JEE (Advanced) 2023
GUIDED REVISION JEE (Advanced)
ENTHUSIAST 2023
& LEADER COURSE
ENTHUSIAST & LEADER COURSE
PHYSICS GR # GRAVITATION
SOLUTION
SECTION-I
Single Correct Answer Type 8 Q. [3 M (–1)]
1. Ans. (A)
v0
Sol.
P1
R 3R v
Let speed at max height is v
Since, it is at max height, v is perpendicular to r
By conservation of angular momentum
mv0R = mv (4R)
v0
v
4
By conservation of mechanical energy
2
1 GMm 1 v 0 GMm
mv 20 m
2 R 2 4 4R
8 GM
v0
5 R
GM 8
g 2
,v 0 gR
R 5
2 Ans. (D)
P
r y
(R/2)
Sol.
Gravity at point P gr
R
Fcos N
mgr Fsin
F=
R
Fcos – N = 0
Fsin = ma
Physics / GR # Gravitation E-1/11
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
mgr y
ma
R r
2
g g R
a = y = r2
R R 2
a f(r)
3. Ans. (C)
GM
Sol. ve = 2 r0
GM
v v e v 0 2 1 r0
4. Ans. (D)
Sol. Total mechanical energy = 0
GM 1
2 m mv 2e 0
a 2
GM
ve = 2
a
5. Ans. (B)
Sol. Using conservation of angular momentum about O. vA
mVPrP = mVArA = mV0r0cos
3v 0 r0 A
VArA = VPrP =
5
using conservation of energy
rA
1 GMm GMm 1
mVA2 mV02 v0 v0
2 rA r0 2
9V02 r02 V02 r0 V02 r0 O
50r 2 0 Let r x r0
rA 2 rP
A A P
9x2 – 50x + 25 = 0 x = 5 or (5/9) vP
9r0 r0
rA = ; rP =
5 5
VP rA
V r 9
A P
6. Ans. (D)
GM 2 3/ 2 GMm
Sol. Speed = , Time period = GM r , Total energy = –
r 2r
7. Ans. (A)
dA v0 r
Sol. Areal velocity =
dt 2
E-2/11 Physics / GR # Gravitation
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
GM
& V0 , V0 = orbital speed
r
r = radius of orbit
8. Ans. (B)
M
V
2R 45° F2
F2 F1 V
R
Sol. M M
V
M
Net force on one particle
Fnet = F1 + 2F2 cos 45° = Centripetal force
GM 2 2GM2 MV2
cos 45
(2R)2 ( 2R)2 R
1 GM
V= (1 2 2)
2 R
Multiple Correct Answer Type 7 Q. [4 M (–1)]
9. Ans. (A, B, C)
Sol. For (A) : By COME total mechanical energy of the two objects
For (B) : By using reduced mass concept
1 2 G(4m)(m) (m)(4m) 4 10 Gm
µv rel – = 0 where µ = = m vrel =
2 r m 4m 5 r
G(m) (4m) 4Gm 2
For (C) total KE = –PE = =
r r
10. Ans. (A,C, D)
Extreme (v = 0)
R
Sol.
R
O Extreme (v = 0)
Let r is distance from center,
GMm
If r > R F (Not SHM)
r2
GMmr
r<R F (SHM)
R3
Physics / GR # Gravitation E-3/11
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
But motion is periodic to find velocity at center,
Apply COM E,
1 GMm 1 3 GMm
2
m 02
2R
mvC2
2 2 R
2GM
vC
R
11. Ans. (A,C)
Sol. VCM 0 , Mv1 2 Mv2 0
1 1 GM 2 M 1 2GM
Mv12 2 Mv22 0 relative velocity at t = T is
2 2 3R 3 R
12. Ans. (A,B,C,D)
13. Ans. (A, D)
Sol. in both is same
so T1 = T2
and by vmax = A V1 > V2
14. Ans. (A,B,C,D)
GM
Sol. V
r
VA r
B 2
VB rA
GMm EA m A rB
E , 12
2r EB mB rA
2GM uA
uA , 2
r uB
2
T (r)3 / 2
GM
3/ 2
TA rA 1
TB rB 8
15. Ans. (B,C)
Sol. Initially parabolic path means escape velocity & hence (TE = 0)
Perigee (Perihelion)
r
a earth
C
apogee (Aphelion)
E-4/11 Physics / GR # Gravitation
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
a
rmin a c
2
3a
rmax a c
2
c 1 a
e c
a 2 2
R 3R
rRh R
2 2
3R
If rmin a 3R
2
3R
and if rmax a R
2
a 3R
If a = 3R, then, C
2 2
3R
rmin a c r1
2
9R
and rmax a c r2
2
L = constant
mv1r1 = mv2r2
3R 9R
v1 v2
2 2 v1
v1 = 3v2
TE = conserved rmin = r1
1 GmM 1 GmM
mv12 mv 22
2 r1 2 r2
rmax = r2
2
v1
v 2
GM GM
3
1
v2
2 3R 2 9R
2 2
v12 1 GM 2 2
2 1 9 R 3 9
4 GM 4
v12
9 R 9
GM
v12
R
1 GMm
TE mv12
2 r1
Physics / GR # Gravitation E-5/11
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
1 GM GMm
m
2 R 3R
2
TE GmM 1 2 GmM 1
finally R 2 3 R 6
GmM
So, change in TE required =
6R
Similarly solving for (a = R)
then we will get
GmM
TEfinal
2R
GmM
So, change in TE
2R
Alternate Method
For perihilion
3R
a(1 – e) = R h
2
a = 3R
Also, for elliptical path
GMm GMm
T.E.
