Solution Sequence & Series
Solution Sequence & Series
 ANSWER KEYS
1. (1)                                  2. (2)                       3. (4)                 4. (4)              5. (1)                  6. (2)                 7. (1)          8. (1)
9. (2)                                  10. (4)                      11. (1)                12. (1)             13. (3)                 14. (4)                15. (1)         16. (4)
17. (2)                                 18. (1)                      19. (2)                20. (2)             21. (2)                 22. (2)                23. (1)         24. (1)
25. (3)                                 26. (2)                      27. (2)                28. (1)             29. (1)                 30. (2)                31. (3)         32. (2)
33. (3)                                 34. (3)                      35. (1)                36. (3)             37. (4)                 38. (4)                39. (2)         40. (3)
∴ a + d + a + a − d = 21
⇒ 3a = 21
⇒ a = 7
= 45 × 7
= 315
2.    (2)
      The numbers between 100 and 500 that are divisible by 7 are,                               105, 112, 119, 126, 133, 140, 147, … , 483, 490, 497      .
      Let such numbers be n.
      Then, 497 = 105 +(n − 1)×7
      ⇒ n = 57
      The number between 100 and 500 that are divisible by 21 are,                               105, 126, 147, … , 483   .
      Let such numbers be m.
      Then, 483 = 105 +(m − 1)×21
      ⇒ m = 19
      ∴   Required number = n − m = 57 − 19 = 38
3.    (4)
      ∴   We know that sum of equidistant term from end & beginning is same in any A. P.⇒                                     a1 + a16 = a2 + a15 = a3 + a14 = a4 + a13 = a5 + a12 = … = a7 + a10
      Then,
      a1 + a6 +a11 + a16
= 2(a1 + a16 )= 76
4.    (4)
      We know that n term T             th
                                                      n   = Sn − Sn−1      , and difference of any two consecutive terms is common difference d.
      Sn+3 − 3Sn+2 + 3Sn+1 − Sn
      = d − d = 0                  .
5.    (1)
      If a,      b, c      are in AP, then b is A.M of a & c.
      ∴     2 b = a + c
      Putting, 3        2 sin 2α
                                        = x       we get,
                  x            81            2
      28 =             +               ⇒ x        − 84x + 243 = 0
                   3           x
⇒ (x − 3)(x − 81) = 0
      ∴     3
                2 sin 2α
                           = 3         or 3   4
      sin 2α =
                           1
                           2
                               , ∵ sin 2α ≠ 2
      Terms are 1, 14, 27, … … then
      T6 = 1 + 5(13) = 66
                                                                                                     #MathBoleTohMathonGo
                                                                                                        www.mathongo.com
DPP                                                                                                                                              Sequences and Series
Answer Keys and Solutions                                                                                                                           BITSAT Crash Course
6.    (2)
      Now,           1
                    a1 a2
                              +
                                        1
                                    a2 a3
                                                + ….+
                                                                           1
a4000 a4001
            1        1             1             1              1                     1                    1
      =         (             −            +          −              +. . . . +                −               )
            d        a1            a2           a2             a3                    a4000         a4001
      =
            1
            d
                (
                     1
                     a1
                              −
                                       1
                                   a4001
                                             )=
                                                              4000
                                                          a1 a4001
                                                                       =    10   (given)
      ⇒     a1 a4001 =                  400               . . . . . .(i)
                          2
       =     (50)             − 1600
      ⇒     |a1 − a4001 |=                      30        .
