0% found this document useful (0 votes)
6 views4 pages

Adobe Scan 2 Jun 2025

The document outlines examination instructions and course outcomes for a mathematics course, detailing topics such as differential equations, Laplace transforms, Fourier series, and complex integration. It specifies that all questions are compulsory and emphasizes the importance of precision in answers. Additionally, it includes various mathematical problems related to the course content.

Uploaded by

Harsh Mishra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views4 pages

Adobe Scan 2 Jun 2025

The document outlines examination instructions and course outcomes for a mathematics course, detailing topics such as differential equations, Laplace transforms, Fourier series, and complex integration. It specifies that all questions are compulsory and emphasizes the importance of precision in answers. Additionally, it includes various mathematical problems related to the course content.

Uploaded by

Harsh Mishra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

r

tl#IW
. ...--L
G- • -.~
-A...J~
Of' l'ee hno lo

n. /FU / f.\T l/-11


\'l'rn11d Sr•\\i1111a/ f ,,,r f ,_-,., .,, S, •111,
•,ft•r !fl!- 1-!5 )
Time: 3:fl fll/n l:'11~•i111'1',j!!.;;_J /!1[/1_, •11wrin I/( t:
I.\'! fl.I
lla \". 1/orl, ,: 7fJ
Note: (I) No atudent will be allowed to
leave the e11mln d :
· (II) Be precise In your 1n1wer. • on room be"-
,ure en d of e11m.
.
(Ill) All queatlou ■re compul1ory.

Course
F, 0 IIow In1t ■re Outcomes:
rr C0'1Codes ', \ ',
- the coune outcoma of the 1ablect: -
! COURSE OUTCOMES Bloo mLc vd
BAS203.1 Rem~ber the concept,diff'er~ntiation to
eval
' coefficient and LOE with vanable coefficie uate LOE of nth order with constant Kl&KS
nt of 2nd order. ·
BAS203.2 · Understand and apply the concept of Lapl
to evaluate differential equations ace Transform and inverse Laplace aansfonn
K2,IO&.KS
BAS2033 . Un de~ d the conce~t of convergence to ·
expansion of the function for Fourier serie analy ze the convergence of series and
s. . :· .K2&K4
BAS203.4 Apply the concept of analyticity, harmonic -
· aoolyjniz conformal transformation. function and cr~ e·the image of the func
tion Kl&K4
Apply the CQ~cept of Cauchy integral theo : · ·
BAS203.5 rem, Cauchy integral fonnula, TaylQr's and
Laurent's Senes and calculus of residue KJ&KS
to evaluate inteura.1s · .
-

0 .N.-1 \'E CT ION A


( ) . Find ~he differential equation which repre
se~ts the family of straight line passing thro
M■ rkl CO'•
ugh the origin 2 CO.I
.h} X 'l _ :c. o
.:::0
J;
.Find the Laplace transform of e.-t cos
t dt L{_Coot).= _&___ e_- ~ ~ t-ColtJ
If f(x) = lcosxl in -1r < x < 1r, then
find the value of a
-(.-d)
:C --+ -., - - - - - - - -
0 ::1_
- - - - - - . . , . . 1---'-
Fin dth eim age sof lz-2 il=2 underth 71
"-.. .l.!,_ _-- ---' ---- -+- ----
()- - - + - - - - - - - - - - - -
emappingw=; · lf\J...t-1-== D <bf' '1=:--- +-: -:-- -:-+
C0.4
-:,K:,:--
3
- , • u = - - -.- ' - - - - - - -
e Evaluate the complex integration - - - - - - - - - - - - 1 -~
le (.t+Os dz, where C is the circle lzl = 2. 4 Tf.f
---+--CO-.S--+-K-4-

·.N. -2
\'£C T/O N B
-3
Solve by method of variation of paramete 2 d2y dy
r x - dJIZ
+ x- -
dJr 9y· = 48 x S CO.I K4
I · State Convolution theorem and find i- 1
[,sz+i:csz+♦)] using.Convolution theorem. =. C0.2 KS
:J Find the Fourier series for the function
f(x) .= x -x 2
in the interval -1 S x S 1 .
C0.3 K4
I) Find the bilinear transfonnation which map
the poin
w = -1, -i, 1'show that under this maP. i , t ts z = -1, 0, 1 onto the point
e upper half ofth.e z. plan maps opto the inter C0.4 · KS
the unit circle lwl = 1 · yJ.e;:, 1 ior of
, .W =- /., Z. ..
Find the Laurent Expansion for f (z) =
(i) lzl < 1 ii lz - 11> 1
Cr-t) (Z-z ) in the region
z.+1 6 CO.5 KS
(iit) o < lz- 21 < 1
' .. ., ' ...
• ._-. I 1 1\ - 'G'
1 J - ~: • ". • ••• , i. ;' •
\'E C7 10 N<
CO'S BL
M• rb KJ
e:_ . ,T . _.e~ I . 6
co.1
. '
' ii' .,z·". ··
::::.
Solve b ch . . . 1
.. •· : ·' . ·,,.'sn
dJf -·"
den t , .. .:~1 . ·
e,x a---• -- 11x . - -"y ·=•--8¥"
d .,, · - K3
Y anging the inde ' pen .'~., · ~ - · · CO.1•..
.· u
ya11
"' ... ... '· -' •. , · ... 6 . ·'1
Sol ve· thes1•multan = dy + 2x + Sv = e't •
. .,.;.. ·;- .··-· . . . . eous equ
·~,. ,·. -('· -r~.D+ l 4 X ==- t~
atio n;;-
5t- .Je
+ 4x·+ '3y t,
x: c,~~-<~c~e--, Marki CO'S BL
K5
,3 ~. . 6· CO.2
Find the i La ·, r= L--b = ,e.-3ts1,,.'{t K3

