Fanout Microbga
Fanout Microbga
1
Notice
2
Overview
0.5 mm
0.4 mm
0.3 mm
0.25 mm
3
Engineering Considerations For Via Structures
Microvias:
Channel density enhanced
through smaller geometry
Limited Z axis connectivity
Blind & Buried via’s:
Channel density enhanced
Still geometry limited
Limited Z axis connectivity SMV:
Channel density enhanced
Once you leave through hole designs through smaller geometry
the goal is to find the via combination Unlimited Z axis connectivity
that maximizes routing channel density
at the lowest cost 4
Density Trends In Array Packages
Assembled Cross-Section View
BGA
1.27 mm
Silicon Die
BGA
PCB 0.20 mm
0.50 mm
PCB XeTel XeTel
Drill dia. 0.010” (250 µm) 0.010” (250 µm) 0.008” (200 µm)
Pad dia. 0.022” (550 µm) 0.019” (475 µm) 0.018” (450 µm) 0.010” (250 µm)
Line width 0.004” (100 µm) 0.004” (100 µm) 0.0045” (112 µm) N/A
Space 0.004” (100 µm) 0.004” (100 µm) 0.0045” (112 µm)
Escape Only !
Thickness Up to 0.100” Up to 0.100” Up to 0.062”
6
447
45 8
Laser Drilling Technology & Microvias
Laser Drilled Blind Via from the outer layer to an inner layer
150 µm (0.006”) diameter laser drill (range 100 µm (0.004”) – 200 µm (0.008”)
Laser microvia’s terminate to the underlying pad without penetrating the copper
9
Microvia Technology
Microvia Types
Standard – Single Lamination cycle (no Buried Via)
Staggered or stair-step
Off-set Microvias
Deep Microvias
10
Microvia Generations
12
Microvia Types
13
Second Generation Microvias
Definition:
0.005” (125 µm) laser drilled MicroVia
(solid copper plate)
14
Stacked MicroVia (SMV®) Technology
Planar Microvia
Electroplated Copper via filling Mechanism
Advantages:
(0.65 mm, 0.5 mm, 0.4 mm, 0.3 mm & 0.25 mm)
Allows Design Fan-out on multiple layers using 0.010” (250 µm), 0.008”
(200 µm), and 0.007” (175 µm) pad diameters
16
Stacked MicroVia (SMV®) Technology
Design Guidelines:
Standard
0.010” (250 µm) Pad diameter & 0.005” (125 µm) laser drill
Advanced
0.0086” (218 µm) Pad diameter & 0.005” (125 µm) laser drill
0.007” (175 µm) Pad diameter & 0.004” (100 µm) laser drill
Pad diameters are driven by device pitch, drill diameter driven by dielectric thickness
17
0.5 mm BGA
Design Guidelines
IPC 6012 / 6016
Class 2 & 3
18
0.5 mm Pitch Guidelines
19
Option A - Preferred
50 µm (0.00196”)
300 µm (0.0118”)
sm clr
BGA Pad
75 µm (0.003”) trace
83 µm (0.0033”)space
Utilize Microvia SMV® Technology Requires LDI Solder Mask +/- 25 µm (0.001”)
External
21
Option C reduces cost due to offset
External 22
0.5 mm BGA
(0.0197”)
250 µm (0.0098”)
laser drill landing
75 µm (0.003”) trace
83 µm (0.0032”) space
Internal
23
Microvia Technology - 4 Row 256 I/O
24
Microvia Technology - 4 Row 256 I/O
25
0.5 mm BGA Design 6 x 6
Layer 1
125 µm (0.005”)
Laser Drill
26
0.5 mm BGA Design 6 x 6
1 Track Routing
Layer 2
0.003” (75 µm) trace
27
Lowest cost due to one lamination cycle
1+6+1
Solder mask
Offset Microvias
Layer 1
Layer 1 - 2
0.0025” Ref.
Layer 8 - 7 Layer 2
0.010” pad 0.010” Ref.
Layer 3
0.005” laser drill 0.008” Ref.
Layer 4
0.010” Ref.
Layer 5
0.008” Ref.
Layer 6
0.010” Ref.
Layer 7
0.0025” Ref.
Layer 8
Solder mask
28
Lowest cost due to one lamination cycle
1+6+1
Solder mask
Microvias Via-in-pad
Layer 1 - 2 Layer 1
0.0025” Ref.
Layer 8 - 7 Layer 2
0.010” pad 0.010” Ref.
Layer 3
0.005” laser drill
0.008” Ref.
Layer 4
0.010” Ref.
Layer 5
0.008” Ref.
Layer 6
0.010” Ref.
Layer 7
0.0025” Ref.
Layer 8
Solder mask
29
Adds cost due to Additional Processing
Solder mask
3/8 oz Layer 1
0.0025” Ref. Layer 2
3/8 oz
0.004” Ref.
Layer 3
½ oz 0.006” Ref.
