Understanding The Dynamical Structure of Pulsating Stars: The Baade-Wesselink Projection Factor of The Scuti Stars AI Vel and Cas
Understanding The Dynamical Structure of Pulsating Stars: The Baade-Wesselink Projection Factor of The Scuti Stars AI Vel and Cas
1
Laboratoire Lagrange, UMR 7293, UNS/CNRS/OCA BP 4229, 06304 Nice Cedex 4, France
2
Institut de Recherche en Astrophysique et Planétologie, UMR 5277, 57 avenue d’Azereix, 65000 Tarbes, France
arXiv:1301.2475v1 [astro-ph.SR] 11 Jan 2013
3
INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy
4
Institute of Astronomy of the Russian Academy of Sciences, 48 Pjatnitskaya Str., Moscow 109017, Russia
5
Departamento de Astronomı́a, Universidad de Concepción, Casilla 160-C, CL Concepción, Chile
ABSTRACT
Aims. The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. The key
parameter of this method is the projection factor used to convert the radial velocity into the pulsation velocity. Our
analysis was aimed at deriving for the first time the projection factor of δ Scuti stars, using high-resolution spectra of
the high-amplitude pulsator AI Vel and of the fast rotator β Cas.
Methods. The geometric component of the projection factor (i.e. p0 ) was calculated using a limb-darkening model of
the intensity distribution for AI Vel, and a fast-rotator model for β Cas. Then, using SOPHIE/OHP data for β Cas and
HARPS/ESO data for AI Vel, we compared the radial velocity curves of several spectral lines forming at different levels
in the atmosphere and derived the velocity gradient associated to the spectral-line-forming regions in the atmosphere
of the star. This velocity gradient was used to derive a dynamical projection factor p.
Results. We find a flat velocity gradient for both stars and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for β Cas.
By comparing Cepheids and δ Scuti stars, these results bring valuable insights into the dynamical structure of pulsating
star atmospheres. They suggest that the period-projection factor relation derived for Cepheids is also applicable to
δ Scuti stars pulsating in a dominant radial mode.
Key words. Stars: pulsating – Stars: atmospheres – Stars: variables: δ Scuti – Techniques: spectroscopic
1
G. Guiglion and collaborators: The Baade-Wesselink projection factor of the δ Scuti stars
recently that they follow a P L relation (McNamara et al. the star is a monoperiodic pulsator at the detection limit of
2007; Poretti et al. 2008). ground-based photometric measurements, with a pulsation
period of P = 0.101036676 d. The mode identification is
unclear (Rodriguez et al. 1992; Riboni et al. 1994). Today,
2. Spectroscopic observations of δ Scuti stars
the distance of β Cas is known to be 16.8 pc from the
AI Vel (HD 69213, A9 IV/V) is one of the most often Hipparcos parallax (van Leeuwen 2007). Thus we could ob-
observed double-mode, high-amplitude δ Scuti stars. This tain the absolute magnitude MV =1.14 from the apparent
star pulsates in the fundamental and first overtone radial magnitude V =2.27. The P L relations (McNamara et al.
modes with a well-constrained period ratio P1 /P0 of 0.77 2007; Poretti et al. 2008) supply a fundamental radial pe-
(Poretti et al. 2005). In addition to P0 = 0.111574 d and riod of about 0.15 d at this MV value. Therefore, the ob-
P1 = 0.0862073 d, Walraven et al. (1992) clearly detected served period is similar to that expected for the second
two other periods, tentatively identified as the third and radial overtone. We attempted a mode identification from
fifth radial overtones. We observed AI Vel using the HARPS our spectroscopic data using the FAMIAS1 software. Since
spectrograph mounted at the ESO 3.6-m telescope. We we dealt with a fast rotator, we used the Fourier parameter
analysed 26 high signal-to-noise ratio (S/N≃140) spectra fit method (Zima 2006). Imposing the frequency 1/P , the
taken in the high-efficiency mode (EGGS, R=80 000) on results from spectroscopy point towards an axisymmetric
the night of January 9-10, 2011. We identified 53 metal- mode, without a clear indication on the ℓ-value. Since β Cas
lic unblended spectral lines (ranging from 3 780 to 6 910 Å) is seen almost pole-on (i = 19.9 ± 1.9◦ , Che et al. (2011)), a
relevant for the determination of radial velocities. Figure 1 low–degree, axisymmetric, nonradial mode mimics the pul-
(left panel ) shows the behaviour of the mean spectral line sation behaviour of a radial mode very well. On the basis of
profile along the pulsation phase. The shifts due to the ra- these considerations, we treated β Cas as a radial monope-
dial modes clearly dominate the line profile variations. riodic pulsator for our purposes. We also used the mean
line profiles of β Cas to estimate the v sin i values from the
position of the first zero of their Fourier transforms (Carroll
0.013
0.099
0.028 1933). This approach is possible only for objects where the
0.121
0.143
0.056
0.084 rotational broadening is dominant with respect to the other
0.165 0.112
0.140 sources of line broadening (e.g., instrumental effect, micro-
0.188
0.210
0.169
0.197
turbulence), which is always the case for β Cas, but not
0.232 0.225
0.253
for AI Vel, where we were unable to use the Fourier trans-
0.254
0.276
0.282
0.316
form method on the narrower lines (v sin i < 10 km s−1 ).
