100% found this document useful (1 vote)
80 views5 pages

Indefinite Integration Dpp-2

The document contains a series of mathematical problems related to indefinite integration, including single answer type, multiple answer type, and integer answer type questions. Each problem presents a mathematical expression or equation that requires solving for specific variables or values. The document appears to be an examination or practice test for students studying calculus or advanced mathematics.

Uploaded by

pruthvirajkale31
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
80 views5 pages

Indefinite Integration Dpp-2

The document contains a series of mathematical problems related to indefinite integration, including single answer type, multiple answer type, and integer answer type questions. Each problem presents a mathematical expression or equation that requires solving for specific variables or values. The document appears to be an examination or practice test for students studying calculus or advanced mathematics.

Uploaded by

pruthvirajkale31
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

BASARA GNANA SARASWATHI CAMPUS KAKATIYA HILLS

Sec: Star SC Indefinite Integration Date: 28-08-2020


----------------------------------------------------------------------------------------
SINGLE ANSWER TYPE
If  ln  sin x  .sin 2 x.dx  sin x  A ln  sin x  B   C then
sin x
1. 3

A) A > B B) A = B C) A is an integer D) B is an integer



and if   0  0 then the value of    equals
sin x
2. If  sin 3x dx    x  6
1 1 1 1
A) ln 2 B) ln 2 C) ln 2 D) ln 2
3 3 3 3
6  xy
3. If x  0, y  0, xy  xy  1  6 and if the value of  xy  y  1 dx  Ax
2
2
 Bx  C ln x  2  D then

A) A = 2 B) B = -2 C) C = 2 D) A=0
 
2
d
If  x 3 e x dx  e x . f  x  C then the local maximum value of f  x  equals  x  R 
2 2
4. 2
dx
A) 87/8 B) 2 C) 3 D) 0
tan 
5. If f     d is continuous function and f  0  0 then the value of
sin 2
 
2f    f   equals
 4  3

A) 3  1 B) 2  1 C)
1
2
 3 1 D)
1
2
 
2 1

ax 2  2bx  c
6. If   
dx B 2  AC is a rational function of x then which is necessarily true
 Ax 
2
2
 2 Bx  C

A) 2Bb = Ac + aC B) 2Bb =Aa + cC


C) 2Cc = Ab + Ba D) 2aA=bB+cC

7. If  e x x 4
2  dx 
e x f  x
 C then which is correct
1  x  2 5/ 2
1  x 
2 3/ 2

A) f 1  3 B) f  2  6 C) f 1  0  2 D) f  x  0x  R

8. If f ( x) is polynomial function such that f ( x )  f '( x)  f ''( x)  f '''( x)  x3 and


f ( x)
g ( x)   dx and g (1)  1 then g (e) 
x3
A) e  3 B) e  3 C) 1  e D) 1  e
 3x x
 x  x   l o g x  1
 
9.  4x
x 1
dx =, (‘c’ is integration constant)

1  x  1  1  x  1 
2x x
1 1
A) tan  c B) c
 2 x x 
tan 
2 2  2 x x 
   

1  x2 x  1 
C) 2 tan 
 x x 

c D) 2 tan 1 x x  1  c  
MULTIPLE ANSWER TYPE
e x f 11  x   e x f 1  x 
10. Let f be a differentiable function satisfying  1 and f  0  0, f 1  0  1
e2 x
then which is/are correct
xf 1  x  f  x
A)  1 x  0
x 2e x
B) For, x > 0, f(x) is increasing function
C) For x < 0, f(x) is decreasing function
D) Number of solutions of 3f(x) + 1 =0 is 2
3x 2 1
11. Let g  x  x3   x  then which is/are correct
2 4
1
A) The curve y  g  x is symmetric w.r.t x  line
2
1  g  x
B) f  x   dx and f 1  1 then f  2  2
g 1  x 

