 0
20 -28.8 200 200
20 4 4
30 - -21.3 0 0 300
Mz(kN-m)
My(kN-m) Fx(kN)
2 2 80 66.2 8
40 36.3 32.1 14.2 0 55.3 0
0 13.1
40
10 10 4 4
20 0 0
20 08 0 3
0 3 07 20 07 208 -1.65 1 2 0 07
8 1 2 3 0 -
30 40 1.653
20 1 2 3
10 -15 10
2 2 8 8
40 - -33.4 40
0 0 0 0
35.5
II. DETAILED CALCULATION
A. Compression B. Tension
Controlled Contolled
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 1598.07 kN Layer 1: 3 d1' = 0.058 d1 = 0.09 Layer 3 d1' = 0.058 d1 0.092
2 1: =
Pu = Φ Pn Layer 2: 0 d2' = 0.000 d2 = 0.00 Layer 0 d2' = 0.000 d2 0.000
0 2: =
= 1118.65 kN Layer 3: 0 d3' = 0.000 d3 = 0.00 Layer 0 d3' = 0.000 d3 0.000
0 3: =
Stirrups Summary: d' = 0.058 c= 0.109 fs' = 280.7 d' = 0.058 c= 0.109 fs' = 280.7
: 3 3
16Db 256 mm 1 at 50 d= 0.242 a= 0.093 fs = 732.1 d = 0.242 a= 0.093 fs = 732.1
= 1 1
48db 480 mm 8 at 100 Cs 1 = 165.8 Ts 1 165.8 Cc = 490.9 Cs 1 = 165.88 Ts 1 165.88 Cc 490.9
= 8 = 8 0 = = 0
least = 300 mm rest at 256 Cs 2 = 0.00 Ts 2 0.00 Mnx = 98.02 Cs 2 = 0.00 Ts 2 0.00 Mny = 98.02
= =
Smax = 256 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 88.22 Cs 3 = 0.00 Ts 3 0.00 Muy = 88.22
= =
Column: C-1
Location: Ground Floor Column @ Grid A2
I. COLUMN PROPERTIES
Material Dimensions: Steel Ratio: 1% -
Properties: 8%
Concrete, fc' = 20.70 MPa Base, b = 0.35 m SR = Ag / As
0
Main 1, fy = 275 MPa Height, h = 0.35 m = 1.97%
0
Main 2, fy = 275 MPa Length, L = 3.20 m
Shear, fy = 230 MPa
Reduction Reinforcing Steel Result Stresses:
Factors: Bar:
β= 0.85 Main 1, RSBØ 16 mm From Frame Analysis
=
Axial, ф = 0.70 Qty = 4 pcs Stresses Design F.S.
Flexure, ф = 0.90 Main 2, RSBØ 16 mm Pu kN 354.000 4.39
=
Shear, ф = 0.85 Qty = 8 pcs Mux kN-m 41.200 4.09
steel cover = 0.040 m Shear RSBØ = 10 mm Muy kN-m 68.200 2.47
Mz(kN-m)
My(kN-m) Fx(kN)
60 60 400 354
80 68.2 8 400
40 38.2 34.4 40 370
47.7 0 20 20
4 4 20 20 0 0
0 0
10 07 20 00 20
0 2 08 10 08 17 -9.7 0 8
7 1 2 33.2 0 20 1 2
33.2 20
1 2 3-
20 93.. 20
40 40 -27.9 40 0 0
-49 -41.2
60 60 40 40
80 - 8 0 0
61.7 0
II. DETAILED CALCULATION
Project
A. Compression B. Tension
Name:
Controlled Contolled
Location:
Pn = 0.80 [0.85 fc' (Ag-As) + Moment about X- Moment about Y-
Asfy] axis, axis,
= 2221.15 kN Layer 1: 3 d1' = 0.058 d1 = 0.11 Layer 3 d1' = 0.058 d1 0.117
7 1: =
Pu = Φ Pn Layer 2: 2 d2' = 0.058 d2 = 0.11 Layer 2 d2' = 0.058 d2 0.117
7 2: =
= 1554.81 kN Layer 3: 0 d3' = 0.000 d3 = 0.00 Layer 0 d3' = 0.000 d3 0.000
0 3: =
Stirrups Summary: d' = 0.058 c= 0.132 fs' = 336.3 d' = 0.058 c= 0.132 fs' = 336.3
: 6 6
16Db 256 mm 1 at 50 d= 0.292 a= 0.112 fs = 727.2 d = 0.292 a= 0.112 fs = 727.2
= 7 7
48db 480 mm 8 at 100 Cs 1 = 165.8 Ts 1 165.8 Cc = 689.7 Cs 1 = 165.88 Ts 1 165.88 Cc 689.7
= 8 = 8 2 = = 2
least = 350 mm rest at 256 Cs 2 = 110.5 Ts 2 110.5 Mnx = 187.4 Cs 2 = 110.58 Ts 2 110.58 Mny = 187.4
8 = 8 6 = 6
Smax = 256 mm Cs 3 = 0.00 Ts 3 0.00 Mux = 168.7 Cs 3 = 0.00 Ts 3 0.00 Muy = 168.7
= 1 = 1
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:
B. Design for
Stirrups
• Calculate S = Av Fy d / Vs -153 mm
• Applied Force Vu max = 115.00 kN =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -80.82 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 115.00 > .'.
