Math
Math
Chapter 1: Numbers
In this chapter, you'll learn the foundational concepts necessary for quick mental arithmetic and number
manipulation, which are critical in the IMAT exam where calculator use is prohibited.
📌 Key Concepts:
1. Types of Numbers:
2. Divisibility Rules:
Page 1 of 73
5. Exponents and Roots:
8. Scientific Notation:
|x| = x if x ≥ 0, −x if x < 0
1. Which of the following is a prime number less than 100 but not ending in 1, 3, 7, or 9?
a. 61
b. 89
c. 97
d. 2
a. 225
b. 675
c. 135
d. 90
Page 2 of 73
4. Which of the following values is closest to 1/3 but not exactly equal to it?
a. 0.33
b. 0.34
c. 0.333...
d. 0.3
a. 100
b. 110
c. 120
d. 125
a. 2
b. 0
c. 5
d. 8
7. The product of two numbers is 108 and their HCF is 6. What is their LCM?
a. 18
b. 36
c. 72
d. 108
a. 36
b. 64
c. 144
d. 216
9. Simplify: (0.2)^-2
Page 3 of 73
a. 0.04
b. 4
c. 25
d. 0.25
a. 1/6
b. 3/7
c. 5/8
d. 4/9
11. Which pair of numbers is in the ratio 3:5 and adds up to 64?
a. 24, 40
b. 18, 30
c. 28, 36
d. 20, 44
a. 64
b. 48
c. 20
d. 16
a. 81/100
b. 25/16
c. 16/25
d. 100/81
a. 34500
Page 4 of 73
b. 3450
c. 0.0345
d. 345000
a. 172
b. 213
c. 415
d. 761
a. -3.5
b. 3.5
c. 0
d. -7
17. A number divided by 5 gives the same result as subtracting 6 from it. What is the number?
a. 7.5
b. 10
c. 12.5
d. 15
a. 2.2
b. 2.4
c. 2.6
d. 2.8
a. x^2
b. x + 1
Page 5 of 73
c. x – x
d. x × 0
a. 3.1
b. 3.14
c. 3.1428
d. 3.4
a. 100
b. 102
c. 108
d. 120
a. 7
b. 14
c. 28
d. 21
a. 729
b. 1008
c. 513
d. 1182
a. 0.35
b. 0.375
c. 0.345
d. 0.7
Page 6 of 73
24. A number is increased by 25% and the result is 500. What was the
original number?
a. 375
b. 400
c. 425
d. 450
a. 0.123
b. 0.666...
c. √5
d. 3.25
26. If the average of four consecutive odd numbers is 27, what is the
smallest of them?
a. 23
b. 25
c. 27
d. 29
27. What is the product of the LCM and HCF of two numbers 15 and 20?
a. 300
b. 30
c. 100
d. 75
a. 4
b. 5
c. 6
d. 3
a. 2
Page 7 of 73
b. 4
c. 0.4
d. 1/4
a. 7/8
b. 0.25
c. √2
d. -1
a. 2
b. 4
c. 6
d. 8
a. 3/5
b. 2/3
c. 5/8
d. 4/7
a. 190
b. 180
c. 200
d. 210
34. The sum of three consecutive natural numbers is 96. What is the
smallest number?
a. 30
b. 31
c. 32
d. 33
Page 8 of 73
35. Which of these is not a perfect cube?
a. 8
b. 27
c. 125
d. 36
a. 2
b. 3
c. 4
d. 5
a. 1
b. 0.1
c. 10
d. 0.01
a. 30
b. 36
c. 42
d. 60
a. 13
b. 14
c. 15
d. 16
a. 3.0
b. 3.1
c. 3.2
Page 9 of 73
d. 3.3
a. 10
b. 15
c. 30
d. 60
a. 242
b. 333
c. 500
d. 901
a. 200
b. 250
c. 300
d. 350
a. 25
b. 29
c. 30
d. 35
a. 1/8
b. 8
c. 2
d. 4
a. 160
Page 10 of 73
b. 1600
c. 16000
d. 16
47. Which of the following numbers lies between 2/5 and 3/5?
a. 0.3
b. 0.5
c. 0.7
d. 0.8
a. 1/2
b. 0.49
c. 5/9
d. 0.51
a. 24
b. 48
c. 36
d. 60
a. √3
b. 22/7
c. 3.14
d. √4
Chapter 2: Algebra
This chapter focuses on algebraic expressions, equations, inequalities, and manipulation of symbols—
core skills for IMAT.
Page 11 of 73
📌 Key Concepts:
1. Algebraic Expressions
An algebraic expression consists of variables, constants, and mathematical operators (+, −, ×, ÷). For
example: 3x + 2 , 2a^2 - 5a + 4 .