Layer 4
0.004” Ref.
Layer 5
½ oz 0.006” Ref.
Layer 6
0.004” Ref.
3/8 oz Layer 7
0.0025” Ref.
3/8 oz Layer 8
Solder mask
Solder mask
Through-Hole Via
0.018” pad
0.008” drill
33
0.4 mm Pitch Guidelines
0.4 mm BGA
Design Guidelines:
• Standard SMV®
0.009” (225 µm) external & 0.011” internal (275 µm) Pad diameter &
0.005” (125 µm) laser drill
0.009” (225 µm) external & 0.0086” internal (218 µm) Pad diameter &
0.005” (125 µm) laser drill
35
SMV™ Technology Capable of multiple layers
0.4 mm BGA
0.0157”
0.004” (100 µm) trace
0.004 (100 µm) space
0.0157”
0.4 mm BGA
Layer 2
Layer 3
Layer 4
Layer 5
38
12 X 11 0.4 mm pitch
39
12 X 11 0.4 mm pitch
40
12 X 11 0.4 mm pitch
41
12 X 11 0.4 mm pitch
42
12 X 11 0.4 mm pitch
43
12 X 11 0.4 mm pitch
44
0.4 mm BGA
Design Guidelines
Advanced Technology
Adds Cost
45
SMV™ Technology Capable of multiple layers
0.4 mm BGA
0.0157”
0.004” (100 µm) trace
0.004 (100 µm) space
Adds $$$$$$$
Recommend fan out on each layer using Inverted Pyramid approach 47
Six Layer SMV® Construction 0.4 mm pitch
Stacked MicroVias
Layer 1 - 2 & 2 - 3
0.009” external
0.011” pad internal
0.005” laser drill Two plating, drilling, & Lamination Cycles,
Solid Copper Plate
Solder mask
3/8 oz L1-2 L1-3 L1-6 Layer 1
Lam 2
0.0025” Ref.
3/8 oz Layer 2
0.0025 Ref. Lam 1
1 oz
Layer 3
0.038” Ref.
1 oz Layer 4
0.0025” Ref.
3/8 oz Layer 5
0.0025” Ref.
3/8 oz Layer 6
Solder mask
Through-Hole Via
0.018” pad
3/8 oz copper plates up to 0.0016” – 0.0024” 0.008” drill
Stacked MicroVias
Layer 1 - 2
Layer 2 – 3
0.4 mm Pitch
Layer 3 – 4 Solder mask
Layer 8 - 7 3/8 oz Layer 1
Layer 7 – 6 0.0025” Ref.
3/8 oz Layer 2 L4
Layer 6 - 5
0.0011” pad 3/8 oz 0.0025” Ref.
Layer 3 L3
0.005” laser drill 0.0025” Ref.
3/8 oz Layer 4 L2
Solid Cu Plate
0.0025” Ref. L1
Layer 5
½ oz
0.006” Ref.
Layer 6
3/8 oz 0.0025” Ref.
Layer 7
Buried Via 3/8 oz 0.0025” Ref.
Layer 4 - 5 Layer 8
3/8 oz 0.0025” Ref.
0.012” pad Layer 9
0.006” mech drill 3/8 oz 0.0025” Ref.
Solid cu plate Layer 10
or laser drill Solder mask
Solid cu plate
Stacked MicroVias
Layer 1 - 2 0.4 mm BGA Advanced Construction
Layer 2 - 3
Layer 3 – 4 Solder mask
Layer 4 – 5 Layer 1 Mixed
3/8 oz
Layer 5 – 6 0.0028” Ref.
0.011” pad internal 3/8 oz Layer 2 Mixed
0.0028” Ref.
0.005” laser drill 3/8 oz Layer 3 Pln
Solid copper plate 0.0028” Ref.
3/8 oz Layer 4 Sig
0.0028” Ref.
3/8 oz Layer 5 Sig
0.0028” Ref.
Layer 6 Pln
½ oz 0.005” Ref.
Layer 7 Pln
Stacked MicroVias 0.0028” Ref.
3/8 oz Layer 8 Sig
Layer 13 – 12 0.0028” Ref.
Layer 12 – 11 3/8 oz Layer 9 Sig
Layer 11 – 10 0.0028” Ref.
3/8 oz Layer 10 Pln
Layer 10 – 9 0.0028” Ref.
3/8 oz Layer 11 Mixed
Layer 9 - 8 0.0028” Ref.