2a 6R
GMm
change in TE
6R
For aphelion :
3R
a 1 e R h
2
a=R
GMm GMm
& T.E. =
2a 2R
GMm
change in TE =
2R
Linked Comprehension Type (1 Para × 2Q.) [3 M (-1)]
(Single Correct Answer Type)
16. Ans. (B)
Sol. According to Keplar's Law
dA
= constant
dt
A1 t1
At
A2 t2
E-6/11 Physics / GR # Gravitation
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
D A1 C
A2
B
A1 > A2
t1 > t2
17. Ans. (C)
Sol. For a bounded system, TE < 0
|U| > |KE|
Matching List Type (4 × 4) 1Q.[3 M (–1)]
18. Ans. (B)
m1
2
m2
M given
Sol. R1 1
R1 R 2 4
R1 m1
m2
GMm 1 m 1v12
R12 R1
GM GM
v12 , v 22
R1 R2
v12 R 2
4
v 22 R1
v1
(P) v 2
2
(Q) L = mvR
L1 m 1v1R1 1
22 1
L2 m 2v 2 R 2 4
1
(R) K mv 2
2
K1 m 1v12
= 2 × (2)2 = 8
K 2 m 2v 22
Physics / GR # Gravitation E-7/11
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
(S) T = 2R/V
T1 R1 v 2 R1 v 2 1 1 1
T2 v1 R 2 R 2 v1 4 2 8
SECTION-III
Numerical Grid Type (Ranging from 0 to 9) 2 Q. [4 M (0)]
19. Ans. 6
L total m1r12
Sol. 1
LB m2 r22
20. Ans. 7
Sol. Due to gravitational interaction connected masses have some acceleration.
Let both small masses are moving with acceleration 'a' towards larger mass M
a
M
m m
3
Force eq. for mass nearer to larger mass
GMm Gm 2
ma ... (i)
3 2 2
Force eq. for mass away from larger mass
GMm Gm 2
ma ... (ii)
4 2 2
from equation (i) & (ii)
GM Gm GM Gm
2
2
2
9 16 2
M M
m m
9 16
7M
2m
144
7M M
m k
288 288
K=7
SECTION-IV
Matrix Match Type (4 × 5) 1 Q. [8 M (for each entry +2(0)]
21. Ans. (A)-R, (B)-Q, (C)-Q (D)-P
E-8/11 Physics / GR # Gravitation
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
Perigee
vmax
rp
Sun
Sol. rA
vmin
Apogee
1
(A) v
r
(B) rp < rA
1
(C) PE
r
(D) L = constant
Subjective Type 5 Q. [4 M (0)]
3 G mM
22. Ans. A = –
2 R
M
R
C
Sol.
Wg = Ug
m Vg m Vg f Vg i m V VC
3GM 3GmM
Wg m 0
2R 2R
2d 3 / 2
23. Ans. (a) T , (b) 2, (c) 2
3Gm
Sol. (a) The COM of the system divides the distance between the stars in the inverse ratio of thin masses. If
d1 & d2 are the distances of M & m from the COM. (COM = Centre of mass)
d d
d1 m & d2 M
Mm Mm
The stars will rotate in circles of radii d1 & d2 about their COM. The same force of attraction provides the
necessary contripetal force for their circular motion.
GmM
= M12 d1 m22 d 2
d2
Physics / GR # Gravitation E-9/11
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
2 Gm Gm M m G M m
or 1 d 2 d = 2 =
1 d dm d3
G M GM M m G M m
and 22 = 2 = 2 =
d d2 d dM d3
G M m
1 = 2 =
d3
(b) From the fact that the moment of momentum is also angular momentum.
I M Mv1 d1 M d12 M m2 m
I m Mv 2 d 2 = m d 22 = m M 2 M
1 2
K M 2 Mv1 M 2 2
d M d12
(c) = 1 1 =
K m 1 Mv 2 m 22 d 22 m d 22
2
2
KM M m 2 m
K m m M2 M
1/ 2
2 1
24. Ans. 2G (m1 m 2 )
a l
25. Ans. (a) 2R, (b) 3 3 3 1 R
3M12R (M,R)
Sol. m
(a) speed will maximum at projection point
(b) To just reach the other planet small body must be able to reach the point where gravitation field due
to both planet is zero. At this point speed will be minimum and equal to zero.
G 3M GM
2
2
3 6R x x
x 6R x
1 3 x 6 3R
x
6 3
3 1 R
2
x2 R2
26. Ans. 1 4R 2
x
E-10/11 Physics / GR # Gravitation
JEE (Advanced) 2023
GUIDED REVISION ENTHUSIAST & LEADER COURSE
region near poles where
signal can not reach
R
Sol. ×
S
region near poles where
signal can not reach
R
sin
x
R2
cos 1
x2
Area required = 2(2 R2 (1 – cos ))
x2 R2
4 R 2 1
x
Physics / GR # Gravitation E-11/11