Equations: Statements of equality that are true for specific values (e.g., x + 2 = 5 is true for x
= 3)
Identities: Equations that are true for all values of variables (e.g., (a + b)^2 = a^2 + 2ab +
b^2 )
Solving equations: Apply inverse operations to isolate the variable
👉 Example: Solve 2x - 3 = 7 → 2x = 10 → x = 5
3. Inequalities
Inequalities involve symbols like < , > , ≤ , ≥ . Their solution is usually represented as a range.
4. Polynomials
Polynomials are expressions with one or more terms involving variables with non-negative integer
exponents.
Page 12 of 73
A function relates an input (x) to exactly one output (y). Common types: linear, quadratic, rational.
👉 Example: If f(x) = x^2 , then f(2) = 4 , f(-2) = 4 . Graph is a parabola opening upwards.
🔢 IMAT-Style MCQs:
a. (x + 3)^2 = x^2 + 6x + 9
b. x + 2 = 5
c. x^2 - 4 = 0
d. 2x + 3 = 7
2. Solve for x: 2x - 5 = 9
a. 7
b. 6
c. 5
d. 4
a. x^2 + 2x + 1
b. x^3 - x + 5
c. 3x^(-1) + 2x
d. 2x^4 + 1
4. Factorize: x^2 + 5x + 6
a. (x + 2)(x + 3)
b. (x - 2)(x - 3)
c. (x + 1)(x + 6)
d. (x - 1)(x - 6)
a. 2
b. 3
c. 4
d. 1
a. (x + 3)(x + 3)
b. (x - 3)(x - 3)
c. (x + 3)(x - 3)
d. (x + 9)(x - 1)
a. 4x^2 - 12x + 9
b. 4x^2 - 6x + 9
c. 4x^2 + 9
d. 4x^2 + 12x + 9
a. x = 3, x = 2
b. x = -3, x = -2
c. x = 1, x = 6
d. x = 4, x = 1
Page 14 of 73
11. What is the value of x in the equation 3(x - 2) = 2(x + 1)?
a. x = 4
b. x = 5
c. x = 3
d. x = 2
a. A straight line
b. A parabola opening upward
c. A parabola opening downward
d. A circle
a. 0
b. 1
c. -1
d. 2
a. x > 6
b. x < 6
c. x = 2
d. x > 2
a. x^2 + 4x + 4
b. x^2 + 2x + 4
c. x^2 - 4x + 4
d. x^2 + 4x - 4
a. (x + 2)
b. (x - 2)
c. (x^2 - 4)
Page 15 of 73
d. (x^2 + 4)
a. 2xy
b. 4xy
c. x^2 - y^2
d. x^2 + y^2
a. f(x) = x^2
b. f(x) = x + 2
c. f(x) = √x
d. f(x) = 1/x
a. x ≠ 0
b. x ≠ 3
c. x > 3
d. x < 3
a. 0
b. 2
c. 4
d. -4
a. x = ±5
b. x = 5
c. x = -5
d. x = 0
a. x = 2, x = 5
Page 16 of 73
b. x = -2, x = -5
c. x = 1, x = 10
d. x = 3, x = 4
a. 0
b. 2ab
c. 4ab
d. a^2 - b^2
a. 3
b. 7
c. -3
d. 0
25. If the roots of a quadratic equation are real and equal, then the
discriminant is:
