import java.util.
Arrays;
class Main
{
// `N × N` chessboard
public static final int N = 5;
// Below arrays detail all eight possible movements for a knight.
// Don't change the sequence of the below arrays
public static final int[] row = { 2, 1, -1, -2, -2, -1, 1, 2, 2 };
public static final int[] col = { 1, 2, 2, 1, -1, -2, -2, -1, 1 };
// Check if `(x, y)` is valid chessboard coordinates.
// Note that a knight cannot go out of the chessboard
private static boolean isValid(int x, int y)
{
if (x < 0 || y < 0 || x >= N || y >= N) {
return false;
}
return true;
}
private static void print(int[][] visited)
{
for (var r: visited) {
System.out.println(Arrays.toString(r));
}
System.out.println();
}
// Recursive function to perform the knight's tour using backtracking
public static void knightTour(int[][] visited, int x, int y, int pos)
{
// mark the current square as visited
visited[x][y] = pos;
// if all squares are visited, print the solution
if (pos >= N*N)
{
print(visited);
// backtrack before returning
visited[x][y] = 0;
return;
}
// check for all eight possible movements for a knight
// and recur for each valid movement
for (int k = 0; k < 8; k++)
{
// get the new position of the knight from the current
// position on the chessboard
int newX = x + row[k];
int newY = y + col[k];
// if the new position is valid and not visited yet
if (isValid(newX, newY) && visited[newX][newY] == 0) {
knightTour(visited, newX, newY, pos + 1);
}
}
// backtrack from the current square and remove it from the current
path
visited[x][y] = 0;
}
public static void main(String[] args)
{
// `visited[][]` serves two purposes:
// 1. It keeps track of squares involved in the knight's tour.
// 2. It stores the order in which the squares are visited.
int[][] visited = new int[N][N];
int pos = 1;
// start knight tour from corner square `(0, 0)`
knightTour(visited, 0, 0, pos);
}
}