Diffrentiation
Diffrentiation
SYLLABUS
Differentiability of a function at a given point, Differentiation of the sum, difference,
product and quotient of two functions, differentiation of trigonometric functions, inverse
trigonometric functions, logarithmic functions, exponential functions, composite functions
and implicit functions. derivatives of order upto two.
Let f (x) be a real valued function defined on an open interval (a,b) where c
( a,b ) . Then f (x) is said to be differentiable or derivable at x = c,
f(x) − f(c)
iff lim exists finitely.
x →c (x − c)
This limit is called the derivative or differential coefficient of the function
d
f(x) at x = c, and is denoted by f’(c) or D f (c) or (f (x))x = c
dx
Thus, f (x) is differentiable at x = c
f(x) − f(c)
lim exists finitely
x →c (x − c)
f(x) − f(c) f(x) − f(c)
lim− = lim+
x →c (x − c) x →c (x − c)
f(c - h) - f(c) f(c + h) − f(c)
Þ lim = lim
h® 0 ( - h) h → 0 (h)
f(x) − f(c) f(c − h) − f(c)
Here lim− = lim is called the left hand derivative of f (x) at x = c
x →c (x − c) h → 0 ( −h)
and is denoted by f’ (c − ) or LF’(c).
f(x) − f(c) f(c + h) − f(c)
While , lim+ = lim is called the right hand derivative
x →c (x − c) h → 0 (h)
of f (x) at x=c and is denoted by f’ (c + ) or Rf’ (c).
Thus f (x) is differentiable at x = c.
Lf’(c) = Rf’ (c)
If Lf’ (c) Rf’(c) we say that f (x) is not differentiable at x = c.
Example -1: The set of triplets (a, b, c) of real numbers with a 0, for which the
function
x for x 1
f(x) = 2 , is differentiable, is
ax + bx + c otherwise
(A) { ( a, 1- 2a, a) / a R; a 0 }
(B) { ( a, 1- 2a, c) /a, c R; a 0 }
(C) { (a, b, c)/ a, b, c R; a + b+ c = 1 }
(D) { ( a, 1- 2a, 0) / a R; a 0 }
1 for x 1
Also f(x) =
2ax + b otherwise (sin ce f is continuous)
f (1+) = f(1–) 1 = 2a + b b = – 2a + 1 . . . . (2)
since a, b, c R and a 0, using (1) and (2)
c=a
DIFFERENTIABILITY IN AN INTERVAL
2.1 IN OPEN INTERVAL
A function f(x) defined on an open interval (a, b) is said to be differentiable or derivable
in open interval (a, b) if it is differentiable at each point of (a, b)
dy
= f (x) = 3x2.
dx
1
Example -4: Find the derivative of .
x
1
Solution: Let f (x) =
x
1 1
−
dy f ( x + h) − f ( x )x+h x
So, = lim = lim
dx h → 0 h h
h→0
x − x+h x + x +h −1
= lim = 3/2
h →0 x ( x + h )h x + x + h 2x
1
Example -6: Find the derivative of (1 + x )2 .
d (1 + x )1 / 2 1
Solution: = (1 + x )−1 / 2
dx 2
dy x2 + 1
Example -8: Find , if y = .
dx x
1 1
Solution: Let y = x + , so let u = x1 and v =
x x
So y = u + v
dy du dv 1 x2 − 1
= − =1– 2 =
dx dx dx x x2
dy x3 - 1
Example -9: Find , if y = .
dx x
1 1
Solution: Let y = x2 – , so let u = x2 and v =
x x
So y = u – v
dy du dv 1 2x 2 + 1
= − = 2x + 2 =
dx dx dx x x2
dy
Example -10: Find of
dx
3x + 4
(a). y = (x + 2)(x + 3) (b). y =
4x + 5
(c). y = 1 + x2 (d). y = ax 2 + 2 bx + c
dy
Solution: (a). = (x + 2).1 + (x + 3).1
dx
= x + 2 + x + 3 = 2x + 5
(b).
dy
=
(3x + 4 )x − 1 4 + 3( 4x + 5) = − 1
dx (4x + 5 )2 ( 4 x + 5 )2 ( 4 x + 5 )2
(c).
dy 1
(
= 1 + x2
dx 2
)
−1 / 2
2x =
x
1 + x2
(d).
dy 1
(
= ax 2 + 2bx + c
dx 2
)−1 / 2
(2ax + 2b )
= (ax 2 + 2bx + c ) (ax + b)
−1/ 2
2 dy
Example -12: If x= e − t and y = tan–1 (2t + 1), find .
