Concavity and Inflection
Concavity and Inflection
CO NC AV IT Y A N D
IN FL EC TI O N PO IN TS
3.1 : Introduction •
In our earlier class es, we have used the sign of the seco
•
nd deriv ative at a criti cal poin t to disc over
er the func tion /has a max imum or mini mum at that point. For draw ing the nece ssary conc lusio n,
wheth
appl ied the first deriv ative test. We shal l now
we rega rded /" as the deriv ative of the func tion /' and then
conclusion, which would give us an idea abou t
use the monotonicity cons idera tions off ' to draw another
the shape of the graph of the function f
mine the type ·of grap h, the given func tion
In this chapter, we shal l use the seco nd derivative to deter
rentiable in its domain.
f has. We shall assume that the func tion / is twic e diffe
whether the grap h offis risin g or falling.
We begin first by show ing how the sign of/ ' is relat ed to
tion
3.1.1 : Increasing func tion and Dec reas ing func
eas for a decr easin g function the grap h
For an increasing function, the grap h ofy = f{x) rises, wher
ofY =.f{x) falls.
Thus, we have the following definition:
Definition:
Let a func tion /be defined on an interval I and let xi' x 2
EI.
Then f is said to be
(i) increasing on I if x I < x 2 ⇒ f{x) ~f{x2) (ii) decreasing on I if x 1 < x2 ⇒ J(x) ""2::.j(x 2)
I
... ) x_
(
~n strictly increasing on I if/(x 1) <j(x2 ) whenever x 1 < 2
x < x2_
(iv) strictly decreasing on I if/(x 1) > j(x2 ) whenever 1
y y
f (xi) i---- --- f(x1) 1--............_
f (x1)i-------"
I (x2) 1 - - - - + - -___,,.
⇒ N1 ) > f{x } d
· off ' for eter nun·1·ng the gra ph of f to be rising or
Now let us see the role of the sign falling
·
Fig. 3.2(a)
In fig. 3.2 (a), wh enf is increasing on (xl' x
Fig . 3.2 (b)
) the gra ph of/ wil l be incl
2 ined upw ard and the graph
has tang ent lines with pos itive slope on
(xl' xi) i.e., tan 0 > 0 i.e., f' (a) > 0
Similarly, wh enf is decreasing [see fig. 3.2
(b)], the incl inat ion of the tan gen t toy =
poin t Pis an obtuse angle and tan 0 < 0 i.e., ./{x) at any
f' (a) < 0.
Thu s, it is reas ona ble to exp ect f to be incr
easi ng on I if J' (x) > O and dec reas ing on I if
f' (x) < 0, for allx EI.
Hence, we hav e the following theorem:
Theorem - 1 : [Monotone Function Theorem
]
Let /be differentiable on the interval I= (a,
The n b).
I
-------~~------?
· -1\ Jl
x-axis
I'-..___../
The critical numbers divides x - axis into three parts. i.e., (-oo, -1), (- 1, 1) and (1, 00)
y
y
-4
0
-- -- -- -- ~x
. - 3•3 (a) Fig. - 3.3 (b)
Fig.
Definition - 1:
If/ is differentiable on the interval (a, b), then the graph of/ is
al
(a) concave upward on (a, b) if/'i s increasing on the interv
(b) concave downward on (a, b) if/'i s decreasing on (a, b).
Definition - 2:
graph of the function f is above the
A function f is said to be concave up on an interval if the
. .
tangent at each point of the interval. graph of the funct10n below the
/ 1s
A function/ is said to be concave down on an interval if the
tangent at each point ~f the interval.
(b)]
Consider two increasing functions [see fig. 3.4 (a) and fig. 3.4
y y
- .i-- - - - --~ x
0
Fig.-3.4 (a) Fig.-~.4 (b)
In case of the two functions above, their concavity relates to the r~te of ~~rease .
Since both are increasing, the first derivative of both functions ts pos.ittve. The first function
[fig. 3.4(a)] increases at an increasing rate, because the slope of the tangent line becomes steeper and
steeper as the values of x increases.