7.    (1)
      Let, the first 3 terms of the A. P . are a − d,                                                      a, a + d
⇒ sum = 3a = 33 ⇒ a = 11
                          2             2
      ⇒ 11(11                 − d )= 1155
                               2            1155
      ⇒ 121 − d                    =                  = 105
                                             11
             2
      ⇒ d           = 121 − 105 = 16
⇒ d = ±4
So, T 11 = 7 + 10 × 4 = 47
8.    (1) Since,
                                             ( Sn )
                                                      1
                                                              =
                                                                    2n+3
                                                                                              ...(i)
                                             ( Sn )                 6n+5
                                                      2
            n
                [ 2a1 + ( n−1 ) d1 ]
            2                                                 2n+3
      ⇒     n                                     =
                [ 2a2 + ( n−1 ) d2 ]                          6n+5
            2
                     ( n−1 )
            a1 +               d1
                          2                     2n+3
      ⇒                                 =
                     ( n−1 )                    6n+5
            a2 +               d2
                          2
Put n−1
                 2
                          = 12 ⇒ n = 25
          a1 +12d1                  53
      ∴                       =
          a2 +12d2                  155
            ( T13 )
                          1            53
      ⇒                       =
            ( T13 )                 155
                          2
            n−10
      ⇒                   ⋅(2 × 148 +(n − 10 − 1)(−2))= 3000
                2
      Let n - 10 = m
      ⇒ m × 148 − m(m − 1)= 3000
                2
      ⇒ m            − 149m + 3000 = 0
∴ m = 24, 125
                                                                                                                      #MathBoleTohMathonGo
                                                                                                                         www.mathongo.com
DPP                                                                                                                                                                                                                                                                        Sequences and Series
Answer Keys and Solutions                                                                                                                                                                                                                                                     BITSAT Crash Course
10. (4)
      It is given
                                                        2
      a1 +a2 +.....+ap                              p
                                            =
      a1 +a2 +.....+aq                                  2
                                                    q
      a1 +a2 +.....+a5                                  2
                                                    5
                                            =
      a1 +a2 +.....+aq                                  2
                                                    q
      on substracting
                                                2       2
               a6                           6 −5
      a1 +.....+q
                                    =
                                                    2
                                                                                     .....(i)
                            q                   q
       a1 +......+q
                                        =
                                                                     2
                                                                                                           .....(ii)
                                q                               q
                20
      ⇒                 (2 + 21) log                                     x = 460
                   2                                                 7
      ⇒         log             x = 2
                            7
⇒ x = 49
                                                                                                                                                                         y−1
                                                2                                1                1                                                         1
      y = 1 + b + b +. . . =                                                             ⇒             = 1 − b ⇒ b = 1 −                                        =
                                                                             1−b                  y                                                         y                y
                                                                              1                                      1                                          xy                          xy
                                        2   2
      1 + ab + a b +. . . =                                                              =                                                     =                                      =
                                                                                                            x−1              y−1
                                                                         1−ab                                                                       xy− ( x−1 ) ( y−1 )                    x+y−1
                                                                                                 1− (                ) (                 )
                                                                                                                x                y
                                                                                                                         1       1                          1
                                                        1/6                  1/36
      Hence, (32)(32)                                               (32)                 … = 32
                                                                                                                    1+
                                                                                                                         6
                                                                                                                             +
                                                                                                                                 36
                                                                                                                                      +...
                                                                                                                                               = 32
                                                                                                                                                        1−1/6
                        6/5
                5
      = (2 )                        = 64
14. (4)
                                                                     2
      Since,
                                            a+ar+ar                                              125
                                                                                         =
                                                2           3            4           5           152
                        a+ar+ar +ar +ar +ar
                                            2
                            1+r+r                                            125
      ⇒                                                             =
               ( 1+r+r
                                    2
                                        ) ( 1+r
                                                        3
                                                            )                152
                            3               152
      ⇒ 1 + r                       =
                                            125
                                                                     3
               3                27                          3
      ⇒ r           =                       = (                 )
                                125                         5
                            3
      ⇒        r =
                            5
15. (1)
      SInce , Three numbers in a G.P is given by a ,                                                                                           ar , ar
                                                                                                                                                            2
      Given that :                          a + ar + ar
                                                                                         2
                                                                                                 =     26           ⇒        a(1 + r + r )
                                                                                                                                                        2
                                                                                                                                                                =        26          and   a ⋅ ar + ar ⋅ ar
                                                                                                                                                                                                              2
                                                                                                                                                                                                                      + a ⋅ ar
                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                     = 156   ⇒