dx
2
Solution: Here x= e − t
On differentiating both sides, we get,
dx 2
= e− t .( −2t)
dt
and y = tan–1 (2t + 1)
On differentiating both sides, we get,
dy 1
= (2)
dt 1 + (2t + 1)2
dy 2
dy dt 1 + (4t + 4t + 1)
2
= =
dt dx 2t
− t2
dt e
2
dy −e t
Hence, =
dt 2t(2t 2 + 2t + 1)
1 x 1
= cos log
2 x + 1 x(x + 1)
(iii) (
y = log x + e x
)
=
x+e
1
x
1 + e
x d
dx
( x ) = = x +1e x
1 + e
x 1
2 x
2 x +e x
=
2 x x+e ( X
)
DERIVATIVE OF AN IMPLICIT FUNCTION
If x and y are related by the rule F (x, y) = 0 such that y cannot be obtained entirely or
exactly in terms of x then y is said to be an implicit function of x.
For example: x 2 + y 2 = r 2 y = a2 − x 2
Here we do not get a unique value of y for each x.
Eg. x2 – y3 + 3x2y = 0
dy
Here also y cannot be obtained entirely in terms of x. To find in such cases start
dx
differentiating the given equation as it is (using rule of composite functions)
dy dy −3x 2
For example: for x3 + y2 = a2, we have 3x2 + 2y =0 =
dx dx 2y
If y can be expressed entirely in terms of x, then y is said to be an explicit function of x.
Note that every explicit function can be written as the implicit function y – f(x) = 0.
Differentiating w.r.t x
1 1 dy dy 1 dy 1
+ = 2x = 2y − 2y = 2x −
x y dx dx y dx x
1 − 2y 2 dy 2x 2 − 1 dy y(2x 2 − 1)
= =
y dx x dx x(1 − 2y 2 )
(ii) x + y = sin (xy)
dy dy
Differentiating w.r.t. x, we get 1 + = cos (xy). x + y
dx dx
dy
1 − x cos(xy) = y cos(xy) − 1
dx
dy y cos(xy) − 1
=
dx 1 − x cos(xy)
dy
Example -15: Find of
dx
(a). y = sin 2x (b). y = cos 2x
(c). y = x sin–1 x (d). y = a tan–1 x
(e). y = sec2 x (f). y = (log2 x)2
dy
Solution: (a). = 2 cos 2x
dx
dy
(b). = – 2 sin 2x
dx
dy 1
(c). = x. + sin–1 x
dx 1− x 2
dy 1
(d). =a
dx 1 + x2
dy
(e). = 2 sec x . sec x tan x = 2 sec2 x tan x
dx
dy 1 1
(f). = 2 log2 x loge2 = 2log2x . log2e
dx x x
Logarithmic Differentiation
If u and v are functions of independent variable x then to differentiate the
functions like uv , first we take the log and then differentiate.
Let y = (log x )
tan x
Solution: and z = sin(m cos– 1x)
So logy = tanx log log x
1 dy 1 1
. = sec 2 x. log log x + tan x
y dx log x x
dy tan x tan x
= (log x ) sec 2 x. log log x +
dx x log x
and
dz
(
= cos m cos −1 x m )
−1
=
(
− m cos m cos −1 x )
dx 1 − x2 1 − x2
tan x tan x
− (log x ) sec 2 x . log log x + 1 − x 2
dy / dx x log x
=
so
dz / dx (
m cos m cos −1 x ) .
dy
Example -18: If xy . yx = 1, find .
dx
Solution: Taking log on both sides;
Y log x +x log y = log 1
Differentiating both sides, we get,
d d d d
y. (log x) + y .log x + x .log y + x log y = o
dx dx dx dx
1 dy 1 dy
or y. + log x. + 1.log y + x. . =0
x dx y dx
x dy y
or log x. + y + dx = − x + log y
dy (y + x log y) y
=− .
dx (x + y log x) x
Let we have to differentiate f(x) with respect to g(x). If y = f(x) and t = g(x) then we have
dy dy dt dy dy dt
to find . First we find and then = ¸
dx dx dx dt dx dx
dy
Example -20: If x2 + y2 + xy = 2, find .
dx
Solution: x2 + y2 + xy = 2,
Differentiating both sides we get,
d 2 d 2 d d
dx
( )
x +
dx
( )
y +
dx
(xy) =
dx
(2)
dy dx d
or 2x + 2y + y + x y = 0
dx dx dx
dy dy
or 2x + 2y + 1.y + x. =0
dx dx
dy
or (2y + x) = −(2x + y)
dx
dy (2x + y)
or =−
dx (2y + x)
dy
Example -21: If y = sin x + sin x + sin x + ...., find .