0.011” pad internal 3/8 oz Layer 12 Mixed
0.005” laser drill Solder mask
Solid copper plate Layer 5- 8 = through holes
0.016” pad Layer 1- 12 = through holes
0.006” drill 0.018” pad
0.008” drill
Finish Thickness = 0.054” +/- 0.005” 50
“Full Stack” SMV® Example
Full Build
0.005” (125 µm) Laser drill
0.0025” (64 µm) dielectric
0.006” (150 µm) dielectric
0.006” (150 µm) Mech drill
0.3 mm BGA
Design Guidelines
IPC 6011 / 6012
Class 2
53
Stacked MicroVia (SMV®)
0.003” trace or
0.004” trace
0.003” space
External Layer 1 54
Stacked MicroVia (SMV®)
0.003” trace or
0.004” trace
0.003” space
Internal Layer 2 55
Stacked MicroVia (SMV®)
0.0118”
0.003” trace or
0.004” trace
Internal Layer 3
56
0.25 mm BGA
Design Guidelines
IPC 60112/ 6016
Class 2
57
Stacked MicroVia (SMV®)
0.003” trace or
0.004” trace
0.00284” space
External Layer 1
58
Stacked MicroVia (SMV®)
0.00984”
0.003” trace or
0.004” trace
0.00284” space
Internal Layer 2
59
Stacked MicroVia (SMV®)
0.00984”
0.003” trace or
0.004” trace
Internal Layer 3 60
Stacked MicroVia (SMV®)
0.25 mm Pitch
Solder mask
Microvias
Layer 1 - 2 3/8 oz Layer 1
Layer 2 - 3 0.0025” Ref.
Layer 3 - 4 3/8 oz Layer 2
0.0068” pad 0.0025” Ref.
3/8 oz Layer 3
0.004” laser drill 0.0027” Ref.
Layer 4
½ oz 0.004” Ref.
Layer 5
0.004” Ref.
Layer 6
½ oz 0.004” Ref.
Layer 7
0.0025” Ref.
3/8 oz Layer 8
0.0027” Ref.
3/8 oz Layer 9
0.0025” Ref.
3/8 oz Layer 10
Solder mask
Through-Hole
Layer 1 - 10
0.018” pad
0.008” mech drill
Finish Thickness = 0.044 +/- 0.005
Material = High Temperature FR4 61
Stacked MicroVia (SMV®)
0.25 mm Pitch
Stacked MicroVias
0.0068” pad
0.004” laser drill
Solid Cu Plate Solder mask
3/8 oz Layer 1
0.0025” Ref.
3/8 oz Layer 2
0.0025” Ref.
3/8 oz Layer 3
0.006” Ref.
3/8 oz Layer 4
0.0025” Ref.
3/8 oz Layer 5
0.0025” Ref.
3/8 oz Layer 6
Solder mask
Microvia Sub-lamination
Interface Techniques
64
Microvia: Sub-Lamination Interface
Build-up dielectric layers are generally 0.0025” (64µm) to 0.003” (75µm) thick
The recommended total number of lamination cycles that any one part of the
structure should experience is 3 and 4 – 5 for advanced structures
• This approach requires via fill and wrap plating Stacked MicroVia
• CTE issues can be a problem on thick boards Through via
Via-In-Pad
Layer +2
Prepreg
Layer +1
Prepreg
Layer 1
Prepreg
Layer 2
Sub-Lamination
Laminate Core
Layer 3
Prepreg
Layer 4 2+8+2
Laminate Core
Layer 5
Prepreg
Layer 6
Laminate Core
Layer 7
Prepreg
Layer 8
Prepreg
Layer +1
Prepreg
Layer +2
Layer +2
Prepreg
Layer +1
Prepreg
Layer 1
Prepreg
Layer 2
Sub-Lamination
Laminate Core
Layer 3
Prepreg
Layer 4 2+8+2
Laminate Core
Layer 5
Prepreg
Layer 6
Laminate Core
Layer 7
Prepreg
Layer 8
Prepreg
Layer +1
Prepreg
Layer +2
Preferred Construction 69
Microvia Sub-Lamination Interface: Offset Via Stacked
Layer +2
Prepreg
Layer +1
Prepreg
Layer 1
Prepreg
Layer 2
Sub-Lamination
Laminate Core
Layer 3
Prepreg
Layer 4
Laminate Core
Layer 5
Prepreg
Layer 6
Laminate Core
Layer 7
Prepreg
Layer 8
Prepreg
Layer +1
Prepreg
Layer +2
Preferred Construction 70
Microvia Sub-Lamination Interface: Sub-Lam Microvia
Layer +2
Prepreg
Layer +1
Prepreg
Layer 1
Prepreg
Layer 2
Sub-Lamination
Laminate Core
Layer 3
Prepreg
Layer 4
Laminate Core
Layer 5
Prepreg
Layer 6
Laminate Core
Layer 7
Prepreg
Layer 8
Prepreg
Layer +1
Prepreg
Layer +2
2 + 8 + 2 or 12 Layer Construction
Summary
The key to a successful Design is the right combination of Via structures & paths,
trace width & space, drill diameter, pad diameter, anti-pad, and aspect ratio. This will
maximize routing density, improve electrical characteristics and allows the PCB to be
fabricated with high yields for the lowest cost in a timely manner.
72
SOLUTIONS BEYOND LIMITS
Thank You!
www.viasystems.com
73