So the first derivative of the first function is increasing. Thus, the derivativ e of the first derivative
'
i.e., the second derivative is positive. This function is concave up. '
The second function [fig. 3.4(b)] increases at an decreasing rate, so that the first derivative of the
second function is decreasing, because the slope of the tangent line becomes less and less steeper as x
increases. So the derivative of the first derivative i.e., second derivative is negative. This function is
concave down.
Similarly, let us consider two decr~asing functions [see fig. 3.5(a) and fig. 3.5 (b)]
y y
a
L.J.~ b
Fig. - 3.6
and concave down on (b, oo).
the function shown in Fig. 3.6 is concave up on (a, b) b))
The point at which a function is changing concavity is called the inflection point. Hencce (b,./{
is the inflection point.
Definition - 3 :
of/, where the concavity changes i.e., the
~ inflection point is a point P(c, /{c)) on the graph
n on another side of P.
graph Is concave up on one side of p and concave dow
.
At such a point, either f" (c) = O or f" (c) does not exist
point c is such that, f" (c) is either zero or undefmed , then c is the critical point off ' . We call
If a
that f' and f" exist, then we have the following
such c as a second order critical number. So iff is such
three cases:
Case-I·
• . • · e This function is concave down befi
The sign off" is changing from negative to pos ittv · ore c
· t t x = c [see fig. 3.7 (a)].
1
. .
concave up after c and has an mflect10n pom a
-1-
f"
I C
Concave up
Concave down
Inflection at c
Fig. - 3. 7(a)
Case-II:
The sign off" is changing from positive to negative. This function is concave up before c, concave
down after c and has an inflection point at x = c. [see Fig. 3.7 (b)]
f" +
I Concave up
C
Concave up f Concave down c Concave down
no inflection at c no inflection at c
Fig. - 3.7(c) Fig. - 3. 7(d)
Example- 2:
• Let.f{x) = x4
f'(x) = 4x3 and f" (x) = 12x2
Now f"(x)=0 ⇒ x=0
4
0 f (x) = x :/has inflection at (0, 0)
Fig. - 3.8
of J' .
Note : A function does not necess arily have an inflection point at a critical point
Exam ple-3:
I
• Letj{x) = - ,x E R - {O}
X
I 2
f'(x) = -z, f" (x) =-3
X
X
Clearly
(i) f" (x) > 0 if X > 0
(ii) f" (x) * 0 for any xER- {O} and
(iii) f" (x) < 0 if X < 0
exists for all
(i) implies the graph of/ is concav e upwar d in (0, oo ). From (ii) and the fact that/"
x in the domai n of/, we conclu de that the graph has no points of inflecti
on. (iii) implies that
the graph of/ is concav e downw ard in (-oo, 0). [see fig. 3.9]
y
Y'
Fig. - 3.9
- CQl rJ
3.10 ~I
3.2.2 : Procedure for finding inflection points
Step - 1:
Compute/' (x) and find all points in the domat·n off, w here e1t· her /" (c) = 0 or
/' (c) ~ n~
exist.
Step- 2: . .
For each number c obtained in step I, deternune the sign off " to the left of x = c and to the .
of x = c. If/' (x) > 0 on one side and/ ' (x) < 0 on the other side, then the point
(c, J{c)) ::&In
Remark:
inflection point off
~
If f' does not change sign at c, then f does not have an inflection point at (
c, j(c)).
Problem - 4 : Determine the concavity and the inflection points of the functi
on f defined by
j{x) = 3x4- 4x2 + 1
Solution : ./{x) = 3x4 - 4x2 + 1
:. f'(x) = 12.x3 - 8x and f" (x) = 36x2 - 8
To find inflection points, we have to find second order critical numbers wher
e/" (x) = 0
Now, f'(x)= O ⇒ 9.x'-2=0 Is
2 12.