a. 5
b. -2
c. -5
d. 2
27. Which of the following expressions is always positive for all real x?
a. (x + 1)^2
b. x^2 - 1
c. x^2 - 2x + 1
d. x^2 + x + 1
Page 17 of 73
28. The value of x if x^2 - 3x = 0 is:
a. x = 0, 3
b. x = -3, 0
c. x = 1, 3
d. x = 0, -3
a. x = -3, 1
b. x = 3, -1
c. x = -3, -1
d. x = 3, 1
a. 6
b. 4
c. 8
d. 10
a. x^2 + 3x + 2 = 0
b. x + 3 = 0
c. x^3 - 4 = 0
d. x/2 + 1 = 0
a. x = ±3/2
b. x = ±2/3
c. x = ±4/3
d. x = ±9/2
a. x^2 - 4
b. x^2 + 4
c. x^2 - 2x + 1
Page 18 of 73
d. x^2 + 2x + 1
a. (2, -1)
b. (1, -2)
c. (2, 1)
d. (4, 3)
a. f(x) = √x
b. f(x) = 1/x
c. f(x) = ±√x
d. f(x) = x^2
a. y = x
b. y = -x
c. y = -x^2
d. y = -1/x
a. 9
b. -9
c. 6
d. -6
a. 11
b. 10
c. 9
d. 12
a. y = 3x + 2
Page 19 of 73
b. x + y = 5
c. y = x^2 + 1
d. y = -x
a. x = -3
b. x = 3
c. x = ±3
d. x = -6, x = 9
a. x + y
b. x
c. x^2 + 2x + 1
d. x^2
a. A straight line
b. A parabola
c. A circle
d. A hyperbola
43. Solve: 5x - 2 = 3x + 4
a. x = 3
b. x = 2
c. x = 1
d. x = -1
a. 3
b. 1
c. 0
d. 2
Page 20 of 73
a. ax^2 + bx + c = 0
b. ax + b = 0
c. ax^3 + bx^2 + c = 0
d. ax^2 + bx = 0
a. x^2 + 4x + 4
b. x^2 - 9
c. x^2 - 4x + 4
d. Both a and c
a. x = ±i
b. x = ±1
c. x = 0
d. x = i
a. -1
b. 1
c. 0
d. 2
a. 4x^2
b. 2x^2
c. x^2
d. 2x
a. Downward
b. Upward
c. Rightward
d. Leftward
Page 21 of 73
IMAT Maths Preparation Book
Chapter 1: Numbers
(...existing content remains unchanged...)
Chapter 2: Algebra
(...existing content remains unchanged...)
a. Downward
b. Upward
c. Rightward
d. Leftward
Chapter 3: Geometry
Geometry in IMAT includes properties of shapes, angles, coordinate geometry, and measurement of
areas, perimeters, and volumes. It requires both visual understanding and algebraic manipulation.
📌 Key Concepts:
Types of angles: acute (< 90°), right (90°), obtuse (> 90°), straight (180°)
Pairs of angles: complementary (sum = 90°), supplementary (sum = 180°), vertically opposite,
adjacent
Parallel lines and transversals: corresponding, alternate interior, and co-interior angles
👉 Example: If two parallel lines are cut by a transversal and one angle is 120°, alternate interior angle is
also 120°.
2. Triangles
Page 22 of 73
Types: Equilateral (all sides equal), Isosceles (two sides equal), Scalene (no equal sides)
Angle Sum Property: Sum of interior angles = 180°
Pythagoras Theorem: a² + b² = c² (right-angled triangle)
Area: (1/2) × base × height; Heron’s Formula: √[s(s-a)(s-b)(s-c)] where s = semi-perimeter
3. Quadrilaterals
Area formulas:
Square: side²
Rectangle: length × breadth
Trapezium: (1/2) × (a + b) × height
4. Circles
5. Polygons
6. Coordinate Geometry
Page 23 of 73
Sphere: SA = 4πr², V = (4/3)πr³
Cylinder: SA = 2πr(h + r), V = πr²h
🔢 IMAT-Style MCQs:
a. 540°
b. 720°
c. 900°
d. 1080°
a. 30 cm²
b. 60 cm²
c. 16 cm²
d. 26 cm²
a. 10 cm
b. 12 cm
c. 14 cm
d. 9 cm
a. 5 cm
b. 6 cm
c. 7 cm
d. 8 cm
a. 25π cm²
b. 10π cm²
Page 24 of 73
c. 20π cm²
d. 100π cm²
a. 135°
b. 140°
c. 145°
d. 160°
a. 14 cm
b. 28 cm
c. 21 cm
d. 35 cm
8. Which of the following shapes has only one pair of parallel sides?
a. Square
b. Rectangle
c. Rhombus
d. Trapezium
9. The coordinates of the midpoint of the segment joining (2, 3) and (6,
7) are:
a. (4, 5)
b. (3, 5)
c. (2, 6)
d. (5, 4)
10. What is the slope of the line passing through (1, 2) and (3, 6)?
a. 2
b. 4
c. 1
d. 3
12. A cone has a height of 12 cm and radius of 5 cm. What is its volume?
a. 100π cm³
b. 200π cm³
c. 300π cm³
d. 250π cm³
a. 2 cm, 2 cm, 3 cm
b. 4 cm, 5 cm, 9 cm
c. 3 cm, 4 cm, 5 cm
d. 5 cm, 6 cm, 7 cm
15. What is the area of a parallelogram with base 10 cm and height 4 cm?
a. 40 cm²
b. 20 cm²
c. 30 cm²
d. 50 cm²
a. 64 cm²
b. 96 cm²
c. 48 cm²
d. 100 cm²
Page 26 of 73
17. If the coordinates of point A are (2, -1) and B are (6, 3), what is the
length AB?