                                                                                                                                                                                                                                                  2            2
                                                                                                                                                                                                                                                 a r ( 1 + r + r ) = 156
       2                        2
      a r ( 1+r+r )
                                                    156                                                                          6
                                            =                        ⇒        ar         = 6           ⇒ a =
          a(1+r+r )
                            2                       26                                                                           r
               6                                        2                                                                            2                               2                                                1
      ⇒             (1 + r + r )                                     = 26                ⇒       6 + 6r + 6r                             = 26r          ⇒       3r       − 10r + 3 = 0 ⇒            r = 3 ,
               r                                                                                                                                                                                                      3
                                1
      If r          =                   , then                      Required terms are                                           18 , 6 , 2
                                3
16. (4)
      Let the GP be a,                                      ar, ar ,
                                                                                 2               3
                                                                                         ar , . . . . . . . . ar
                                                                                                                                         n−1
                                                                                                            2                     3
                                                t3 + t4 = 48                             ⇒             ar           + ar                 =         48    . . . . .(ii)
∴ r = ±2
                                                                                                                                      −1
                                                                                                                                               = −12
                                                                                                                                                                                     #MathBoleTohMathonGo
                                                                                                                                                                                           www.mathongo.com
DPP                                                                                                                                                                          Sequences and Series
Answer Keys and Solutions                                                                                                                                                       BITSAT Crash Course
17. (2)
      Let a be the first term and r the common ratio of the G. P . Then
      sum= 57 ⇒                                          1−r
                                                             a
                                                                         = 57                .......(i)
      Sum of the cubes = 9747
                   3                       3        3                3           6
      ⇒ a                  + a r                         + a r                           + … = 9747
                           3
                                       = 9747 .......(ii)
                       a
      ⇒
                               3
                  1−r
                                       3
                                               ⋅
                                                                 3
                                                                                 =
                                                                                             9747
                   (1−r)                                     a
                                   3
                   1−r
      ⇒                                        = 19
                                       3
                  (1−r)
                                       2
                  1+r+r
      ⇒                                        = 19
                                       2
                  (1−r)
                               2
      ⇒ 18r                            − 39r + 18 = 0
⇒ (3r − 2)(6r − 9) = 0
                                       2                                 3
      ⇒ r =                                    or r =
                                       3                                 2
                                       2
      ⇒ r =
                                       3
2 3 4
18. (1)            1
                       a+ar+ar +ar +ar
                                   1            1             1                  1
                                                                                         = 49
                        +              +                +            +
                   a           ar
                                               ar2           ar3             ar4
                                                2        3           4
                  a [ 1+r+r +r +r                                        ]
      ⇒                                                                                  = 49
                   1               4           3         2
                           [ r +r +r +r+1 ]
                  ar4
                   2           4
      ⇒ a r                            = 49
                        2
      ⇒ ar                     = 7
⇒ T3 = 7
T1 + T3 = 35
T1 + 7 = 35
T1 = 28
                                                                                                                                     1−r
                                                                                                                                           .
      ⇒ a = 20(1 − r)                                                        . . .(i)
                                                                                                                                                             2
                                   3
      ⇒ r =
                                   5
20. (2)
      a + 3c = 2b                                       and b            2
                                                                                 = 4ac
                                                                             2
                                           2b−a                          b
      ⇒            c =                                       =
                                               3                         4a
                                           2                         2                        2                     2
      ∴ 8ab– 4a                                    = 3b                      ⇒ 4a – 8ab + 3b                            = 0
              2                                                                                   8±√64−4×4×3
      4
          a
              2
                  –8
                               a
                               b
                                       +        3= 0 ⇒                           a
                                                                                     b
                                                                                         =
                                                                                                              2×4
          b
      a                    2±√4−3                                    2±1                      3       1
              =                                          =                               =        ,       .
      b                                2                                 2                    2       2
                                                                                                                                     1−r
                                                                                                                                           .
      ⇒ a = 20(1 − r)                                                        . . .(i)
                                                                                                                                                             2
                                   3
      ⇒ r =
                                   5
                                                                                                                                                #MathBoleTohMathonGo
                                                                                                                                                      www.mathongo.com
DPP                                                                                                                                                                                                   Sequences and Series
Answer Keys and Solutions                                                                                                                                                                                BITSAT Crash Course
22. (2) Let the three numbers of the GP be a,                                                                                    ar       and ar where r is the common ratio.