⇒x2 =- ⇒x =+-"-L
9 - 3
Concave
Concave up I down Concave up
E I I · I I 1. I )
2 -l -0.47 0 0.47 1 2
Fig. - 3.10
+f]=3(- 4
f J- (- f J +I =~ ~- : +I=::= ;1
an d{ f]=3( f J - 4( fJ +I = ;
So, ( - f' ;7] f' 2~]
and ( are inflection points.
of the cur ve y = (x + 1) tan-Ix
Prohlem - 5 : Fin d the poi nts of inflection
Solution ; We hav e
y = (x + 1) tan - x =j{ x) (say )
1
1 x+ l
+ tan-Ix = + tan-Ix
f' (x) = (x + 1). 2
l+x
2
l+ x
(1- x ~
2 2
"_ ( 1 + x ) - ( x + 1) 2x 1 _
f (x) - 2 + 2 - (x 2 + 1)
(x2 + 1 ) l+x
1
Fig. - 3.11
We fmd
2
f'(- 1) = (1 + I) =I > 0 and /" (2) = ;~ < 0 ,
4
f" (x) > 0 if x < 1 and /" (x) < 0 if x >
1
00 )
d/ is concave down on (1,
He nce / is con cav e up on (-oo, 1) an
':eilcti:g
3.12 ~
h O f.ft )- ax3 + bx2 + c has an inflection po·
Problem - 6 : Determine a, b and c such that the grap x - lllt and
slope 1 at (-1, 2)
Solution : We have
j{x) = ax3 + b.x2 + c
:. f' (x) = 3a.x2 + 2bx and /" (x) = 6ax + 2b
The graph of/has slope 1 at (-1, 2)
i.e. , f' (-1) = 1
... (1)
⇒ 3a-2b= 1
The graph of/has an inflection point at (-1, 2),
So/" (-1) = 0
⇒ - 6a+2b=0
... (2)
⇒ -3a+b=0
1
Solving (1) and (2), we get, a = -
3, b = - 1
Since an inflection point must be on the graph, therefore
/{- 1) must be defined and
j{-1)=2 ⇒ -a+b+c=2 ...(3)
8
Substituting the values of a and b in equation (3 ), we get c =
3
1 8
Hence a= -- b = - 1 c = -
' 3' ' 3
Problem - 7 : Find the points of inflection for the function f defined by
j{x) = x 4 + 4.x3 - 18.x2 + 9x- 3.
Solution: We have/'(x) = 4.x3 + 12.x2- 36x + 9 (1
f"'(x) = 24x-12
/"'(-1) -:t= 0 &f"'(2) -:t= 0
.·. -1 and 2 are points of inflection.
f" (x) > 0 if x E (-oo, -1) u (2, oo)
.·. f is concave upward in (-00 , -1) u (2, oo)
/" (x) < 0 if -1 < X < 2
.·. f is concave downward in (-1, 2)
(d) / ( X) = X- 2
x-3
, (x-3)-(x-2) _ -1
f(x)= (x-3}2 -(x-3}2
_13~.1!_4_ _ _ _ __:__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~1~ ~
⇒ 3ax + b = O
2
The given curve has points of inflection if and only if d -; = 0
dx
d 2y -b d 3y
--
2 =O ⇒ x=-,a-:t:-Oand dx 3 =6a
dx 3a
d3
-{=6a -:t:-0
dx
The curve has points of inflection if a * 0 E R and b, c can have any real value.
If x=-~, then y =a(-~)+a(-~)+a(-!?_)+d
3a 27a 9a 2 3a
b3 b2 b 2b3 b
=----+---+d
3 2 =---+d
27 a 9a 3a 27 a 2 3a
3
b 2b b )
: . Point of inflection is ( - a, a2 - a + d
3 27 3
Problem - 10 : Find the points of inflection of the curve x =at t _ .
an , Y - a smt cost.