a. 4
b. 5
c. √32
d. √16
18. A triangle has angles in the ratio 2:3:4. The largest angle is:
a. 80°
b. 90°
c. 100°
d. 120°
a. y = 3x - 2
b. y = 2x - 3
c. y = -2x + 3
d. y = 3x + 2
20. The volume of a cuboid is 240 cm³. If the base area is 30 cm², what is
the height?
a. 6 cm
b. 8 cm
c. 4 cm
d. 12 cm
21. What is the length of the side of a square whose area is 121 cm²?
a. 10 cm
b. 11 cm
c. 12 cm
d. 13 cm
22. What is the volume of a cylinder with radius 3 cm and height 7 cm?
a. 63π cm³
Page 27 of 73
b. 66π cm³
c. 72π cm³
d. 49π cm³
23. Which of the following has all sides and all angles equal?
a. Rectangle
b. Rhombus
c. Parallelogram
d. Square
24. What is the distance between the points (5, 1) and (1, 1)?
a. 4
b. 5
c. 6
d. 3
25. A triangle has two sides measuring 6 cm and 8 cm, and an included
angle of 90°. What is the area?
a. 24 cm²
b. 48 cm²
c. 36 cm²
d. 18 cm²
a. Tangent
b. Radius
c. Diameter
d. Arc
27. The height of a cylinder is 10 cm, and the base area is 25 cm². What is
its volume?
a. 250 cm³
b. 500 cm³
c. 200 cm³
d. 225 cm³
Page 28 of 73
28. What is the exterior angle of a regular polygon with 10 sides?
a. 30°
b. 36°
c. 40°
d. 45°
a. 40 cm²
b. 45 cm²
c. 35 cm²
d. 50 cm²
30. Which figure has only rotational symmetry and no line symmetry?
a. Square
b. Circle
c. Scalene triangle
d. Parallelogram
a. 22 cm
b. 36 cm
c. 29 cm
d. 35 cm
32. How many sides does a polygon have if the sum of interior angles is
900°?
a. 5
b. 6
c. 7
d. 8
a. 25π cm²
b. 100π cm²
Page 29 of 73
c. 50π cm²
d. 75π cm²
34. Which pair of angles are always equal when two lines intersect?
a. Adjacent angles
b. Vertically opposite angles
c. Supplementary angles
d. Complementary angles
a. 180°
b. 360°
c. Depends on number of sides
d. 90°
a. 8π cm²
b. 16π cm²
c. 12π cm²
d. 4π cm²
37. Which quadrilateral has diagonals that bisect each other at right
angles but are not equal?
a. Square
b. Rhombus
c. Rectangle
d. Trapezium
a. 60°
b. 80°
c. 100°
d. 70°
Page 30 of 73
39. What is the total surface area of a cylinder with radius 3 cm and
height 5 cm?
a. 48π cm²
b. 72π cm²
c. 96π cm²
d. 120π cm²
40. What is the volume of a cone with base radius 3 cm and height 9 cm?
a. 27π cm³
b. 81π cm³
c. 36π cm³
d. 90π cm³
41. If the slope of a line is -2, and it passes through (1, 2), the equation is:
a. y = -2x + 4
b. y = -2x + 2
c. y = 2x - 2
d. y = 2x + 4
a. 2 cm
b. 4 cm
c. 8 cm
d. 6 cm
a. Two rectangles
b. Two triangles
c. Two trapeziums
d. Two circles
a. Triangle
b. Square
Page 31 of 73
c. Pentagon
d. Hexagon
a. Half
b. Same
c. Double
d. Four times
46. A rectangle has length 12 cm and diagonal 13 cm. What is its width?
a. 5 cm
b. 6 cm
c. 7 cm
d. 9 cm
47. What is the area of a sector with angle 60° and radius 6 cm?
a. 6π cm²
b. 12π cm²
c. 4π cm²
d. 8π cm²
48. What is the base length of a triangle with area 30 cm² and height 5
cm?
a. 12 cm
b. 10 cm
c. 8 cm
d. 6 cm
49. Which quadrilateral has both pairs of opposite sides equal and
diagonals equal?
a. Rhombus
b. Parallelogram
c. Rectangle
Page 32 of 73
d. Trapezium
a. Remains same
b. Doubles
c. Triples
d. Quadruples
Understanding functions is crucial for mastering a wide range of mathematical problems in IMAT. This
chapter dives deep into different types of functions, their properties, and how to visualize them using
graphs.
📌 Key Concepts:
1. Definition of a Function
A function is a rule that assigns to each input exactly one output. It is often written as f(x) =
expression .
👉 Example: f(x) = 2x + 1 means for every x, the output is double x plus one.