                                                                                                                                                    2
                                                      2
                                      a+ar
      ∴   2ar =
                                              2
                                  2
      ∴   a + ar                          = 4ar
              2
      ∴   r       + 1 = 4r
              2
      ∴   r       − 4r + 1 = 0
                              4±√16−4
      ∴   r =
                                      2
                              4±2√3
                  =                               = 2 ± √3
                                      2
                                                                                   2
      ⇒ 14(ar)= 3a + 15(ar )
                                                                  2
      ⇒ 14r = 3 + 15r
                      2
      ⇒ 15r                   − 14r + 3 = 0 ⇒(3r − 1)(5r − 3)= 0
                  1           3
      r =             ,           .
                  3           5
                                                                                               3
                                                                                                   ,   because
                              1
      r ∈(0,                      ]
                              2
                                                                                                                                                    3
                                                                                                                                                        a − 3a = −
                                                                                                                                                                               2
                                                                                                                                                                               3
                                                                                                                                                                                   a
                                                                                       2
      ∴ T4 = 3a +(4 − 1)(−                                                                 a)=         3a − 2a = a
                                                                                       3
24. (1)
      Let the first term of the given sequence be a
      First 11 terms are: a,                                                a + 2, . . . a + 20
      Since, eleventh term of the sequence is the first of last 11 terms of this sequence.
      Last 11 terms are:a + 20,                                                            (a + 20). 2, . . . (a + 20) ⋅ 2
                                                                                                                                                         10
                                                                                                                                     th
                                                                                                                (11+1)
      Now middle term of the AP is the (                                                                             2
                                                                                                                                 )        term, i.e., 6 term and the same goes for GP.
                                                                                                                                                              th
                                                                                                                         6
                                                                                                               ( 1−2         )
                                                  5                         5
      ⇒ 10 − 20 ⋅ 2                                       = a(2                    − 1)⇒ 10                                       = a
                                                                                                                 5
                                                                                                                2 −1
                                                                                                                                                                       6
                                                                                                                                                               ( 1−2       )
                          −1                              10
      = 10[                           ]=
                          5                                       5
                      2 −1                            1−2
                                                                      b+c
                                                                               are in AP.
                                                          b
              2                               1                        1
      ⇒               = 2(                                +                    )
              b                           a+b                         b+c
          1                               2b+a+c
      ⇒           =(                                                   )
                                                          2
          b                       ab+ac+b +bc
                                                      2                                    2
      ⇒ ab + ac + b                                       + bc = 2b                            + ab + bc
              2
      ⇒ b             = ac
      ⇒ a, b, c                   are in GP.
26. (2) Let the first term of an AP be a and common difference be d.
      Since, a + 3d =                                         5
                                                              3
                                                                  . . . . .(i)
      and a + 7d = 3. . . . . .(ii)
      On solving an equation (i) and (ii), we get
                  2                                   1
      a =                 ,       d =
                  3                                   3
                                                                  2                5           7
      ∴ T6 = a + 5d =                                                  +               =
                                                                  3                3           3
⇒ 6th term of HP is 3
                                                                           7
                                                                               .
                                                                                                                                                                           #MathBoleTohMathonGo
                                                                                                                                                                                   www.mathongo.com
DPP                                                                                                                                                                                             Sequences and Series
Answer Keys and Solutions                                                                                                                                                                          BITSAT Crash Course
27. (2) S           = 1 + 4x + 7x
                                                                   2
                                                                       + 10x +. … … .
                                                                                        3
                                             2                 3
      xS = x + 4x                                + 7x +. … … . .
      On subtracting, we get,
                                                                            2                 3
      S(1 − x)= 1 + 3x + 3x                                                     + 3x +. … … . .