F'
ind
.
nverse p ace transfonn of cot
. .
-1

the _Laplace Transfonn of F(t ) _=


l 1, 0 ~ t:<J · · . ..
t, 1 <t s 2 ·r=-t&J =---1- ' f
~g i-1
. 'C,..,. -;g- . i= ::L
t -t
.i _
2-
t 2 2 <;.t < 00 .
.. . . BL
Marki
· · 6
·· or t!.../
-Test' the convergen1♦ce of the-seri
es
. u.., :::c.
· ·
..
2- "'
~
,,. 1L_-""' ~.-f __ r-. - ·.-1.
:x
: ,' · ,,C_oi,,-, ·
~ ._=
. 2 6 2
x 3+• ·· ~':'+1 · A..
. , .. -ti . ' . . . .-,._.. .u.. .-~.
1 +- x+ -x +- .J
· . a:t X. -=-;f - · Yt) =- .. -J'
...... , .. . .... . ,. ... ..
~ -.
9 17
·
2 Dhence deduce that co; .. 6 ,+ ..
f (t) = ~xi:- x in the int e~I
l
~~nd the half nui~e,sin~ series,o_ r(: t)- 011 oo , , ·., 'l')riX . · , .- J:,;.
-1-- . Sit\ ,--, --; -
. 11..=.

-= 1- 2.. +2
3
..-
3
2..8 + ... ·:· ..... .... ._..... ··- T - 0 )(. ·

Marks CO'S BL
('rJ 150cld ' K4
6 C0.4

ow that the function/ defined (z) by = f(z) :c~!;;\ z


-:i:,~Q1{J~) = O, is not analyti~ at the
'.;. ,:;;;:~~ ,'-- -
_ .. _

' t,'

gh it-satisfies Cau chy -Rieman n equation at origin. ·


origin_evc;n thou C0.4 . K4
= + .and u = e-r[x ;iny - cosyJ
Find 6 y
-ff · f(z ) = ·u + iv is an ~al yti c fun
.
ction ofz x iy,
;({?2~}J+:J-~1-,.,~) c_. -,. - ,..f z.)=
\t-::: e_- i ~-z..
f(z ) _intermsofz.
Marks CO'S BL
6 co.s . .K3

- y - ix2 ) dz along real axis from z = 0 to z f 1 and then


Find the value of the integral fot+t(x
alon a line · arallel to ima in
axis from z = 1 to z =1 +i
. -l = + ·
6 00. S KS
,1n
.
+2 dz, -where C is circ
le lzl =
Evaiuate by'Cauchy's integral formula le 2112-511

--
1% & )·
K5, 30, K2, 2,
3 K3, 32,
· . . ' . 34'6
10 - -- ~ ·
60 . ~ ' '

so K4, 32,
40 ?3% ,
30 .
zo
I Blooms Level,Dlstrlbutlon I
10 .
. I
0
coi COJ cos ·,
C01

J
.. 11111
mititil

H. Tl:'< ·11
.\'/:' ll-11
(Mme&LMbii&Mi& iiNii&i&,mm,j
Time: 3:0(Jllr., tln4DMM4ibth&iiM,W ;m1,w
lla x. .llar/,'i: 711
Note: (I) No student will be allowe
d to leave the e11mlnatlon roo
· (II) Be preclle In your m before end of e11m.
an1wcr.
(Iii) All questions are com
pulsory.
Course Outcomes:
FoIIow In2 are the cou
! CO'sCoda ne outcomes of the 1ubject:
-
COURSE OUTCOMES
: BAS203.1 . Remember the concept differ Blooms Level
entiation to evaluate LDE of
coefficient and LOE with var
iable coefficient of 2nd order.
nth order with co!l5t8nt I'
I
BAS203.2 Understand and apply the con Kl &KS
I to evaluate differential eQuat
cept of Laplace Transform and
inverse Laplace transform !
ions lI
BAS203.3 · Understand the concept of con K2 ,K3 &KS
vergence to analyze the conver l
exoansion of the function for gence of series and
Fourier series.
BAS203.4 Apply the concept of analyti K2&K4
city,
' annlvimi conformal transform hart]lonic function and create the image of the function
i ation.
I'. BAS203.5 . _Apply the concept of Cauch
y integral theorem, Cauchy inte . K3&K6
i
Laurent's Series and calculus gral formula, Taylor's and
of residue to evaluate integra
ls . K3&K5
\