2. Types of Functions
3. Graphs of Functions
Intercepts:
Page 33 of 73
x-intercept: where the graph crosses the x-axis (f(x) = 0)
y-intercept: value when x = 0 (f(0))
4. Transformations
Stretching/Shrinking:
6. Inequalities in Graphs
🔢 IMAT-Style MCQs:
Page 34 of 73
1. Which of the following represents a linear function?
a. y = 2x + 3
b. y = x² − 5x
c. y = √x
d. y = |x|
2. The graph of y = x² is a:
a. Straight line
b. Parabola opening downward
c. Parabola opening upward
d. Circle
a. 9
b. 11
c. 13
d. 17
a. x ≥ 4
b. x > 4
c. x ≤ 4
d. x < 4
a. (3, −4)
b. (3, 5)
c. (−3, −4)
d. (6, 0)
a. f⁻¹(x) = (x − 5)/3
b. f⁻¹(x) = 3x + 5
c. f⁻¹(x) = (x + 5)/3
Page 35 of 73
d. f⁻¹(x) = x/3 − 5
a. (−2, 0)
b. (2, 8)
c. (−4, 4)
d. (−2, −4)
a. −3 ≤ x ≤ 3
b. x > 3
c. x < −3
d. x ≥ 0
a. a > 0
b. a = 0
c. a < 0
d. b > 0
a. f(x) = x²
b. f(x) = √x
c. f(x) = ±√x
d. f(x) = x³
Page 36 of 73
b. x ≥ 0
c. y ≥ 0
d. y > 0
a. (2, 5)
b. (1, 4)
c. (0, 0)
d. (−1, −3)
a. 7
b. 4
c. −4
d. −7
a. Upward
b. Downward
c. To the right
d. To the left
a. f(x) = −x²
b. f(x) = x²
c. f(x) = |x|
d. f(x) = √x
a. (x + 1)²
b. x(x − 1)
c. (x − 1)²
d. (x − 2)²
Page 37 of 73
a. V shape opening upward
b. V shape opening downward
c. Parabola opening upward
d. Line with positive slope
a. Even
b. Odd
c. Neither
d. Constant
a. 2 units up
b. 2 units down
c. 2 units left
d. 2 units right
a. 2x + 1
b. 2x − 1
c. 2x − 2
d. x + 2
a. y = 2f(x)
b. y = f(2x)
c. y = f(x) + 2
d. y = f(x − 2)
Page 38 of 73
24. The graph of y = 1/x is:
a. Linear
b. Quadratic
c. Hyperbola
d. Exponential
a. x = 1 and x = 3
b. x = −1 and x = −3
c. x = 2 only
d. x = −1 only
a. −2
b. 5
c. 2
d. −5
a. 2
b. 4
c. −4
d. −2
a. f(x) = x² + 4
b. f(x) = x² − 4
c. f(x) = x² − 9
d. f(x) = x² − 1
Page 39 of 73
d. y > 0
a. Upward
b. Downward
c. Sideways
d. Horizontally
a. f(x) = x³
b. f(x) = x⁵ − x
c. f(x) = x²
d. f(x) = x³ + x
a. −3
b. 1/3
c. 3
d. −1/3
a. (x − 3)²
b. (x + 3)²
c. x(x − 6)
d. x(x + 3)
a. (−∞, 0)
b. (−∞, −2)
c. (0, ∞)
d. (−∞, 2)
a. 1
Page 40 of 73
b. 4
c. −1
d. 5
a. All x ≠ 0
b. All x ≠ 2
c. All real numbers
d. x > 0
a. (−1, 4)
b. (1, 4)
c. (0, 4)
d. (1, −4)
a. f(x) = x³ − x
b. f(x) = x² + 2x + 1
c. f(x) = √x
d. f(x) = |x|
a. The x-axis
b. The y-axis
c. A vertical line (axis of symmetry)
d. A horizontal line
a. y ≥ 1
b. y ≤ 1
c. y > 1
d. y < 1
Page 41 of 73
41. Which transformation reflects the graph of f(x) = x² across the x-
axis?
a. f(x + 2)
b. −f(x)
c. f(x) − 2
d. f(−x)
42. What is the composite function (g ∘ f)(x) if f(x) = x + 1 and g(x) = x²?
a. x² + 2x + 1
b. x² + 1
c. x² + x + 1
d. x + 2
a. 2 units up
b. 2 units down
c. 2 units left
d. 2 units right
a. x = 2 or x = 3
b. x = −2 or x = −3
c. x = 1 or x = 6
d. x = 5 or x = 1
a. 3
b. −3
c. 0
d. 9
a. 1
b. 2
Page 42 of 73
c. 3
d. −3
a. √x
b. −√x
c. x²
d. 1/x²
a. x = ±3
b. x = ±9
c. x = 3
d. x = −9
a. 2
b. 4
c. 6
d. 2
Probability and statistics are essential tools used to describe uncertainty and to analyze data, which
frequently appear in the IMAT. This chapter covers basic rules of probability, measures of central
tendency, dispersion, and basic interpretations of statistical results.