91.85 Required • Calculate Smax d/2 171 mm
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:
B. Design for
Stirrups
• Calculate S = Av Fy d / -86 mm
• Applied Force Vu max = 61.50 kN Vs =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -143.76 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 61.50 < .'. Not
91.85 Required • Calculate Smax d/2 171 mm
= =
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:
B. Design for
Stirrups
• Calculate S = Av Fy d / -77 mm
• Applied Force Vu max = 47.10 kN Vs =
• Calculate Vc = 1/6 √fc'bd = 216.11 kN • Check Vs < 1/3 √fc'bd -160.70 < .'. Smax =
= 129.67 d/2
• Check Vu < 1/2 ΦVc = 47.10 < .'. Not
91.85 Required • Calculate Smax d/2 171 mm
= =
• Calculate Vn = Vu/ф = 55.41 kN
• Summar
• Calculate Vs = Vn - Vc = -160.70 kN y
Project
PROPOSED TWO(2) - STOREY RESIDENTIAL BUILDING Owner: JERSON MONTANO
Name:
SINDANGAN,
Location: ZAMBOANGA DEL NORTE Civil JULIE ANNE LAIRE A. LORILLA
Engineer:
fbx + frx
Fbx + 1/3 ≤ 1.00
Fbx
16.19 +
106.92 ≤ 1.00
163.68 +
54.56
Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.88 ≈ 0.85
Type: Short Span = 3.70 m Ratio: Ca dl = 0.036 Ca ll = 0.043 Ca = 0.066
Two Adjacent Edges + + Mu - Mu
Mu
4 Long Span = 4.20 m Cb dl = 0.019 Cb ll = 0.023 Cb = 0.034
Discontinuous Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
DSBØ = 10 mm d eff. @ short = 0.100 ρmin = 0.00609 Assumption, ρact As Smax
Material Properties: Unfactored Loads: d eff. @ long = 0.090 ρmax = 0.03525 1/2 of ρmin 0.00305 258
305.00
Concrete, fc' = 20.70 MPa Dead Load = 11.07 kN/m Along Short Span: Along Long Span:
Steel, fy = 230.00 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
Reduction Factor: Factored Loads: Mid 8.33 0.00414 609.00 129 Mid 4.97 0.00302 143
548.10
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 14.75 0.00749 749.00 105 Cont. 7.60 0.00468 143
548.10
steel cover, sc = 0.020 m Live Load = 3.04 kN/m Discont. 2.78 0.00135 609.00 129 Discont. 1.66 0.00100 143
548.10
Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.79 ≈ 0.75
Type: Ratio:
Short Span = 3.00 m Ca dl 0.036 Ca ll = 0.04 Ca = 0.061
+ Mu = + Mu 9 - Mu
3 One Long Edge Long Span = 3.80 m Cb dl 0.013 Cb ll = 0.01 Cb = 0.036
Discontiuous = 6
Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
DSBØ = 10 mm d eff. @ short 0.100 ρmin = 0.00609 Assumptio ρact As Smax
= n,
Material Unfactored Loads: d eff. @ long 0.090 ρmax = 0.03525 1/2 of 0.0030 305.0 258
Properties: = ρmin 5 0
Concrete, fc' 20.70 MPa Dead Load = 11.07 kN/m Along Short Along Long Span:
= Span:
Steel, fy = 230.0 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
0
Reduction Factor: Factored Loads: Mid 5.64 0.0027 609.0 129 Mid 2.27 0.0013 548.1 143
7 0 7 0
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 8.96 0.0044 609.0 129 Cont. 5.29 0.0032 548.1 143
6 0 2 0
steel cover, sc 0.020 m Live Load = 3.04 kN/m Discont. 1.88 0.0009 609.0 129 Discont. 0.76 0.0004 548.1 143
= 1 0 5 0
Slab: S-1
Location: BC-23
Slab Slab Properties: Span 0.95 ≈ 0.95
Type: Ratio:
Short Span 3.60 m Ca dl = 0.030 Ca ll 0.035 Ca 0.05
Two Adjacent Edges + + - Mu 0
4 = Long 3.80 m Mu Cb dl = 0.024 Mu = Cb 0.029 =
Discontinuous Slab thk. = 0.125 m Steel Reinforcements: Temperature Bars:
0.04
DSBØ = 10 mm d eff. @ short = 0.100 ρmin = 0.00609 Assumption, ρact As Smax
Material Properties: Unfactored Loads: d eff. @ long = 0.090 ρmax = 0.03525 1/2 of ρmin 0.00305 258
305.00
Concrete, fc' = 20.70 MPa Dead Load = 11.07 kN/m Along Short Span: Along Long Span:
Steel, fy = 230.00 MPa Live Load = 1.90 kN/m Location Mu ρact As Smax Location Mu ρact As Smax
Reduction Factor: Factored Loads: Mid 6.54 0.00323 609.00 129 Mid 5.94 0.00363 143
548.10
Bending, Φ = 0.90 Dead Load = 13.28 kN/m Cont. 10.58 0.00529 609.00 129 Cont. 9.52 0.00591 143
548.10
steel cover, sc = 0.020 m Live Load = 3.04 kN/m Discont. 2.18 0.00106 609.00 129 Discont. 1.98 0.00119 143
548.10
ONE-WAY SLAB DESIGN
Slab: -
Location: -
Material Unfactored Loads: Slab Properties: Main Bar: Temp.
