Householder’s Method:
α= -sgn(a(k)k+1, k ){∑𝑛𝑗=𝑘+1(𝑎(k)jk )2 }1/2
   1     1
r=(2α2 -2α a(k)k+1, k )1/2
w1(k) =w2(k) =…=0
wk+1(k) =(a(k)k+1,k -α)/2r
wj(k) =a(k)jk /2r, for j=k+2,k+3,…
P(k) =I-2w(k) (w(k) )t
A(k+1) =P(k) A(k) P(k)
Then, α= -sgn(a21 )(∑𝑛𝑗=2 𝑎2j1 )1/2            α= -sgn(a32 )(∑𝑛𝑗=3 𝑎 2j2 )1/2
   1     1                                         1    1
r=(2α2 -2α a21)1/2                             r=(2α2 -2α a32)1/2
w1 =0                                           w1= w2 =0
w2 =(a21 -α)/2r                                 w3 =(a32 -α)/2r
wj =aj1 /2r, for j=3,4,…n                       wj =aj2 /2r, for j=4,…n
P(1) =I-2w(1) (w(1) )t                         P(2) =I-2w(2) (w(2) )t
A(2) =P(1) A P(1)                              A(3) =P(2) A(2) P(2)
Euler Method:
w 0= α            , h=(b-a)/n
wi+1=wi+hf(ti,wi),for t=0,1,…,n-1
Modified Euler Method :
w 0= α           , h=(b-a)/n
             ℎ
wi+1=wi+2 [f(ti,wi)+ f(ti+1,wi+ hf(ti,wi))],for t=0,1,…,n-1
Runge Kutta Order Four:
w0=α                , h=(b-a)/n
                                  ℎ     k1                  ℎ         k1
k1= hf(ti,wi)            k2=hf(ti+2, wi+ 2 )     k3=hf(ti+2, wi+ 2 )        k4= hf(ti+1 ,wi+k3)
             1
wi+1= wi+6 ( k1+2k2+2k3+k4)
Runge Kutta Order Two:
w0=α              , h=(b-a)/n
k1= hf(ti,wi)             k2=hf(ti+ℎ, wi+k1)
             1
wi+1= wi+2 ( k1+k2)
Adams Bashforth Two Step:
w0=α ,w1=α1
         ℎ
wi+1=wi+2 [3f(ti,wi)- f(ti-1,wi-1)] , for i=1,2,…,n-1
Adams Bashforth Three Step:
w0=α ,w1=α1 , w2=α2
           ℎ
wi+1=wi+12 [23f(ti,wi) - 16f(ti-1,wi-1)+5f(ti-2,wi-2)] , for i=2,…,n-1
 Adams Bashforth Four Step:
w0=α ,w1=α1 , w2=α2 , w3=α3
           ℎ
wi+1=wi+24 [55f(ti,wi) - 59f(ti-1,wi-1)+37f(ti-2,wi-2) -9 f(ti-3,wi-3)] , for i=3,…,n-1
 Adams Bashforth Five Step:
w0=α ,w1=α1 , w2=α2 , w3=α3 , w4=α4
           ℎ
wi+1=wi+         [1901f(ti,wi) - 2774f(ti-1,wi-1)+2616f(ti-2,wi-2) -1274 f(ti-3,wi-3) +251 f(ti-4,wi-4)]
         720
for i=4,…,n-1
Adams Moulton Two Step:
w0=α ,w1=α1
           ℎ
wi+1=wi+12 [5f(ti+1,wi+1) +8f(ti,wi)- f(ti-1,wi-1)] , for i=1,2,…,n-1
Adams Moulton Three Step:
w0=α ,w1=α1 , w2=α2
          ℎ
wi+1=wi+24 [9f(ti+1,wi+1) +19f(ti,wi) - 5f(ti-1,wi-1)+f(ti-2,wi-2)] , for i=2,…,n-1
 Adams Moulton Four Step:
w0=α ,w1=α1 , w2=α2 , w3=α3
          ℎ
wi+1=wi+720 [251f(ti+1,wi+1)+646f(ti,wi) - 264f(ti-1,wi-1)+106f(ti-2,wi-2) - 19f(ti-3,wi-3)]
for i=3,…,n-1