📌 Key Concepts:
Page 43 of 73
1. Probability Basics
👉 Example: The probability of rolling an even number on a fair die is 3/6 = 0.5
2. Conditional Probability
4. Descriptive Statistics
5. Distributions
6. Data Interpretation
Page 44 of 73
Watch out for "at least" and "at most" type phrasing
🔢 IMAT-Style MCQs:
a. 1/2
b. 1/3
c. 1/4
d. 1/13
2. In a family with two children, what is the probability both are girls?
a. 1/4
b. 1/3
c. 1/2
d. 2/3
3. A box contains 3 red, 2 blue, and 5 green balls. What is the probability
of picking a blue ball?
a. 1/10
b. 2/10
c. 1/5
d. 3/10
a. 10
b. 50
c. 100
d. 5
a. 2
b. 3
c. 4
d. 5
Page 45 of 73
6. A die is rolled. What is the probability of getting a number greater
than 4?
a. 1/6
b. 1/2
c. 1/3
d. 2/3
a. 7
b. 8
c. 5
d. 6
a. 4
b. 5
c. 3
d. 6
a. Bar chart
b. Line graph
c. Histogram
d. Pie chart
10. A fair coin is flipped twice. What is the probability of getting at least
one head?
a. 1/4
b. 3/4
c. 1/2
d. 2/3
Page 46 of 73
a. The square of variance
b. The mean of the data
c. The square root of variance
d. The mode
a. P(A) + P(B)
b. P(A) − P(B)
c. P(A) × P(B)
d. P(A ∪ B)
a. 1
b. 0
c. −1
d. 100
a. 1/13
b. 2/13
c. 4/13
d. 2/52
a. Median
b. Mode
c. Mean
d. Range
a. Mean
b. Median
c. Mode
d. Range
Page 47 of 73
17. If the probability of an event is 0.2, what is the probability it does not
occur?
a. 0.8
b. 0.2
c. 0.5
d. 0.1
a. 0
b. 1
c. Less than 1
d. Greater than 1
a. Height
b. Weight
c. Number of students
d. Time
21. A jar contains 6 red, 3 blue, and 1 yellow marble. What is the
probability of drawing a red marble?
a. 1/10
b. 3/5
c. 2/5
d. 6/10
22. What is the interquartile range (IQR) of the data set {4, 5, 7, 9, 10, 12,
14, 18, 20}?
Page 48 of 73
a. 6
b. 7
c. 10
d. 12
a. 0.2
b. 0.9
c. 0.25
d. 0.6
a. 2
b. 1.5
c. 4
d. 0.5
25. What is the probability of getting exactly two heads when flipping
three fair coins?
a. 1/4
b. 3/8
c. 1/2
d. 1/3
Page 49 of 73
a. 1/4
b. 1/2
c. 3/4
d. 2/3
28. The variance of a data set is 16. What is its standard deviation?
a. 4
b. 8
c. 2
d. 5
a. 0.4
b. 0.6
c. 1.6
d. 0.2
30. The probability of rain tomorrow is 0.25. What are the odds against it
raining?
a. 1:3
b. 3:1
c. 2:3
d. 3:4
a. 7
b. 8
c. 12
d. 20
32. In how many ways can you choose 2 students from a group of 5?
a. 10
Page 50 of 73
b. 5
c. 15
d. 20
a. 2/13
b. 3/13
c. 1/26
d. 1/13
a. Q3 − Q1
b. Max − Min
c. Median − Mean
d. Mean − Mode
a. 3.5
b. 3
c. 4
d. 5
a. 0.5
b. 1
c. 1.5
d. 2
a. 0.7
b. 1.3
c. 0.6
d. 1.0
Page 51 of 73
38. A data set has a symmetric distribution. Which is most likely true?
a. Categorical data
b. Continuous data
c. Qualitative data
d. Discrete variables only
a. 2
b. 3
c. 4
d. 6
a. 6
b. 7
c. 5
d. 4
a. A only
b. A ∩ B
c. Not A
d. A ∪ B
a. 1/2
b. 1/3
c. 2/3
Page 52 of 73
d. 5/6
a. 2
b. 1.87
c. 3
d. 2.5
a. 5
b. 5.5
c. 6
d. 4.5
46. If the probability of an event is 0.75, what are the odds in favor?
a. 3:1
b. 1:3
c. 3:4
d. 1:4
a. 0.5
Page 53 of 73
b. 1
c. −0.2
d. 0
50. If 3 coins are flipped, what is the probability of getting all tails?
a. 1/8
b. 1/6
c. 1/4
d. 3/8
Data analysis is the process of systematically applying statistical and logical techniques to describe and
illustrate, condense and recap, and evaluate data. IMAT questions on data analysis often require
interpreting graphs, calculating basic statistical measures, or applying understanding to real-world
problems.