dx
Solution: y = sin x + sin x + sin x + ....,
y= ( sin x ) + y
y 2 = sin x + y
Differentiating both sides, we get
dy dy
2y = cos x +
dx dx
dy
( 2y − 1) = cos x
dx
dy cos x
=
dx 2y − 1
1 dy
Example -22: If 5f(x) + 3f = x + 2 and y = xf (x), then find at x = 1.
x dx
1
Solution: Here, 5f(x) + 3f = x + 2
x
1
Put x = we get,
x
1 1
5f + 3f(x) = + 2
x x
Solving (i) and (ii) we get,
3
16f(x) = 5x − + 4
x
y = x f (x)
1 3
y = x. 5x − = 4
16 x
1
y=
16
5x 2 − 3 + 4
dy 1
or = 10x + 4
dx 16
dy
Now at x = 1
dx
dy 10 + 4 14 7
dx = = =
at x =1 16 16 8
dy 7
=
dx at x =1 8
Example -23: Find a, b, c and d, where f (x) = (ax + b) cos x + (cx + d) sin x and f’
(x) = x cos x is identity in x.
Solution: Here,
f’ (x) = x cos x
a cos x −(ax + b) sin x + c sin x + (cx + d) cos x x cos x
or (a + cx + d) cos x + (−ax – b + c) sin x x cos x + 0.sin x
a + b + cx = x and −ax−b + c = 0
Which is again identity in ‘x’
a + b = 0, c = 1, −a = o, −b + c = o
a =0, b = 1, c = 1, d = 0
SOLVED PROBLEMS
SUBJECTIVE
= − ( x − 1) ( x + 1)( x − 2) x (1, 2)
2
and
g (x) is not differentiable at x = 2
Þ f (x) is not differentiable at x = 2.
Hence (D) is correct answer.
y = 2− log 2 (x ) , then dy is
3
−5
2.
dx
− 3x 2 x2
(A) (B)
(x 3
−5 )
2
(x 3
−5 )
2
3x 2
(C) (D) none of these
(x 3
−5 ) 2
1 3
− 5 ))
Solution: y = 2log 2 (1 /( x = (x3 − 5)−1= 3
x −5
dy − 3x 2
= − 1 (x3 − 5)−2 3x2 = 3
dx ( x − 5 )2
Hence (A) is correct answer.
dy
3. y = esin 2x, then is
dx
(A) x cos 2x (B) 2y cos 2x
(C) xy cos 2x (D) none of these
dy
Solution: y = esin2x = esin2x cos 2x . 2 = 2 esin2x. cos 2x
dx
Hence (B) is correct answer.
dy
4. y = (sinx + cosx)x , then is
dx
log y x(cos x − sin x )
(A) y(sinx + cosx) (B) y +
x sin x + cos x
log y
(C) y + y2 (D) none of these
x
Solution: y = (sin x + cos x)x
log y = x log (sin x + cos x)
1 dy x (cos x − sin x )
= log (sin x + cos x) +
y dx sin x + cos x
dy x(cos x − sin x
= (sin x + cos x)x + log(sin x + cos x )
dx sin x + cos x
Hence (B) is correct answer.
−1 −1
( x −2) dy
6. y = 2sin x
ecos , then is
dx
y log 2 y log(2 / e )
(A) (B)
1 − x2 1− x2
y −1
(C) (D) none of these
1− x2
−1 −1
Solution: y = 2sin x ecos ( x − 2)
log y = sin−1 x log 2 + cos−1 (x − 2)
1 dy log 2 1 log 2 1
= − = −
y dx 1− x 2
1 − ( x − 2)2
1− x 2 2
1 − x − 4 + 4x
= answer is none of these.
Hence (D) is correct answer.
dy
7. x = a cos3 t, y = a sin3 t , then is
dx
(A) – tant (B) – cos t
(C) – cosec t (D) – cot t
dy dx
Solution: = 3a sin2 t cos t, = − 3a cos2 t sin t
dt dt
dy 3a sin2 t cos t
= = − tan t
dx − 3a cos 2 t sin t
Hence (A) is correct answer.
dy
8. x = t2 + t + 1, y = t2 – t + 1; then is
dx
2t + 1 2t − 1
(A) (B)
2t − 1 2t + 1
2t + 1
(C) (D) none of these
(2t − 1)2
dx dy
Solution: x = t2 + t + 1, = 2t + 1, = 2t − 1
dt dt
dy 2t − 1
=
dx 2t + 1
Hence (B) is correct answer.
dy
9. x = a (1 – sint), y = a(1 – tan t) , then is
dx
(A) sec2t (B) sec3t
(C) cos2t (D) cos3t
dx
Solution: x = a (1 − sin t) = a (0 − cos t) = − a cos t
dt
dy − a sec 2 t
= = sec3 t
dt − a cos t
Hence (B) is correct answer.