                                          1
      = 1 + 3x(                                  ), |x|< 1
                                     1−x
                                          1−x+3x                           1+2x
      (1 − x)S =                                                  =
                                                 1−x                       1−x
                                                           (given)
                       1+2x                       35
      S =                                 =
                                     2            16
                   ( 1−x )
                                                                       2
      16 + 32x = 35 + 35x                                                  − 70x
                        2
      ⇒ 35x                 − 102x + 19 = 0
                   1        19
      x =              ,
                   5        7
But, |x|< 1 ⇒ x = 1
28. (1)
      Let,S            = (10)
                                          9
                                                 + 2(11)
                                                                       1
                                                                               (10)
                                                                                        8
                                                                                             + 3(11)
                                                                                                                  2
                                                                                                                      (10)
                                                                                                                                7
                                                                                                                                    + ...... + 10(11)
                                                                                                                                                                     9
                                                                                                                                                                         = k(10)
                                                                                                                                                                                   9
                                                                                                  2                                          9
                                9                             11                        11                                          11
      S = (10) {1 + 2(                                                )+3(                   ) +. .... +10(                              ) }
                                                              10                        10                                          10
2 9
      So,k = 1 + 2(
                                                 11                        11                                          11
                                                       )+3(                     ) +. .... +10(                              )
                                                 10                        10                                          10
                                                                       2                              3                                          10
          11                        11                        11                            11                                          11
      (        )k =                          + 2(                  )        + 3(                  ) +. .... +10(                             )
          10                        10                        10                            10                                          10
      Subtracting
                                                                                    2                                               9                          10
               k                                  11                       11                                              11                         11
      −(               )= 1 +(                            )+(                   ) +. … … + (                                    )       − 10(              )
               10                                 10                       10                                              10                         10
      Here,
      First term = 1
      Common ratio=                                    11
10
      Number of terms= 10
                                                                                                      10
                                                                                            11
                                                                                1{ (              )        −1 }
                                                           10              ⎡                10                    ⎤
                    k                            11
      ∴                     = 10(                      )           −⎢                                             ⎥
                   10                            10                                          11
                                                                                        {         −1 }
                                                                           ⎣                 10                   ⎦
                                                      10                                         10
                                          11                                        11
      k = 10[10(                                 )         − 10{(                           )         − 1}]
                                          10                                        10
                                                 10                                     10
                                     11                                        11
      k =[100(                            )           − 100(                        )         + 100]
                                     10                                        10
k = 100
                                                                                                                            1/n
      Hence, Geometric mean = (7.7                                                                2
                                                                                                      .7
                                                                                                           3
                                                                                                               …7 )
                                                                                                                       n
                                                          1/n
                   1+2+3+…+n
      = (7                                            )
                                             1/n
                    n ( n+1 )                                          n+1
                                                                   (            )
                                                                           2
      = (7                  2        )                = 7
30. (2)
                                                              a+b
      A. M.            of a and b =                               2
      So we have
                        n        n
                    a +b                          a+b
      ⇒                                       =
                   n−1           n−1                  2
               a            +b
                    n                    n                n                     n−1                        n−1              n
      ⇒ 2a                 + 2b               = a             + a. b                     + b. a                       + b
               n                n                      n−1                          n−1
      ⇒ a              + b           − a. b                        − b. a                        = 0
               n−1                                        n−1
      ⇒ a                   (a − b)+b                                 (b − a)= 0
                                         n−1                  n−1
      ⇒(a − b)(a                                  − b                      )= 0
      Since a ≠ b
                n−1                      n−1
      ⇒(a                    − b                  )= 0
                            n−1
                   a
      ⇒ (              )                 = 1
                   b
                            n−1                               0
                   a                                  a
      ⇒ (              )                 = (              )
                   b                                  b
⇒ n − 1 = 0
⇒ n = 1
                                                                                                                                                                     #MathBoleTohMathonGo
                                                                                                                                                                           www.mathongo.com
DPP                                                                                                                                                                                  Sequences and Series
Answer Keys and Solutions                                                                                                                                                               BITSAT Crash Course
          83                           5                            83               5                     78
      −        −(−                          )= −                          +                  = −                   = −39
          2                            2                            2                2                     2
32. (2)
      Let S        n
                           =
                                       1
                                       1⋅2
                                                +
                                                            1
                                                            2⋅3
                                                                        +
                                                                              3⋅4
                                                                                 1
                                                                                         +. . . +
                                                                                                                        1
n⋅ ( n+1 )
                                                1                1               1                1            1                    1        1
      ⇒ Sn = 1 −                                        +                −               +            −            +. . . +             −
                                                2                2               3                3            4                    n       n+1
                                                    1
      ⇒ Sn = 1 −
                                                n+1
      ⇒ Sn =
                                   n+1
                                       n
                                                .