Key Concepts:
Tables & Graphs: Interpreting bar graphs, histograms, pie charts, line graphs, box plots,
scatterplots
Data Representation:
Trends and Outliers: Recognizing patterns and detecting data points that deviate significantly
from the rest
👉 Example: A box plot shows the median score of a test is 70, with an IQR of 20. This means the middle
50% of scores lie between 60 and 80.
Page 54 of 73
🔢 IMAT-Style MCQs:
a. Range
b. Median
c. Interquartile range
d. Standard deviation
a. Histogram
b. Line graph
c. Pie chart
d. Scatterplot
4. A histogram with a peak on the left and tail on the right is:
a. Symmetric
b. Uniform
c. Right-skewed
d. Left-skewed
a. Mean
b. Median
c. Mode
d. Standard deviation
Page 55 of 73
a. The data is tightly clustered
b. The data is widely spread
c. The data has no variation
d. All data points are equal
a. Histogram
b. Pie chart
c. Box plot
d. Scatterplot
a. 1
b. 2
c. 3
d. 4
a. Part-to-whole relationships
b. Trends over time
c. Frequency distributions
d. Probability models
11. The IQR of a data set is 15. What does this represent?
a. Mean value
b. Middle 50% of data
c. Total spread of data
Page 56 of 73
d. Difference between max and min
a. Positive correlation
b. No correlation
c. Negative correlation
d. Inverse variance
a. 25
b. 50
c. 100
d. 75
a. Median
b. Mode
c. Mean
d. Interquartile range
16. Which graph type is ideal for displaying frequency of discrete data?
a. Pie chart
b. Histogram
c. Bar chart
d. Line graph
Page 57 of 73
a. Connect all points
b. Smooth the data
c. Show direction of relationship
d. Calculate median
a. No correlation
b. Perfect negative correlation
c. Strong positive correlation
d. Weak negative correlation
a. Mean
b. Median
c. Mode
d. Range
21. Which of the following best represents the variability in a data set?
a. Median
b. Range
c. Mode
d. Frequency
a. Ordinal
b. Nominal
c. Discrete
d. Continuous
Page 58 of 73
23. A bell-shaped curve on a histogram usually suggests:
a. Uniform distribution
b. Normal distribution
c. Skewed distribution
d. Categorical data
24. What is the median of the data set: {3, 7, 9, 10, 15, 18, 21}?
a. 9
b. 10
c. 11
d. 15
a. Slow change
b. Constant values
c. Rapid change
d. No variation
a. Pie chart
b. Bar graph
c. Histogram
d. Box plot
a. Mean
b. Median
c. Mode
Page 59 of 73
d. Range
29. If the minimum is 15 and the maximum is 45, what is the range?
a. 30
b. 25
c. 60
d. 15
30. Which measure provides the average squared distance from the
mean?
a. Range
b. Variance
c. Standard deviation
d. Mean absolute deviation
a. Positive correlation
b. Negative correlation
c. No correlation
d. Inverse trend
32. In a class of 30 students, test scores were recorded and the highest
score was 98. This value is:
a. Median
b. Mean
c. Mode
d. Maximum
a. Mean
b. Median
c. Class mark
d. Range
36. Which of the following data types is best visualized using a pie
chart?
a. Categorical
b. Continuous
c. Discrete
d. Ordinal
a. Correlation
b. Central tendency
c. Dispersion
d. Skewness
38. If the mode of a data set is much higher than the mean, it may be:
a. Positively skewed
b. Negatively skewed
c. Normally distributed
d. Uniformly distributed
a. Average
b. The number of times a value occurs
c. Median value
d. Maximum value
Page 61 of 73
40. The data point that occurs most frequently is:
a. Median
b. Mode
c. Mean
d. Range
41. What is the mean of the dataset {6, 8, 10, 12, 14}?
a. 10
b. 12
c. 11
d. 9
42. Which graph would you use to identify a trend in temperature over
several months?
a. Bar chart
b. Line graph
c. Pie chart
d. Histogram
45. What does a pie chart with nearly equal slices indicate?
a. Normal distribution
b. Skewed distribution
c. Uniform distribution
d. Bimodal distribution
a. Median
b. Mean
c. Mode
d. Range
a. Positive skew
b. Negative skew
c. Symmetry
d. No outliers
50. Which measure is least useful when comparing the variability of two
data sets with the same mean?
a. Standard deviation
b. Interquartile range
c. Median
d. Variance
Page 63 of 73
Chapter 7: Measures and Units
This chapter deals with measurement systems, unit conversions, and interpreting physical quantities. In
IMAT, this section often features practical math—converting units, estimating measurements, and
applying formulas involving dimensional analysis.