dy
10. y = loga(x2) , then at x = e, is
dx
(A) 2e (B) 1/e
(C) 2/e (D) none of these
2
dy log x 1 2x 2
Solution: y = loga x2 = = = 2 =
dx loge a x loge a x loge a
Hence (D) is correct answer.
dy
11. y = logsin −1 x cos −1 x , then is
dx
1 sin−1 x
(A) cos −1 x (B)
1 − x2 cos −1 x
tan−1 x
(C) log x (D) none of these
1 − x2
log cos −1 x
Solution: y = logsin −1 x cos −1 x, =
log sin −1 x
dy 1 1 −1
= −1
−1
+ log(cos−1x) − 1
dx log sin x cos x 1 − x2
1 1 1
−1 2
−1
(log sin x ) sin x 1 − x2
hence none of these
Hence (D) is correct answer.
eax − e −ax dy
12. y = sin −1 ax − ax
, then is
e +e dx
eax + e −ax 2a
(A) (B) ax
2a e + e − ax
4a eax + e − ax
(C) ax (D)
e + e − ax eax − e − ax
eax − e −ax
Solution: y = sin−1 ax ,
− ax
e +e
dy 1 a(eax + e −ax ) (eax − e −ax ) −1 a(eax − e −ax )
= ax − ax
+
dx (eax − e − ax )2 (e + e ) (eax + e − ax )2
1 − ax − ax 2
(e + a )
(eax + e − ax ) (eax + e −ax )2 − (eax − e −ax )2
= a
e 2ax + y − 2ax + 2 − e2ax − e − 2ax +2 (eax + e − ax )2
a
( 2 + 2)
2a
= 2ax = ax
− ax
(e + e ) e + e − ax
Hence (B) is correct answer.
y−x2
tan − 1
x2
dy
13. x= e , then is
dx
y 2 2y 2y y 2 2y
(A) x 2 + 4 − 2 + (B) x 2 + 4 − 2
x x x x x
y 2 2y
(C) 2 + 4 − 2 (D) none of these
x x
x = e tan (( y − x ) / x )
−1 2 2
Solution:
y y
log x = tan−1 2
− 1 2 − 1 = tan log x
x x
y
= 1 + tan log x
x2
y = x2 + x2 tan log x
dy 1
= 2x + 2x tan log x + x sec2 (log x)
dx x
= 2x + 2x tan log x + x sec2 (log x)
2 2 2y
= (x + x2 tan log x) + x sec2 (log x) = + 1 + tan2 (log x)
x x
2y y 2y
2
y2 2y
+ x 1 + 2 − 1 = + 1+ 4 + 1− 2
x x x x x
2
xy 2yx 2y
= 4 − 2 + + 2x
x x x
y 2 2y 2y y2
= 3− + + 2x = 3 + 2x
x x x x
Hence (A) is correct answer.
dy
14. x = (log x)tany , then is
dx
(A) logx – tany (B) logx + tany
log x − tan y log x − tan y
(C) (D)
x log x sec 2 y x log x sec 2 y. log log x
Solution: x = (log x)tany log x = tan y log log x
log x
tan y = .
log log x
Hence (D) is correct answer.
n dy
15. If y = (1 + x) (1 + x 2 )(1 + x 4 ).......(1 + x 2 ) then at x = 0 is
dx
(A) 1 (B) 0
(C) –1 (D) none of these
n
Solution: y = (1 + x) (1 + x2 )(1 + x 4 ).......(1 + x2 )
Multiplying numerator and denominator by (1 – x)
(1 − x)(1 + x)(1 + x 2 ).........(1 + x 2n )
y=
(1 − x)
1− x
n +1
2
y=
(1 − x)
=
n +1 2 −1
dy (1 − x). −2 .x
n +1
− 1− x2 ( n +1
) (−1)
dx (1 − x)2
dy −2n+1.0.1 + 1 − 0
So = =1
dx x =0 12
Hence (A) is correct answer.
tanx + secx - 1
16. If f(x) = then f’(x) is equal to
tanx - secx + 1
(A) sec x(tanx – secx) (B) sec x(secx – tanx)
(C) sec x(tanx + secx) (D) none of these
-1 1
17. The differential coefficient of cosec 2x 2 - 1 with respect to 1 − x 2 at x =
½ is
(A) –4 (B) 4
(C) –1 (D) none of these
1
Solution: Let x = cos; then y = cos−1 2 = cos−1(sec 2) = − 2
2x − 1 2
z = 1 − x 2 = 1 − cos2 = sin
dy dy d −2 −2
= = =
dz dz d cos x
Hence (A) is correct answer.