33. (3)
                   1                                                                                                        1       1
      tr =                  (1 + 2 + 3 … . .                                                          + r)=                     .       r (r + 1)
                       r                                                                                                    r       2
                                                1               n
      S   = Σtr =                                   ∑                    (r + 1)
                                                2               r=1
                                                                        20
                   1                20                       1
      S =                  ∑                    r +                 ∑1
                   2                r=1                      2
                                                                        r=1
                   1                                                     1
      S =              . 20(20 + 1)+                                         . 20
                   4                                                     2
S = 115
34. (3)
      We have, t                       n     = n(n !)
={(n + 1)−1}n !
=(n + 1) ! − n !
Now, ∑ 15
                               n=1
                                             tn = 16! − 15! + 15! − 14!+. . . . . . . +2! − 1
= 16! − 1
                                                                    2
                                                                              =
                                                                                                  2
                                                                                                                   r
                                                                                                                        2
                                                    r +r +1                              ( r +r+1 ) ( r −r+1 )
                               2                                    2
                           ( r +r+1 ) − ( r −r+1 )
          1
      =        {                                                                         }
          2                        2                            2
                           ( r +r+1 ) ( r −r+1 )
               1                       1                                 1
      = −              (                            −                                )
               2                2                                   2
                            r +r+1                              r −r+1
               1
      = −              (V (r)−V (r − 1))
               2
                   n                                            1
      ⇒ ∑                       I(r)= −                                 (V (n)−V (0))
                   r=1                                          2
               1                       1
      = −              (                                − 1)
               2                2
                            n +n+1
                                                                                              2
                                                                                      ( n +n )
          1                                     1                            1
      =        (1 −                                          )=
          2                              2
                                       n +n+1                                2           2
                                                                                  ( n +n+1 )
36. (3) t      r
                   =
                                                        1
( r+1 ) √r+r√r+1
                                                                                             ( √r+1−√r )
                                            1
      =                                                                          ×
          √r ( r+1 ) { √r+1+√r }                                                             ( √r+1−√r )
          √r+1−√r
                                                        1                        1
      =                                     =                    −
          √r ( r+1 )                                √r                       √r+1
                           99                                                 1                       9
      P = ∑                             tr = 1 −                                             =
                           r=1                                                                        10
                                                                         √100
                            5          10                   n
               =                   [            (10             − 1)−n]
                            9           9
                               5                n+1
               =                       [10                   − 10 − 9n]
                            81
                               5                101
      S 100 =                          [10                  − 910]
                            81
                                                                                                                                                              #MathBoleTohMathonGo
                                                                                                                                                                 www.mathongo.com
DPP                                                                                                                                                                        Sequences and Series
Answer Keys and Solutions                                                                                                                                                     BITSAT Crash Course
38. (4)
                                       2       2        2            2
                       3n ( 1 +2 +3 +…+n                                 )
                                                                                      3n×n ( n+1 ) ( 2n+1 )
      tn =                                                                       =
                                               2n+1                                            6 ( 2n+1 )
              1                3               2
      =               (n           + n )
              2
                                           15                            15       1        3       2
      ∴ S15 = ∑                                         tn = ∑                        (n       + n )
                                           n=1                           n=1      2
              1                15               3               15            2
      =           [∑                       n        + ∑                  n ]
              2                n=1                              n=1
                                                            2                                                                  2
                                                                                                                  n ( n+1 )                       n ( n+1 ) ( n+2 )
              1                        15×16                        15×16×31                           3                                 2
      =               ×[(                               )       +                      ]       {∑ n         = (               ) ,   ∑n       =(                       )}
              2                            2                                 6                                        2                                   6
= 7200 + 620
= 7820
          x            4
      4       +            x
                                   ≥ 4
                       4
40. (3)
      AM ≥                         GM
      a+b+b+c+c+c                                           6
                                                        2 3
                                                   ≥ √ab c
                       6
                  a+2b+3c                               6
                                                2 3
      ⇒                                    ≥ √ab c
                               6
      ⇒           a b c
                           2       3
                                       ≤ 2
                                                    6
                                                        .
                                                                                                                                         #MathBoleTohMathonGo
                                                                                                                                                  www.mathongo.com