dx 2
Solution : We have dt = a sec t
dy [. ( . )
dt = a smt -smt +cost.cost)]== a(cos 2 t- sin2 t)
concavity an d lnfleef[on Points
2
~~.:___ _ _ _ _ _ __ ~ - -- -- _ :__;3!,.,!_15~
__::.---~-~d;~~~dy;/~dx;_~c~o:s2~t~s:in 1 == 4 .
dx dt dt cos t - sm2t . cos2t
2
sec t
-
2
- cos t (cos2t - sin2t)
-
- cos 2 t(2cos 2t _ 1)
-
-- 2 co st4
- cos2t
d 2y d
d (2 4 d
2 = dx (2cos4 t-c os 2t) == dt cos t - cos 2t)_,_ t
dx
dx
== -8 co s3tsi nt+ 2c os tsi nt
asec 2t
1
== a [2cos3 tsi nt- 8c os s tsint]
1 3
== a 2cos tsi nt( l-4 co s t)
2
2
For points of inflection' -d=y
O
dx 2
2t =I
⇒ sin t = 0 or cost = 0 or 4 cos
:. t = 0 and co st = ± ..!_
2
_. RI
Y- as mt .co st= ±a l- -.
4 2
-= ± --
4 .
✓3a
Fo rt = 0, we have x = 0, y = 0
. .
The pomts of inflection are (0,
( r:;
0) and ±v3a,± 4
.fia)
d 2y . points.
that dx changes sign as x passes through each of the
It can be seen 2
:Ic~I
. . Concacity of the functi on can Similarly a
wi th relati ve mi nim um is con cave up on an interval around it.
po~t of f A function und it.
h a relative ma xim um is concave down on an interval aro n is concave
ction wit
al po int and the sec on d der iva tive at c is positive, i.e., the functio
Thus, if c is a critic the second
is a relative mi nim um at c. Co nversely, if c is a critical point and
up _around c, then there
n is con cav e dow n aroun d c, then there is a relative maximum
functio
derivative at c is negative i.e., the
at c If f" ( )· 0, the test 1s . onc1us1.ve.
. mc
· c =
~!_::_~
~-16 :,, --~
2 - _ ~ _ : _ . : _ _ - - - - - - -.-. - - -i./. :~-:..-..:.-~', Cqz I~~~,Al~ti:
. open interval contatrung x = c and/' ( .d/
Let/be a function such that/" (x) exiSt S on an _ c) :::: o. ~Je'"
If/" (c) > O, then/has a relative minimum at x = c. t , j'(
1
j,f
ar
a b C
1,1
Fig.-3.12
Problem - 11; Determine the extreme values of the following functions using the second derivative test :
s
(a) f (x) = (x2 - 3x + l)e-x F
1 1t 1t 2
(b) f(x )=sinx+ cos2.x,at x= ,x=
2 6 2
Solution : (a) f(x) = (x2- 3x + l)e-x
2
:. f' (x )=-(x2-3x + l)e-x + (2.x-3)e-x = e-x (2.x- 3 -x2 + 3x- l)= e-x (5x-4-x ) =- e-x (.x2-5x+4)
f" (x) = e-x (x 2 - 5x + 4)-(2.x- 5) e-x= e-x (x2 - 5x + 4 - 2x + 5) = e-x (x - 7x + 9)
2 )
Prob~m- '
Solving /' (x) = 0, we find critical numbers.
:. f' (x) = 0 Solution:
⇒ x 2 - 5x + 4 = 0 ( ·: e-x * 0)
⇒ x= 1, 4
To apply second derivative test, we evaluate/ " (x) at each critical number
f" (I) = 3£: 1 > Q
f " (4) = -3e-4 < 0
.·. /has a relati_ve minimum at x = 1 and f has a relative maximum at x = 4
Hence the maiimum value off is/(4) = 5e--4 and minimum value of/ is/(1) = - e-
1
. ly
The maximum and minimum value of/are respective
.
i(n)
-6 and i(nJ. e , -43 ando.
-2 i..
, • I'-
· .. 3.'f f
. . - -· ·
bleJJl-12: Fmd_constants a, ban d c suc h that the
of.l{x) ==x + ax +bx + c will have a relative
3 2
⇒ x =±..Jab
f" (x) = -2xa + 2xb
. (x2 +a2)' (x2 +b2)'
f" (..Jab) (-2a..Jab 2
+ 2-.Jab 2b
2
ab+ a ) (ab+ b )2 Problen
Hence by sec onI d de riv ati ve tes t ' th e fu nc tto n/h as a mu..umum at O.