5cosx - 12sinx π dy
18. If y = cos -1 , x 0, , then is equal to
13 2 dx
(A) 1 (B) –1
(C) 0 (D) none of these
5 12
Solution: y = cos−1 cos x − sin x = cos −1(cos cos x − sin sin x)
13 13
= cos ( cos(x + )) = x +
−1
dy
=1
dx
Hence (A) is correct answer.
dy
19. If sin(x + y) = ex+y − 2, then is equal to
dx
(A) x=0 (B) x=2
(C) x = −2 (D) x=3
Solution: If sin(x + y) = e x + y –2
then, x + y = constant = (say)
where '' is the solution of sin = e – 2.
dy
Thus, =–1
dx
20. f(x) = (x2 − 4) x 2 − 5x + 6 + cos ( x ) is non-differentiable at
(A) x=0 (B) x=2 (C) x = −2 (D) x=3
Solution: 2
f(x) = (x – 4) |(x – 2) (x – 3)| + cosx
(x 2 − 4)(x 2 − 5x + 6) + cos x, x 2 or x 3
f(x) =
(4 − x )(x − 5x + 6), x (2, 3)
2 2
f(2 – 0) = – sin2,
f(2 + 0) = – sin2,
f(3 – 0) = –5 – sin3
f(3 + 0) = 5 – sin3
Thus, f(x) is differentiable at x = 2 but not at x = 3.
sin x 2
, x 1, then at x = 0
22. f(x) = x
0, x = 0
(A) f(x) is continuous but non−differentiable
(B) f(x) is differentiable
(C) f(x) is discontinuous at x = 0
(D) none of these
O x
y =− x 2
x
2x 2 + x ,x 0
24. Let f(x) = , then f(x) is
1 ,x=0
(A) Continuous but non−differentiable at x = 0
(B) Is differentiable at x = 0
(C) Discontinuous at (D) none of these
h
= lim 2
h→0 2h + h
1
= lim =1
h→0 2h + 1
−h
= lim
h→0 2h + | −h |
2
−h
= lim
h→0 2h2 + h
−1
= lim = –1
h→0 2h + 1
dy
= f ' (e x ).e x
dx
d2 y
dx 2 ( ) ( )
= e x f " e x .e x + e x f ' e x
d2 y
dx 2
( ) ( )
= e2x f " e x + e x f ' e x
d2 y
2
= e2 f " ( e) + ef ' ( e)
dx x =1
Hence (D) is correct answer.
sin x + cos x
26. The differential coefficient of tan1− w.r.t. x is :
cos x − sin x
1
(A) 0 (B)
2
(C) 1 (D) None of these
sin x + cos x 1 + tan x
Solution. y = tan−1 = tan−1
cos x − sin x 1 + tan x
= tan−1 tan + x = + x
4 4
dy
=1
dx
Hence (C) is correct answer.
1− x2 dy
28. If y = sin−1 2
, then is :
1+ x dx
-2 2
(A) (B)
1+ x2 1+ x2
1 2
(C) (D)
2 + x2 2 - x2
Solution. Pur x = tan
y = sin–1(cos 2) = sin−1 sin − 2
2
= − 2 = − 2 tan−1 x
2 2
dy −2
=
dx 1 + x 2
Hence (A) is correct answer.
1 1
29. Derivative of sec −1 2 w.r.t. 1 - x 2 at x = is :
2x − 1 2
(A) 2 (B) 4
(C) 1 (D) –2
1
Solution. Let u = sec −1 2 , v = 1 − x 2
2x − 1
Put x = cos u = 2, v = sin
du dv du 2 2
= 2, = cos = =
d d dv cos x
du
= 4.
dv x = 1
2
Hence (B) is correct answer.
dy
30. If sin(x + y) = log(x + y), then =
dx
(A) 2 (B) –2
(C) 1 (D) –1
dy 1 dy
Solution. cos ( x + y) 1 + = 1+
dx x + y dx
1 dy
cos ( x + y ) − 1+ =0
x + y dx
dy
= −1
dx
Hence (D) is correct answer.
dy
31. If y = sin x + sin x + sin x + ....to , then value of is :
dx
sin x sin x
(A) (B)
y +1 y +1
cos x cos x
(C) (D)
2y + 1 2y - 1
Solution. y = sin x + y y2 = sinx + y
dy dy dy
2y = cos x + ( 2y − 1) = cos x
dx dx dx
dy cos x
=
dx 2y − 1
Hence (D) is correct answer.
d2 y
32. If y = log (sin x), then is :
dx 2
(A) –cosec2x (B) sec2x
(C) –cosecx cot x (D) secx tanx
dy cos x
Solution. y = log (sin x) = = cot x
dx sin x
d2 y
= − cos ec 2 x
dx 2
Hence (A) is correct answer.
