Vectors 23
Vectors 23
PHYSICS
XI (A1 & B)
Believe In Excellence
CONTENTS
LEVEL # I - 2-4
LEVEL # II - 5-6
LEVEL # III - 7 - 11
ANSWER KEY - 12
(A) 2
F1 F2
2
(B) 2
F1 F2
2 25. Two vectors A and B lie in X-Y plane. The
vector B is perpendicular to vector A. If A = î
(C) F1 + F2 (D) F1 – F2
+ ĵ , then B may be -
33. Vectors A,B and C are shown in figure. Find
angle between
y
B
45º A
30º
x
60º
C
(i) A and B (ii) A and C (iii) B and C .
8. How many minimum number of vectors in 18. The magnitude of the vector product of two
different planes can be added to give zero vectors A and B may be -
resultant ? (a) Greater than AB (b) Equal to AB
(A) 2 (B) 3 (C) 4 (D) 5 (c) Less than AB (d) Equal to Zero
(A) a, b, c (B) b, c, d
9. Minimum number of unequal forces whose (C) a, c, d (D) a, b, d
vector sum can equal to zero is -
(A) two (B) three (C) four (D) any
19. Three vectors A, B and C satisfy the relation
10. If | A B | | A | | B | , the angle between A and B A.B =0 and A.C = 0. The vector A is parallel to
is - (A) B (B) C (C) B . C (D) B C
(A) 60º (B) 0º (C) 120º (D) 90º
(A) A 2 B2 (B) A + B
F1
AB
(C) A 2 B2 (D) A 2 B 2 2 AB
2
34. A particle is acted upon by the
forces F1 2 i aj 3k , F2 5 i cj bk ,
27. If vectors A = î + 2 ĵ + 4 k̂ and B = 5 î represent
the two sides of a triangle, then the third side F3 b i 5 j 7k , F4 c i 6 j ak . Find the val-
of the triangle has length equal to - ues of the constants a, b, c in order that the
(A) 56 (B) 21 (C) 5 (D) 6 particle will be in equilibrium.
28. A vector is along the positive x-axis. If its 35. A vector A of length 10 units makes an angle
vector product with another vector F2 is zero,
of 60º with the vector B of length 6 units.
then F2 could be - Find the magnitude of the vector difference
(A) 4 ĵ (B) (î ĵ) (C) (ˆj k̂ ) (D) (4î ) A – B & the angle it makes with vector A .
FA B
(A) G
I
AB
1/ 2
5.
For a body, angular velocity ( ) = î –2 ˆj + 3 k̂
11. ˆ is perpendicular to
If a vector (2 ˆi 3 ˆj 8k)
and radius vector ( r ) = î + ˆj + k̂ , then its
ˆ , then the value of
the vector (4 ˆj 4 ˆi k)
velocity is : [AIPMT 1999]
(A) –5 î + 2 ˆj + 3 k̂ (B) –5 î + 2 ˆj – 3 k̂ is :
(A) –1 (B) 1/2 [AIPMT 2005]
(C) –5 î – 2 ˆj + 3 k̂ (D) –5 î – 2 ˆj – 3 k̂ (C) –1/2 (D) 1
6.
What is the value of linear velocity, if 3ˆi 4 ˆj kˆ 12. If the angle between the vectors A and B is ,
and r 5 ˆi 6 ˆj 6 kˆ ? [KCET 2000, AIPMT 1999]
the value of the product B A .A is equal to
(A) 4 ˆi 13 ˆj 6kˆ (B) 6 ˆi 2 ˆj 3kˆ [AIPMT 2005]
(A) BA2 cos (B) BA2 sin
(C) 6 ˆi 2 ˆj 8kˆ (D) 18 ˆi 13 ˆj 2kˆ (C) BA2 sin cos (D) zero
[AIIMS 1997]
(A) direction reverses and unit changes (B) 10 km and tan ( 5 )
–1
(B) direction reverses and magnitude is doubled (C) 52 km and tan (5)
–1
1 5 1 5
28. If the sum of two unit vectors is a unit vector, (A) Cos (B) Cos
then the magnitude of their difference is : 12 13
[MANIPAL-1996]
1 12 1 2
(A) 2 (B) 3 (C) Cos (D) Cos
13 13
1
(C) (D) 5 36. If two numerically equal forces P and P acting
2
at a point produce a resultant force of
magnitude P itself, then the angle between the
29. Which of the following is a vector quantity ? two original forces is : [CEET 1999]
[AFMC 1997] (A) 0° (B) 60°
(A) Temperature (B) Surface tension (C) 90° (D) 120°
(C) Calorie (D) Force
37. If A B C and A B C then the angle
30. The magnitudes of vectors A , B and C are
between A and B is : [EAMCET 1999]
respectively 12, 5 and 13 units and A B C ,
(A) 45° (B) 60°
then the angle between A and B is : (C) 90° (D) 120°
(A) 0 (B) 45° [CPMT 1997]
(C) /2 (D) /4 38. The angle between two vectors given by
ˆ and (7ˆi 4 ˆj 4 k)
(6 ˆi 6 ˆj 3k) ˆ is [EAMCET 99]
31. The angle between two vectors 2ˆi 3ˆj kˆ 1 1 1 5
(A) cos (B) cos
3 3
and 3ˆi 6kˆ is : [CPMT 1997]
33. Which of the following is a scalar quantity ? 40. Which of the following is a scalar quantity ?
[AFMC 1998] [RPMT 1999]
(A) current (B) velocity
(A) Displacement (B) Electric Field
(C) force (D) acceleration
(C) Acceleration (D) Work
34. The sum of magnitudes of two forces acting
at a point is 16N. If the resultant force is 8N 41.
If n̂ aiˆ bjˆ is perpendicular to the vector ˆi ˆj ,
and its direction is perpendicular to smaller
then the value of a and b may be : [RPMT 1999]
force, then the forces are : [CEET 1998]
(A) 1, 0 (B) –2, 0
(A) 6N & 10N (B) 8N & 8N
(C) 4N & 12N (D) 2N & 14N 1 1
(C) 3, 0 (D) ,
2 2
33. (i) 105º, (ii) 150º, (iii) 105º 34. (B) 35. (B) 36. (A) Q, (B) R, (C) P, (D) S
Level-II
1. D 2. D 3. C 4. C 5. C 6. B 7. A 8. C
Level-III
1. A 2. A 3. D 4. B 5. A 6. D 7. B 8. B