Q. N. -1 ",£CT/ON A
. ''
renti'al equatio
. dzy + 2 dy
•• • J •a:: Marki • CO's
For a dtue BL
n tb:2 a c1z +y = 0, Fm•
d the val.ue of a for which the
equation characteristic equatio differential 2 CO.I K2
n has equal number of roots.
(b)
~:::: ±I
Find ~e Laplace transform 'F st
(t) = ; t
If f (x) = 1 + lxl in -3 <
~ rt c.- J¼ I
1
4_ .:::
~ :& ~ ¾/cf - · C0.2 IO
x < 3 , then find the value o~
,:-d:::--)- --; --F-in_d_th_e-im
Clo -=: b 2 CO J IO
--
ag_es_ of_c_ir_cl_e_l_z_-_- l_l_=_l_u--,--
n.d-er_th_e-.m
- ap
- pi-ng_ w_=_;: - - - -Lt
- - - ,-/ -'.2-
---- - - ' - -2
- -J -_
C_0 -.4-l --IO
~
Evaluate
• the· complex integration
1
",
Y, - (
Z Z+ff I) dz , where C.is
C0.5 IO

---.--
:- N.-2 SECTION B
A=-
. . ~ t / · Marks CO's
Solve by method of variation ~ d 1 BI.
of parameter x 2
dx~ + 2x ~ : 12y = x 3
logx 6 CO.I K4 \
.I
State Convolution theorem.
Find L- 1 lcs2: ) 2] using by Co
4 nvolution theorem 6 00 .2
') Obtain the Fourier series to rep KS
resent f (x) = !. (rr - x) 2 in
the interval O S x S 2rr
• C0.3 · K4
·l Find the bilinear transformatio
n which p the points z = 0, ~ +r ~~
· es ofthe uni· . I Ima
also find the 1ma -:-1, i onto the points w =. _t, ~• 6 .
t c1rc e zI = 1 oo C0.4 1,,,'l.
,,
Find the Taylor's and Laure ~ ,- :z+ 1, / 'Z..c::Jt.O
nt's series which represents the
(i) lzl < 1 fµnction f (z) = zz+ :z+ l in the 6 C0.5
(ii) 1 < lzl < 3 region
(iii t < lz+ 11 < 2

~ ld) l!..l=- 1 )'(\Q p-& cx:t-


. '\l=:::U.
.,,,
BL
1(.3
21
6 co.t
Solve by changing the independent variable +x2
dx1
(4x 2 - 1) dy+ 4x 3 y
= 2x 3
1(.3
d.r
6 CO.I
- + 2x + 4v = 1 + 4t dy +x ~ y = ! tz
Solve the simultaneous equation 1
· dt ., ' dt Z

Marte, CO'S BL
KS
6 co.2
rto,,21;-.e-~~
Find .t he.·inverse of Laplace transfonn of log G-s:-::-::-:) Fli) =
(b)-~ -. : . _ - ~ - ~ ---=--'----_:_::::_ __!_~:b_ ____,.....---4-.i; ~~rcl(.3
0 s t ~ .2
2
. . { t /:,. .l. -~ .
~ t :S 3 -n:&J-== ,J~ -.,g~ -l,.),-r_.3-&-r_.3 & /.
' '1- '
Find the .Laplace Transfonn of F(t) = t - 1, 2
7 t>3

CO'S BL '
· -·- -4--::
Marks
KS
-
Test the convergence of the series 6 C0.3
:2..
. sx z +'iox
X + ·3 8 3 15 4
+11x 't-1
+ ... ......... ......... ...... ... ...)1 ...... (_t)Y) ;( LI !- div x~ I
C0.3 1(4
~ind the half range cosine series of f(x) =x sinx in the interval (0, 11') 6

--f at,))L

DL
I
K4
. ,) If f (z) = u + iv is an analytic function of z = x + iy ana.v, =e-x(x cosy + ystn y) Find /(z) in
tenns ofz. U = ..:.,c XS I
Show th.at the function f(z) defined by/ (z) = . x: 2
2
~;
1
> , z =I:- 0, f (0) = ~• is not analytic at the .
K4

ori in even thou it satisfies Cauch -Riemann uation at ori in. Wx..~ O ~ tl~ = \9..~ c:: \Q

Marks CO'S BL
Eval~Jt'(z)2dz ~long (i) the real axis from z = 0 to z =;. and then along a line.P.arallel toy- 6 C0.5
axis from z = 2 toz=2+t (ii)alongthe line2y=x ,. (.JJ Qi'; ~ .... -2.t:Y-J
2 .
3 ...3
Evaluate by Cauchy's integral fonnula ~c z
z+t 2- z
~
+4
dz, where C ts circle lzl = 3 6 co.s

60 -----
70

50
40
30
20
,...,.._,..,..........,.,,,..,,,..,,,,.."'_,.....,,....,..;;,;.a,;<
0

10
0
! Blooms tevel'Dlstrlbutlon i
COl CO2 C03 C03 COS

You might also like