1− x2 dy
33. If y = log 2
, then is :
1+ x dx
- 4x 3 4
(A) (B)
1- x4 1- x4
- 4x 4x 3
(C) (D)
1- x4 1- x4
Solution. y = log (1 – x2) – log(1 + x2)
dy −2x 2x −4x
= − =
dx 1 − x 1 + x
2 2
1− x4
Hence (A) is correct answer.
dy
34. If y = a(1 + cos t) and x = a(t – sint), then is :
dx
t t
(A) tan (B) - tan
2 2
t
(C) - cot (D) None of these
2
dy
dy dt - a sin t
Solution. = =
dx dx a (1 - cos t )
dt
t t
- 2a sin cos
= 2 2 = - cot t
t 2
2a sin2
2
Hence (C) is correct answer.
x +.....to ¥ dy
35. If y = ex +e , then is :
dx
y y
(A) (B)
y +1 y- 1
y
(C) (D) None of these
1- y
Solution. y=e x+y log y = x + y
1 dy dy dy y
= 1+ =
y dx dx dx 1 − y
Hence (C) is correct answer.
dy 1 1
36. If x + y = 1, then at , is :
dx 4 4
1
(A) (B) 1
2
(C) –1 (D) 2
1 1 dy
Solution. x + y =1 + .=0
2 x 2 y dx
dy x dy
=− = −1
dx y dx 1, 1
4 4
d2 y
37. If x = at2, y = 2at, then is :
dx 2
1 1
(A) - (B)
t2 2at 2
1 1
(C) - 3 (D) -
t 2at 3
dx
Solution. x = at2 = 2at
dt
dy
y = 2at = 2a
dt
dy 2a 1 d2 y d 1 1 dt
\ = = = =− 2
dx 2at t dx 2
dx t t dx
1 1
= − 2 [By (1)]
t 2at
1
=-
2at 3
Hence (D) is correct answer.
1
38. Let g(x) be the inverse of the function f(x) and f'(x) = . Then g'(x) is :
1 + x3
1 1
(A) (B)
1 + (g (x )) 1 + (f (x ))
3 3
d 2 −1 1
39. sin cot =
dx 1+ x
1− x
1
(A) 0 (B) -
2
1
(C) (D) –1
2
Solution : Put x = cos = cos–1 x
1 1
\ = sin2 cot - 1 sin2 cot - 1
1 + cos q q
cot
1 - cos q 2
= sin2 cot −1 tan = sin2 cot −1 cot −
2 2 2
= sin2 − = cos2
2 2 2
1 + cos q 1 + x
= =
2 2
dy 1
= .
dx 2
Hence (C) is correct answer.
dy
41. If yx = xy, then is :
dx
y y (x log y - y )
(A) (B)
x x (y log x - x )
x x log y
(C) (D)
y y log x
Solution : y x = x y log y x = log x y
x log y = y log x
1 dy 1 dy
x + log y 1 = y + log x
y dx x dx
x dy y
y − log x dx = x − log y
.
dy y ( y − x log y )
Hence (B) is correct ans = wer.
dx x ( x − y log x )
dp
42. If pv = 81, then at v = 9 is :
dx
(A) 1 (B) –1
(C) 2 (D) None of these
81 dp 81
Solution : pv = 81 p = =− 2
v dv v
dp 81
For v = 9, =− = −1.
dv 81
Hence (B) is correct answer.
2x 2x
43. Differential coefficient of tan−1 2
w.r.t. sin- 1 is equal to :
1− x 1+ x2
(A) 0 (B) –1
(C) 1 (D) None of these
2x 2x
Solution : Put y = tan−1 2
and z = sin- 1
1− x 1+ x2
Put x = tan = tan−1 x
y = tan−1 ( tan2 ) = 2, z = sin−1 ( sin2 ) = 2
dy dz dy
= 2, =2 = 1.
d d dz
Hence (C) is correct answer.
45. If f(x) = cot–1 (cos2x)1/2, then f ' is :
6
1 2
(A) (B)
3 3
2 -2
(C) (D)
3 3
-1 1
f ' (x ) = × (cos 2x ) (- sin2x ×2)
- 1/ 2
Solution :
1 + cos 2x 2
sin2x
=
cos 2x (1 + cos 2x )
sin
3
f ' =
6
cos 1 + cos
3 3
3
2 2
= = .