.
. . llumva ue 1s .f{O) = 2.
:. m.t1lll
ic function Y = 2 *
rr ob lem -16 : Fo r the qu ad rat ax + bx + c (a O) ' a, b and c are constants, show that the
b
ver tex (re lat ive ex tre mu m) oc cur s at x =- _2 .
a
Q~ . Solution : We ha ve
\ y= ax 2+ bx +c
y' = 2ax + b = 0 if x =_ ~
2a ·
As sum e a> 0
b
y' < 0 for x < - -2a ⇒ y de
cre ase s
b
y' > 0 for x > - - ⇒ y inc rea ses
2a
b
oc cu rs
:. At x = - -2a , mi nim um va lue
Fu rth er ass um e a < ()
b
y' > 0 for x < - - ⇒ y inc rea ses
2a
b
y' < 0 for x > - - ⇒ y de cre ase s
2a
urs at x = - _.!:._
, xim um va lue oc cu rs. Th us, relative ext rem um occ 2a
:. At x = - 2 b ma
a
d
b) = nR T, wh ere P, V, T are the pressure, volume an
(P +; 2) (V -
Problem - 17 : Fo r the eq ua tio n nts, find T = Tc• the
of a ga s res pe cti ve ly an d a, b, n, R are positive consta
tem pe rat ure ssu rePc=P(Vc) in terms of a, b, n
po int wh ere P" (V ) =0 an d als o find the critical pre
an dR .
a
. : P(V ) = nR Tc _ _
Solution 2
V -b V
nRTc 2a
P'( V) = (V-b)z - yi
. -·x2 - 7x + 6
given / '(i}= - - - , f (x)
,, x2 +6x- 27 .
( )2 andj(- 3) 1s not defined.
" x+3 x+ 3
Determine the intervals on which / increases / decreases, concave up/concave down aoo
the values of x for which / has maximum, minimum and inflection.
x2 -7x+ 6 (x-l)( x-6)
Solution : f '(x) = - - - = ----
x+3 x+3
f'(x)=O ⇒ x= 1,6
decreasing
mcreasing decreasing 1
increasing
Fig.-3.13 (b)
ctioTJ, Points
. concavity'0:nq. lnfle_
--:.: ..::- -~-- ----- ~--- =--- ----- ~~~ ----- ~3~. 2!:1,
Further,
(x+9)(x -3)
f" (x) = 0 ⇒ (x + 3)2 =0
⇒ x=-9, 3
So, the critical points off' are 3, -9, -3
f" +
-9
I I+
-3 3
f~
Concave
\u
\ fConcave
fConcave Concave
up down down up
Fig.-3.13 (c)
f" (x) > 0 if x > 3 and x < -9
⇒ /is concave up on (3, oo) and (--oo, -9) ·
So/(0) = 3
⇒ a.0 2 + b.O + c = 3
⇒ c= 3 ... (2)
Also (5, 12) is a point in the curve.
So,/{5) = 12
⇒ 25a + 5b + c = 12
⇒ 25a + 5 (- lOa) + 3 = 12, using (1) and (2)
⇒ 25a=-9
9
⇒ a=--
25
So b = - 10 (--2._J =~
' 25 5
• ( EXERCISE - 3 )
,J I X
(c) f(x) = 2
~ + x - 1Sx + 3 (d) /{x) = - +-
x 16
In x+ x
(e) f(x ) =xeh· (f) .f{x)= - -
x
1
(g) .f(x) = .r' - 6x + 12x
2. Find all inflection points of the graph of the following functions:
2
(a) .f(x) = J.A -6x + 8x+ 10 (b) .f{x)=x113 + 2
(c) f(x ) =
IO
- +- 2
X
10
X
(d) j(x) ~✓ x -x 4
(e) .f{x) =xex (f) .f{x) = x + tan- 1x
(g) f(x ) = sin2x - 2 cosx, xE[0, 21t] (h) .f{x) = x 113 (27 -x)
3. Using first derivative test, classify the given critical numbers as relative minimum, relative maxnnu
m
or neither.
e-x2 1
(a) .f(x) - - , at x = 1, - (b) .f{x) =(x3 - 48x) 113 at x = 4
3-2x 2
(c) j(x) = x - 2 sinx, xE[0, 21t]
s
4. Using second derivative test, determine whether each critical number of the following function
corresponds to a relative maximum, a relative minimum or neither.
