0% found this document useful (0 votes)
39 views7 pages

Integration Sahil Khola

The document contains solutions to various integral calculus problems, demonstrating techniques and tricks for solving each integral. It covers a range of integrals including exponential, trigonometric, and rational functions, providing step-by-step solutions. Each question is followed by a specific method or trick to simplify the integration process.

Uploaded by

Sahil Khola
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views7 pages

Integration Sahil Khola

The document contains solutions to various integral calculus problems, demonstrating techniques and tricks for solving each integral. It covers a range of integrals including exponential, trigonometric, and rational functions, providing step-by-step solutions. Each question is followed by a specific method or trick to simplify the integration process.

Uploaded by

Sahil Khola
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

Question 1 :- ∫ e x ( 12 x 2+29 x +5 ) dx

Solution :- ∫ e x ( 12 x 2+29 x +5 ) dx

∫ e x ( 12 x 2+5 x +24 x +5 ) dx

∫ e [ ( 12 x +5 x ) + ( 24 x +5 ) ] dx
x 2

TRICK
∫ e x [ f ( x ) + f ' ( x ) ] dx=e x ⋅f ( x ) +C
2
We have f ( x )=12 x +5 x
'
Then f ( x )=24 x +5
Hence the solution is

e x ( 12 x 2 +5 )

Question 2 :- ∫ cos x−( )


−1 x
dx
√ 1−x 2

Solution :- ( )
x
∫ cos−1 x− dx
√ 1−x 2
x
∫ cos −1 xdx− ∫ dx
√ 1−x 2
TRICK

∫ [ f ( x )+ x f ' ( x ) ] dx=xf ( x ) +C
−1
Here have f ( x ) =cos x
' −1
Then f ( x )=
√1−x 2
Hence the solution is
−1
x cos x+ C

Question 3 :- ∫
1
2
dx
x – 15 x +56

Solution :-
1
∫ 2
dx
x −15 x+56
1
∫ dx
( x – 7) ( x – 8)
TRICK
1
=
1 1
(

1
( x – α) ( x – β ) (α – β ) x – α x – β )
1
Here we have f ( x ) =
( x−7 ) ( x – 8 )
Which can be represented as

f ( x )=
1
=
1
(1

1
( x – 7 ) ( x – 8 ) ( 8−7 ) x−8 x−7
=
1
−)(
1
x−8 x−7 )
Integrating

∫ ( x 1– 8 − x 1– 7 ) dx
1 1
∫ dx−∫ dx
x–8 x−7
l og ( x−8 ) −log ( x−7 ) + c

(x – 8 )
l og +c
(x – 7 )
Question 4 :- Which one is true statement
π
I 1=∫ cos 2 x dx , 0< x <
4
π
I 2=∫ sin 2 x dx , 0< x<
4
( 1 ) I 1=I 2 (2) I 1> I 2

(3) I 1< I 2 ( 4 ) ¿

Solution :-
sin 2 x
I 1=∫ cos 2 xdx= +C
2
−cos 2 x
I 2=∫ sin 2 xdx = +C
2
Red line denotes I 1

Blue line denotes I 2

Hence the correct answer is option (2)


Question 5 :- ∫ √ 2 x+3 ( 4 x +5 ) dx

Solution :- ∫ √ 2 x+3 ( 4 x +5 ) dx
TRICK
∫ √ Linear ( Linear ) dx

∫ √ ax +b ( cx+ d ) dx

Assume √ ax+ b=t


2
ax +b=t
2
t −b
x=
a
Now we can replace cx +d by

( )
2
t −b
cx +d =c +d
a

Here √2 x+ 3=t
2
t −3
¿ x=
2

( )
2
t −3
4 x+5 ¿ 4 +5
2
¿ ¿
2t
dx ¿ dt
2
dx ¿ tdt

Now, we can accumulate above results in main equation

∫ √ 2 x +3 ( 4 x+5 ) dx
∫ t2 ( 2 t2 −1 ) tdt
∫ t 3 ( 2 t 2−1 ) dt
¿∫ ( 2 t −t ) dt
5 3

6 4
t t
¿ −
3 4
¿

Question 6 :- ∫ e3 x sin 9 x dx

Solution :- TRICK is
ax
ax e (
∫ e ⋅ sin bx dx= 2 2
a sin bx−b cos bx ) +c
a +b

In this problem a = 3 and b =9

Hence
3x
3x e
∫ e ⋅sin 9 x dx= 2 2 ( 3 sin 9 x−9 cos 9 x ) +c
3 +9
3x
3x e (
∫ e ⋅sin 9 x dx= 3sin 9 x−9 cos 9 x )+ c
90

Question 7 :- ∫ e3 x cos 9 x dx

Solution :- TRICK is
ax
ax e (
∫ e ⋅ cos b x dx= 2 2
a cos bx +b sin bx ) +c
a +b

In this problem a = 3 and b =9

Hence
3x
3x e (
∫ e ⋅cos 9 x dx= 2 2
3 cos 9 x +9 sin 9 x ) +c
3 +9
3x
3x e (
∫ e ⋅cos 9 x dx= 3 cos 9 x +9 sin 9 x )+ c
90

Question 8 :-
dx
∫ ( 17 )
x x +1

Solution :-
dx
∫ ( 17 )
x x +1

dx
∫ n∈ N,
x ( x n +1 )

Note :- the value of “ n “ must be NATURAL number to use the below concept.

Take x n common & put 1+ x−n=t

Take x 17 common

dx

x
18
( 1+
x
1
17 )
dx

x ( 1+ x−17 )
18
−17
Put 1+ x =t
−18
−17 x dx=d t

−18 −dt
x dx=
17

Using above results, we can write

dx dx −dt
∫ ( 17 ) =∫ 18 ( −17 ) =∫ 17 t
x x +1 x 1+ x

−1
= log t + c
17

= log 1+ 17 + c
( )
−1 1
17 x

Question 9 :-
x
∫ dx
√ x+2+ √ x +1

Solution :-
x
∫ dx
√ x+2+ √ x +1
In such type of question, we have to perform Rationalisation to
remove sq. root in denominator.

dx = ∫ ×√
x+ 2−√ x+ 1
x x
∫ dx
√ x+2+ √ x +1 √ x+2+ √ x +1 √ x+ 2−√ x+ 1

= ∫
x ( √ x+2−√ x +1)
dx
( x+ 2 )−( x+1)

=
1
∫ {[ ( x+ 2 )−2 ] √ x +2−[ ( x+1 ) −1 ] √ x +1 } dx
2−1

Here x = x + 2 – 2 and x = x + 1 – 1
(Extended twice to ease calculation).

=
1
∫¿
1

= ¿

=
2
¿
5
[ ]
1−tan2 x
Question 10 :-
1
∫ det 2 dx
cos 2 x 2
1+ tan x

[ ]
1−tan 2 ⁡x 1
Solution:- det 2
cos ⁡2 x 2
1+ tan ⁡x

( )
2
1−tan ⁡x
= 2 2
−cos ⁡2 x
1+ tan ⁡x

= 2 cos 2x – cos 2x

= cos 2x

[ ]
1−tan2 x 1
∫ det 2 dx= ∫ cos 2 x dx
cos 2 x 2
1+ tan x

sin ⁡2 x
∴ ∫ cos ⁡2 xdx= +c
2

You might also like