1 1 3
1+
2 2
Hence (C) is correct answer.
x + 1 x − 1 dy
46. If y = sec −1 + sin −1
, then dx is :
x − 1 x + 1
(A) 1 (B) 2
(C) 3 (D) 0
x + 1 x − 1
Solution : y = sec −1 + sin −1
x − 1 x + 1
x − 1 x − 1
= cos−1 + sin −1
=
x + 1 x + 1 2
dy
=0.
dx
Hence (D) is correct answer.
dy
47. If x = a(t + sint), y = a(1 – cost), then is :
dx
t t
(A) tan (B) cot
2 2
t t
(C) sec (D) co sec
2 2
dx dy
Solution : = a (1 + cos t ), = a sin t
dt dt
dy dy dt a sin t
= =
dx dx dx a (1 + cos t )
t t
2sin cos
= 2 2 = tan t .
t 2
2cos2
2
Hence (A) is correct answer.
48. If x2 + y2 = 1, then :
(A) yy" – (2y')2 + 1 = 0 (B) yy" + (y')2 + 1 = 0
(C) yy" – (y')2 – 1 = 0 (D) yy" + 2(y')2 + 1 = 0
Solution : y 2 = 1 − x 2 2y y ' = −2x
y y ' = − x y y ''+ y '+ y ' = −1
y y ''+ ( y ') + 1 = 0 .
2
LEVEL II
Solution : lim
( ) (
f 3 + h2 − f 3 − h 2 )
2
h→0 2h
= lim
( )
f 3 + h2 − f ( 3) + f ( 3) − f 3 − h2 ( )
2
h→0 2h
=
1
lim
( 2
)
f 3 + h − f ( 3)
+
1
lim
(
f 3 − h2 − f ( 3 ) )
2 h→0 h2 2 h→ 0 −h2
1 1 1 1
= f ' (3) + f ' (3) = (5) + (5) = 5 .
2 2 2 2
Hence (A) is correct answer.
f ( a + h ) − 2f ( a ) + f ( a − h )
50. If f is twice differentiable function then lim is :
h→0 h2
(A) 2f'(a) (B) f''(a)
(C) f'(a) (D) f'(a) + f''(a)
f ( a + h) − 2f ( a) + f ( a − h) 0
Solution : lim 0
h→0 h2
f ' ( a + h) − f ' ( a − h) 0
= lim 0
h→0 2h
f '' ( a + h) + f '' ( a − h)
= lim = f '' ( a) .
h→ 0 2
Hence (B) is correct answer.
51. If f(x) = sinx, g(x) = x2, h(x) = logx and F(x) = (hogof)(x) then F''(x) is :
(A) 2cosec3x (B) 2cotx2 – 4x2cosec2x2
(C) 2x cotx 2 (D) – 2cosec2x
Solution : (
F (x ) = (hogof )(x ) = h g (f (x )) )
= h (g (sin x )) = h (sin2 x ) = loge (sin2 x )
= 2 loge (sin x )
F' ( x) 2cot x f '' ( x) = −2 cosec 2 x
Hence (D) is correct answer.
52. ( )
If y = log x + 1 + x 2 then the value of y2(0) is :
(A) –1 (B) 0
(C) 1 (D) None of these
Solution : (
y = log x + x 2 + 1 )
1 1
y1 = 1 + ( 2x)
x + x2 + 1 2 x2 + 1
1 −x
y1 = y2 =
( )
3/2
x2 + 1 1+ x2
y2 ( 0) = 0 .
Hence (A) is correct answer.
( ) then (1+ x ) y
m
53. If y = x + 1 + x 2 2
2 + xy1 − m2 y =
(A) 0 (B) 1
(C) –1 (D) 2
m −1 1 2x
Solution : y1 = m x + 1 + x 2 1+
2 1+ x2
my
=
1+ x2
( )
y12 1 + x 2 = m2 y 2
Differentiating w.r.t. x,
2y1y 2 (1 + x 2 ) + y12 (2x ) = 2m2 yy1
Canceling 2y1,
(1+ x ) y 2
2 + xy1 = m2 y.
Hence (A) is correct answer.
d2 y
54. If x + y + y − x = c then is :
dx 2
2 −2
(A) (B)
c c2
2
(C) (D) None of these
c2
Solution : We are given x+y + y- x =c . . . (1)
( ) -( )
2 2
Also x+y y- x = x + y - (y - x )
( x+y + y−x )( x + y − y − x = 2x )
2x
x+y − y−x = [By (1)] . . . (2)
c
2x
(1) + (2) gives 2 x+y =c+
c
4x 2
Squaring 4 (x + y ) = c + 2 + 4x 2
c
2
4x
Canceling 4x, 4y = c 2 + 2
c
dy 8x d2 y 2
4 = 2 2
= 2.
dx c dx c
Hence (C) is correct answer.
f '' ( 0 ) 1 n
If f ( x ) = (1 + x ) then the value of f ( 0 ) + f ' ( 0 ) + f ( 0 ) is :
n
55. + ....... +
2! n!