X
(b) .f{x ) = x2 e-Jx (c) .f{x) = (lru)2
(a) .f{x) = -
x2 +I
of
6. Given the properties of a function f given below. Determine the minimum and maximum values
/{x), inflection points, intervals in which/ is concave up/down.
2
x 2 - 7x 8 x + 8x - 20
f'(x) _x_+__-_ and /" (x) = (x+ ) 2 ,f(-4) is not defined.
4
4
~ "' / ,, .,., , . .\:.,(~. :s' '.~"./, , 'y.; ' / .
', t: , ,. ,
.....,, . .. <•. 1i;,; ' . CQl
3.24 . . ~l~
.
. b 1 w Determine the rrummum and maxiJnu ~
7. Given the properties Of a function / given e o .
. hich/ is concave up/down. tn Valu
esof
j(x), inflection points , intervals I~ w == 0 /'(2) ==0,
.f{-2) = - 1,/(2) = - 1,/(0) == 1,/ (- 2) ' 1 <1
f '(0)= 0 f"(x)> Ofor x<-1 and x> 1, f"(x) <Of~ r- < x .
' · functions:
8. Determine the inflection points of the following
x4 1
(g) f(x) = 1 + x2 - - (h) .f{x) = -+ 4x2
2 X
(i) f(x) = x3e-4x (j) _f{x) = x 2 ln(x + 2)
9. Find all possible extreme values of each of the following functions by apply
ing the first derivative
test:
(a) .f{x) = x4- 8.x3 + 22.x2 - 24x + 12 for all x ER
(b) .f{x) = (x - 1)2 (x + I) for all x E R
10. Find the range of values of x for which y = .x4 - 6x3 + l 2x2 + 5x + 7
is concave upwards or
downwards. Find also the points of inflection, if any.
11. Find the intervals in which the curve y = (cos x + sin x ) et is concave
upwards or downwards,
when x lies in the interval (0, 2n).
2.
(i) /(x)= (x
2 3
' -Ir
Find the intervals on which the followin fi . . . creasing,
decreasing, concave up, concave down
•
A7
u~ctions f 0 _ver the specified interval is 1l1
( ) • 2
(1) f x =sm 2x,xE [0, n]
• so md the pomts of inflection.
(") ( )
u f x = 2x+c otx, x E (0, n)
eoncavity and Inflection Points 3.25
(iii) f ( x) =sin x - cos x, x E ( -1t, 1t) (iv) /(x) = l - tan( x/2) ,xE( -1t, n)
(v) J(x) =(sinx + cos x )' ,x E [-it, it] (vi) f (x) =secx tanx , x e (-; , ; J
3. Examine the validity of the following statements
g
(i) If/a nd g are concave upon an interval, then so if/+
is/g
(ii) If/and g are concave up on or interval, then so
and usin g/, determine whe re/ is concave
4. Find the inflection point of the following poly nom ials/
up and concave down
2 4 3
3
(i) f ( x) = x - 3x + 2x (ii) f(x) =x -4x +10
3 2
(iii) f ( x) =x -5x
5 4
- 240 (iv) f(x) =x -12 x
4 5 2
(v) f ( x ) =sx +16x -25
3 2 tly one inflection point
5. Show that f ( x) = ax + bx + ex + d ( a "# 0) has exac
curve
6. What can you say abou t the inflection points of the
(a) y =ar2 +bx + c, a ;c: 0
(b) y = x 3 + bx2 +ex + d
□ □