Properties: Bar:
Concrete, fc' = 0.00 MPa Dead Load = 0.00 kN/m Short Span = 0.00 m d eff. = 0.000 d eff. = 0.000
Steel, fy = 0.00 MPa Live Load = 0.00 kN/m Slab thk. = 0.000 m Mu = 0.00 Mu = 0.00
DSBØ = 0 mm ρact = 0.0000 ρact = 0.0000
0 0
Reduction Factor: Factored Loads: Steel Reinforcements: As = 0.00 Ast = 0.00
Bending, Φ = 0.00 Dead Load = 0.00 kN/m ρmin = 0.0000
Smax = 0 Smax = 0
0
steel cover, sc = 0.000 m Live Load = 0.00 kN/m ρmax = 0.0000
0
Project Owner:
Name:
Location: Civil
Engineer:
DESIGN ANALYSIS OF REINFORCED CONCRETE STAIR
REINFORCED CONCRETE SLAB
Location: Landing to Up Location: Landing to Down Stair
Stair
Slab Properties: Slab Properties:
Considering 1m Considering 1m strip,
strip,
Length = 3.80 m Rise = 0.200 m Length 2.200 m Rise = 0.200 m
0 =
Slab thk = 0.15 m Tread 0.250 m Slab thk 0.150 m Tread 0.250 m
0 = = =
Steps 16 set Steps 4 set
= =
Material Properties: Reduction Factor: Material Reduction Factor:
Properties:
Concrete, fc' = 20.7 MPa Bending, Φ 0.900 Concrete, fc' 20.70 MPa Bending, Φ 0.900
0 = = =
Main Steel, fy 75.00 MPa steel cover, sc 0.020 m Main Steel, fy 275.00 MPa steel cover, sc 0.020 m
= 2 = = =
Sec. Steel, fy =30.00 MPa Sec. Steel, fy 230.00 MPa
2 =
Unfactored Loads: Factored Loads: Unfactored Factored Loads:
Loads:
Dead Load = 7.23 kN/m Dead Load 8.68 kN/m Dead Load 5.79 kN/m Dead Load 6.95 kN/m
= = =
Live Load = 1.90 kN/m Live Load 3.04 kN/m Live Load 1.90 kN/m Live Load 3.04 kN/m
= = =
Steel Steel Reinforcements:
Reinforcements:
ρ min = 0.005091 ρ max = 0.027969 ρ min = 0.005091 ρ max 0.027969
=
Main Main
Bars, Bars,
Main RSBØ 12 mm d eff. = 0.124 m Main RSBØ 16 mm d eff. 0.122 m
= = =
Negative Moment, Positive Moment, Negative Positive Moment,
Moment,
- Mu 14.10 kN-m + Mu 21.15 kN-m - Mu 4.03 kN-m + Mu 6.04 kN-m
= = = =
ρ= 0.003819 ρ= 0.005823 ρ= 0.001103 ρ= 0.001661
Ast 631.28 mm² As = 722.05 mm² Ast 621.10 mm² As = 621.10 mm²
= =
Smax 179 mm Smax 157 mm Smax 324 mm Smax 324 mm
= = = =
Temperature Bars, Temperature Bars,
Sec. RSBØ = 10 mm Sec. RSBØ 10 mm
=
ρ= 1/2 of ρ As = 315.70 mm² ρ = 1/2 of ρ min As = 310.61 mm²
min
ρ= 0.002546 Smax = 249 mm ρ= 0.002546 Smax 253 mm
=