0.298
0.344
0.373
The radial velocity values of the observed profiles of β Cas
0.320
0.342
0.401
0.429
range from 5.3 to 11.6 km s−1 and the v sin i values from
0.364
0.458
0.486
74.0 to 77.5 km s−1 (Fig.1, right panel ). We could also
determine a mean v sin i value from the average of all the
Phase
0.386 0.514
0.408 0.542
0.431
0.571 mean profiles and obtained 75.72 ± 0.14 km s−1 . This value
0.608
0.453 0.636 is consistent with literature values (Bernacca & Perinotto
0.475 0.665
0.497
0.693 1970; Uesugi & Fukuda 1970; Schröder et al. 2009). When
0.721
0.519 0.749 considering i = 19.9◦ , this means that β Cas is an intrinsic
0.778
0.541
0.563
0.806 fast rotator, with a velociy of vrot ≃ 220 km s−1 which is
0.835
0.585 0.863 consistent with Che et al. (2011).
0.607 0.919
0.950 Finally, for both stars, the centroid radial velocity RVc
0.629
0.651
0.981
(or the first-moment radial velocity) and the line depth D
are derived as a function of the pulsation phase for each
selected spectral line. These data are used in Sect. 4.
-40 -20 0 20 40 60 80 -100 -60 -20 20 60 100 140
-1 -1
Radial velocity (km s ) Radial velocity (km s )
2
G. Guiglion and collaborators: The Baade-Wesselink projection factor of the δ Scuti stars
3
G. Guiglion and collaborators: The Baade-Wesselink projection factor of the δ Scuti stars
4
G. Guiglion and collaborators: The Baade-Wesselink projection factor of the δ Scuti stars
References
Balona, L. A. & Stobie, R. S. 1979, MNRAS, 189, 649
Bernacca, P. L. & Perinotto, M. 1970, Contributi dell’Osservatorio
Astrofisico dell’Università di Padova in Asiago, 239, 1
Carroll, J. A. 1933, MNRAS, 93, 680
Che, X., Monnier, J. D., Zhao, M., et al. 2011, ApJ, 732, 68
Claret, A. & Bloemen, S. 2011, VizieR Online Data Catalog, 352,
99075
Domiciano de Souza, A., Vakili, F., Jankov, S., Janot-Pacheco, E., &
Abe, L. 2002, A&A, 393, 345
Domiciano de Souza, A., Zorec, J., & Vakili, F. 2012, in SF2A, proc-
ceding
Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier
Cameron, A. 1997, MNRAS, 291, 658
Dziembowski, W. 1977, Acta Astron., 27, 203
Gieren, W., Storm, J., Barnes, III, T. G., et al. 2005, ApJ, 627, 224
Gieren, W. P., Fouqué, P., & Gomez, M. 1998, ApJ, 496, 17
Hatzes, A. P. 1996, PASP, 108, 839
Kervella, P., Bersier, D., Mourard, D., Nardetto, N., & Coudé du
Foresto, V. 2004, A&A, 423, 327
Laney, C. D. & Joner, M. D. 2009, in American Institute of
Physics Conference Series, Vol. 1170, American Institute of Physics
Conference Series, ed. J. A. Guzik & P. A. Bradley, 93–95
McNamara, D. H., Clementini, G., & Marconi, M. 2007, AJ, 133, 2752
Nardetto, N., Fokin, A., Fouqué, P., et al. 2011, A&A, 534, L16
Nardetto, N., Gieren, W., Kervella, P., et al. 2009, A&A, 502, 951
Nardetto, N., Kervella, P., Mourard, D., Bersier, D., & Coudé du
Foresto, V. 2004, in Astronomical Society of the Pacific Conference
Series, Vol. 310, IAU Colloq. 193: Variable Stars in the Local
Group, ed. D. W. Kurtz & K. R. Pollard, 520
Nardetto, N., Mourard, D., Kervella, P., et al. 2006, A&A, 453, 309
Nardetto, N., Mourard, D., Mathias, P., Fokin, A., & Gillet, D. 2007,
A&A, 471, 661
Nardetto et al. 2012, A&A, submitted
Poretti, E., Clementini, G., Held, E. V., et al. 2008, ApJ, 685, 947
Poretti, E., Suárez, J. C., Niarchos, P. G., et al. 2005, A&A, 440, 1097
Riboni, E., Poretti, E., & Galli, G. 1994, A&AS, 108, 55
Riess, A. G., Macri, L., Casertano, S., et al. 2009a, ApJ, 699, 539
Riess, A. G., Macri, L., Li, W., et al. 2009b, ApJS, 183, 109
Rodriguez, E., Rolland, A., Lopez de Coca, P., Garrido, R., &
Gonzalez-Bedolla, S. F. 1992, A&AS, 96, 429
Schröder, C., Reiners, A., & Schmitt, J. H. M. M. 2009, A&A, 493,
1099
Stamford, P. A. & Watson, R. D. 1981, Ap&SS, 77, 131
Storm, J., Gieren, W., Fouqué, P., et al. 2011a, A&A, 534, A94
Storm, J., Gieren, W., Fouqué, P., et al. 2011b, A&A, 534, A95
Uesugi, A. & Fukuda, I. 1970, Memoirs Faculty of Sciences University
of Kyoto, 33, 205
van Leeuwen, F. 2007, A&A, 474, 653
Walraven, T., Walraven, J., & Balona, L. A. 1992, MNRAS, 254, 59
Zima, W. 2006, A&A, 455, 227