C) The curve y  g  x is symmetric w.r.t. x = 1 line


1
D) If g  g 1   g  t   1 then t 
2

12. The value of  cot x .e sin x


1  e  dx equals
sin x

 
2
1 e sin x

A) 2e sin x
c B) C
2

e   
2
C) e sin x sin x
2 C D) e sin x
1  C

cos 2 x sin 4 x
13. If  cos x 1  cos 
dx  A sec2 x  B ln 1  cos 2 x + C ln 1  cos 2 2 x  D then which is/are 
4 2
2x 
correct
A) A < B B) A = C C) A > C D) B > 1
14. If 
cos x 2
x
 
x ln x  1 dx  f ( x)  c (‘c,c| ’ is integration constant)

f (1)  cos1 and  f ( x )sec2 x dx  g ( x)  c '


g (1)  0 and L  lt g ( x ) then
x 0
x ln x
A) f ( x )  cos x 1  ln x   x sin x ln x B) g ( x) 
cos x
g ( x)
C) L  0 D) lt 0
x  x2

x2  x 1
15. If e  x  3/2
e x dx  f ( x)  c (‘c’ is constant of integration) and f (0)  1then
2
x 1
which of the following is/are true?
A) f ( x) is an even function
B) f ( x) is a bounded function
C) The range of f ( x) is (0,1]
D) f ( x) has two points of maxima
A2 A3
16. If A is square matix and e A  I  A    .............
2 3

1  f  x g  x x x
And e A    and A   ,
2  g  x f  x  x x 

0  x  1, I is a 2 x 2 identify matix then which of the following statement is/are true?


(‘c’ is integration constant)
g  x
A) 
f  x

dx  log e x  e x  c 
f  x  g  x
B)  dx  2e2 x  c
f  x  g  x

e2 x
C) g x  1 Sinx dx  2Sinx  Cosx  c
5
D) f  x   g  x  is an increasing function x  R
PASSAGE-1
1 1 
  2   x  1
x x
Let  1 dx  sec 1  f  x   c and f 1  2 . Then for x > 0
1
 4  2 
x x
x 4

 x3  x 2 x 4  x 3  x 2 
17. The minimum value of f  x equals
A) 2 B) 4 C) 2 2 D) 2
18. Which is correct

C) f    D) f   
3 13 3 2
A) f     f  e B) f     f  e
 2 6  2 3

PASSAGE-2
x7  x5  x3  x
If f  x   dx  Aln x8  x 6  x 4  x 2  1  Bln x 2  1  C , f  0  0 , then answer
x10  1
the following
19. f  x is

A) Even function B) Odd function


C) Neither even nor odd function D) Both even and odd functions
20. The value of A equals
1 1 4 1
A) B) C) D)
2 5 5 10
21. The value of B equals
1 2 3 4
A) B) C) D)
5 5 5 5
INTEGER ANSWER TYPE
sin 2 x  1  1 
22. If f  x   dx and if f    then the value of sum of digits of   is
 3  4 cos x  2  48  f  0 
3

. is GIF 
1 3   sin x  cos x B
23. If  dx  A.ln  B tan 1  sin x  cos x  C then   equals
sin x  sec x 3   sin x  cos x  A

. is GIF 
tan 4 x A
24. If  1  tan 2 x dx  A tan x  B ln sec 2 x  tan 2 x  C.x  D then the value of BC equals
x2
25. If f  x   dx and f  0  0 then the value of  f 1  equals . is GIF 
 
1  x2 1  1  x2 
26. If the integral I   x  x 2  3x dx on substitution t  x  x 2  3x takes the form



t4 t2  3  dt then the value of  equals
 
2
2t 2  3

cot x  tan x    


27. If  dx    x , x   0,  and     and maximum value of   x is 
2  cos x  sin x   2  4 2

then  5  equals . GIF 

 1  sin 2 x  cos x  cos 2 x  


2

 sin x  cos x 
28. If  ln    ln    dx = A.sin 2 x.ln    B ln  cos 2 x then the
 1  sin 2 x   1  sin 2 x   cos x  sin x
 

value of A + B equals

You might also like