(A) n (B) 2n
(C) 2n−1 (D) None of these
f (0) = 1, f ' (x ) = n (1 + x ) ,
n- 1
Solution :
f '' (x ) = n (n - 1)(1 + x )
n- 2
, ......,
(n)
f(x) = n (n - 1) ......1 = n!
f ' ( 0) = n, f '' ( 0) = n (n − 1) , ...., f n ( 0) = n!
n n (n - 1) n!
Given expression = 1 + + + ...... +
1 2! n!
n n n n n
= C0 + C1 + C2 + ...... + Cn = 2 .
Hence (B) is correct answer.
d2 y dy
56. If y = sin (sinx), and + tan x + f(x) = 0 then f(x) is :
dx 2 dx
(A) sin2x sin(cosx) (B) sin2x cos(sinx)
(C) 2
cos xsin(cosx) (D) cos2x sin(sinx)
dy
Solution : = cos (sin x ) ×cos x
dx
d2 y
= − cos ( sin x ) sin x + cos x − sin ( sin x ) cos x
dx 2
d2 y dy
+ tan x = − cos ( sin x ) sin x − cos2 x sin ( sin x ) + cos ( sin x ) cos x tan x
dx 2 dx
= - cos2 x ×sin (sin x )
f ( x) = cos2 x sin ( sin x) .
Hence (D) is correct answer.
d2 y
57. If x = 2 cos t – cos 2t and y = 2 sin t – sin 2t then the value of 2
at t =
dx 2
is :
(A) 3/2 (B) –5/2
(C) 5/2 (D) –3/2
dx
Solution : = - 2sin t + 2sin2t
dt
dy
= 2cos t - 2cos 2t
dt
dy 2cos t - 2cos 2t cos t - cos 2t
= =
dt - 2sin t + 2sin2t sin2t - sin t
3t t
2 sin sin
= 2 2 = tan 3t
3t t 2
2cos sin
2 2
2
dy 3t 3 dt
2
= sec 2 ´ ´
dx 2 2 dx
3 3t 1
= sec 2 ×
2 2 2sin2t - 2sin t
2
dy 3
2
=− .
dx t = 2
2
2
dy
58. If x = sec − cos , y = sec − cos then is equal to :
n n
dx
(A)
(
n2 y 2 + 4 ) (B)
(
n2 y 2 − 4 )
x +42
x 2
2
y −4 2
ny
(C) n
x2 − 4
(D) x −4
dy
Solution : = nsec n−1 sec tan − n cosn−1 ( − sin )
d
sin
= n sec n + cosn−1 sin
cos
nsin
= sec n + cosn
cos
(
n tan sec n + cosn )
dx sin
= sec tan + sin = sec + sin
d cos
sin
= ( sec + cos ) = tan ( sec + cos )
cos
dy n tan sec + cos
=
n
( n
)
dx tan ( sec + cos )
=
(
n sec n + cosn )
sec + cos
( )
2
dy
2
n2 sec n + cosn
=
dx ( sec + cos ) 2
Hence (A) is correct answer.
2x − 1 dy
59. If y = f 2 and f'(x) = sin x2 then is:
x + 1 dx
(A) cos x2.f'(x) (B) – cos x2.f'(x)
(C)
(
2 1+ x − x 2
sin
)
2x − 1
2
.
)
x + 1 (
x2 + 1
2
)
Hence (C) is correct answer.
d 3 d2 y
60. If y2 = p(x), a polynomial of degree 3 then 2 y is equal to:
dx dx 2
(A) p'''(x) + p'(x) (B) p'''(x) + p''(x)
(C) p(x) p'''(x) (D) a constant
Solution : y = p ( x) 2y y1 = p' ( x)
2
2 ( y y 2 + y1 y1 ) = p'' ( x )
1
y y2 =
2
(
p'' ( x ) − 2y12 )
1
(
y 3 y 2 = p'' ( x ) y 2 − 2 ( y y1 )
2
2
)
2
1 1
= p'' ( x ) p ( x ) − p' ( x )
2 2
d 3 1 1 1
dx
( 2
)
y y 2 = p''' ( x) p ( x) + p' ( x ) p'' ( x ) − 2 p' ( x ) p'' ( x )
2 2
d 3
2
dx
( )
y y 2 = p ( x ) p''' ( x ) .
=
((
n2 sec n − cosn )
2
+4 ) = n ( y + 4) .
2 2
( sec − cos ) 2 + 4 x2 + 4
Hence (C) is correct answer.