Key Concepts:
SI Unit Prefixes:
milli (10⁻³), centi (10⁻²), deci (10⁻¹), kilo (10³), mega (10⁶)
Derived Units:
Speed = m/s
Acceleration = m/s²
Force = Newton (kg·m/s²)
Pressure = Pascal (N/m²)
Dimensional Analysis:
Converting Units:
🔢 IMAT-Style MCQs:
Page 64 of 73
1. What is the SI unit of force?
a. Joule
b. Watt
c. Newton
d. Pascal
a. 50
b. 500
c. 5000
d. 50000
a. m²/s
b. m/s
c. m/s²
d. kg·m/s
a. 10
b. 100
c. 1000
d. 10000
a. 180
b. 1800
c. 18
d. 18000
a. Joule
b. Pascal
c. Watt
Page 65 of 73
d. Newton
a. 1,000
b. 10,000
c. 1,000,000
d. 10,000,000
a. Meter
b. Kilogram
c. Second
d. Newton
a. kg/m³
b. kg·m/s
c. N/m²
d. g/cm³
a. 0.12
b. 1.2
c. 12
d. 120
a. 30.48
b. 28.48
c. 25.40
d. 20.48
a. Speed
Page 66 of 73
b. Acceleration
c. Angle (in radians)
d. Force
a. Newton
b. Pascal
c. Joule
d. Watt
a. 7.5
b. 75
c. 750
d. 7500
a. 360
b. 3600
c. 36,000
d. 60
a. Micro
b. Milli
c. Nano
d. Pico
a. Coulomb
b. Volt
c. Ampere
d. Ohm
Page 67 of 73
a. 16200
b. 18000
c. 14400
d. 12600
19. A rectangular tank has a volume of 2.5 m³. How many liters does it
hold?
a. 250
b. 2500
c. 25000
d. 250000
a. 10
b. 20
c. 30
d. 40
a. Watt
b. Volt
c. Joule
d. Ampere
a. 0.15
b. 1.5
c. 15
d. 1500
a. 5 Pa
b. 20 Pa
c. 0.2 Pa
d. 12 Pa
Page 68 of 73
24. Which SI prefix means one-billionth?
a. Milli
b. Micro
c. Nano
d. Pico
a. 250 m
b. 2500 m
c. 25000 m
d. 25 m
a. Ampere
b. Hertz
c. Watt
d. Newton
a. 0.25
b. 2.5
c. 25
d. 250
a. Force × distance
b. Mass × acceleration
c. Pressure × volume
d. Both a and c
a. 300
b. 500
c. 600
Page 69 of 73
d. 120
a. Ohm
b. Volt
c. Ampere
d. Coulomb
a. [M L T⁻¹]
b. [L T⁻¹]
c. [L T]
d. [M L T]
a. 3600
b. 3,600,000
c. 360
d. 36,000
a. 600
b. 6000
c. 60,000
d. 600,000
a. Density
b. Strain
c. Pressure
d. Velocity
a. 25
Page 70 of 73
b. 20
c. 15
d. 30
a. Celsius
b. Fahrenheit
c. Kelvin
d. Calorie
a. Joule·second
b. Watt
c. Newton·meter
d. Joule/hour
a. 1 kg/m³
b. 10 kg/m³
c. 100 kg/m³
d. 1000 kg/m³
a. 7500
b. 9000
c. 7200
d. 5400
a. Joule
b. Pascal
c. Kelvin
d. Watt
Page 71 of 73
a. Candela
b. Lux
c. Lumen
d. Watt
a. 1 kg = 100 g
b. 1 L = 1000 mL
c. 1 m = 10 cm
d. 1 h = 1000 s
43. If you multiply voltage and current, the unit of the result is:
a. Joule
b. Watt
c. Coulomb
d. Volt
a. 540
b. 5400
c. 54000
d. 5.4
a. Farad
b. Coulomb
c. Ampere
d. Ohm
a. N/m²
b. kg·m/s²
c. J/m³
d. N/m
Page 72 of 73
47. What is the unit of energy commonly used in food labeling?
a. Calorie
b. Joule
c. Watt
d. Newton
a. 3 hours
b. 10,000 seconds
c. Both equal
d. Cannot determine
a. Volume
b. Speed
c. Area
d. Force
a. Force
b. Work
c. Momentum
d. Acceleration
Page 73 of 73