Ontap
Ontap
b. 𝑓𝑠 = 240 𝐻𝑧
will be -20Hz (20Hz and phase reversal).
Because the unit of time is ms, the given signal has 3 frequencies:
F1 = 1 kHz, F2 = 3 kHz, F3 = 6 kHz
The highest frequency is FM = 6kHz, the Nyquist rate is 2×6kHz = 12kHz . When the signal
With the 𝑓𝑠 = 5 𝑘𝐻𝑧, the Nyquist interval is [−2.5 , 2.5] kHz. Only the frequency F1 is lie
is sampled at rates greater than 12kHz there will be no aliasing.
within this interval and, thus, will be not aliased. The two frequencies F2 and F3 lie outside
the interval and, thus, will be aliased:
F20 = F2 ± mFs = 3 ± m5 = 3, 3 ± 5, 3 ± 10, 3 ± 15,… = 3 −¿ 5 = −¿2kHz
F30 = F3 ± mFs = 6 ± m5 = 6, 6 ± 5, 6 ± 10, 6 ± 15,… (kHz) = 6 −¿ 5 = 1kHz
The recovered signal x0(t) has the frequencies F10, F20 and F30:
π π π
x0(t) = 4cos(2𝜋F1𝑡 − 2 ) − 2cos(2𝜋F20𝑡 − 2 ) + 4cos(2𝜋F30𝑡 − 2 )
π π π π
x0(t) = 4cos(2𝜋t − 2
) − 2cos(−4𝜋t − 2
) + 4cos(2𝜋t − 2
) = 8cos(2𝜋t − 2
) −
π
2cos(−4𝜋t − 2 ) (ms:t)
With the 𝑓𝑠 = 10 𝑘𝐻𝑧, the Nyquist interval is [−5 , 5] kHz. The two frequency F1 and F2 is
lie within this interval and, thus, will be not aliased. The frequency F3 lie outside the interval
and, thus, will be aliased:
F30 = F3 ± mFs = 6 ± m5 = 6, 6 ± 5, 6 ± 10, 6 ± 15,… (kHz) = 6 −¿ 10 =−¿4kHz
The recovered signal x0(t) has the frequencies F10, F20 and F30:
π π π
x0(t) = 4cos(2𝜋F1𝑡 − 2 ) − 2cos(2𝜋F2𝑡 − 2 ) + 4cos(2𝜋F30𝑡 − 2 )
π π π
x0(t) = 4cos(2𝜋t − 2 ) − 2cos(6𝜋t − 2 ) + 4cos(−8𝜋t − 2 ) (ms:t)
3. Sketch the block diagram of the discrete-time system (𝑦(𝑛) = 0, 𝑥(𝑛) = 0, 𝑛 < 0).
a. 𝑦(𝑛) − 𝑦(𝑛 − 1) = 0.5𝑥(𝑛) − 2𝑥(𝑛 − 1)
b. 𝑦(𝑛) = 𝑥(𝑛) − 0.7𝑥(𝑛 − 1) − 0.2𝑥(𝑛 − 3)
2. Given the sequence ℎ(𝑘). Determine ℎ(−𝑘), ℎ(2 − 𝑘), ℎ(−𝑘 − 3).
y(n) = h(n) = 0.5n× u(n).
h(n)\x(n) 1 2 3 4 5
0 0 0 0 0 0
1 1 2 3 4 5
2 2 4 6 8 10
2 2 4 6 8 10
0 0 0 0 0 0
h(n)\x(n) 0 2 1 2 1 0
0 0 0 0 0 0 0
−1 0 −2 −1 −2 −1 0
−2 0 −4 −2 −4 −2 0
−2 0 −4 −2 −4 −2 0
1 0 2 1 2 1 0
0 0 0 0 0 0 0
y(n) = {0, 0, −2, −5, −8, −5, −5, 0, 1, 0}
d. ℎ(𝑛) = 𝑢(𝑛) and 𝑥(𝑛) = 𝑎𝑛𝑢(𝑛), where |𝑎| < 1
∞
y ( n )= ∑ x ( k ) ⋅h ( n−k )
𝑥(k)
1.2
0.8
0.6
0.4
0.2
0
-1 0 1 2 3
ℎ(𝑛−𝑘)
1.2
0.8
0.6
0.4
0.2
0
-4 -3 -2 -1 0 1 2 3
Series 1
For n < 0, The plot of h(n−k) is shifted to the left by n units, so we have:
∞
y ( n )= ∑ x ( k ) ×h ( n−k ) = 0
k=−∞
For n ≥ 0, The plot of h(n−k) is shifted to the right by n units, so we have:
∞ +∞ n+1
a∨¿
y ( n )= ∑ x ( k ) ×h ( n−k ) = ∑ a × 1 = 1−¿
k
¿
k=−∞ k=−∞ 1−¿ a∨¿ ¿
Is stable
k=0
h(k) = 0.75k
because 0.75 < 1:
∞ ∞
1
∑ ¿ h( k)∨¿=∑ ¿ 0.75∨¿ k =
1−¿ 0.75∨¿=4 ¿
¿¿
k=−∞ k=0
Is stable
c. 𝑦(𝑛) =
∞
∑ 2k x (n−k )
k=0
h(k) = 2k
Because | a |= 2 > 1, therefore:
∞ ∞
a∨¿ n+1
∑ ¿ h( k)∨¿=∑ ¿ 0.75∨¿ =1−¿ k
2∨¿n +1
¿¿¿
=> ∞ (Not stable)
k=−∞ k=0
1−¿ a∨¿=1−¿ ¿¿
1−¿ 2∨¿ ¿
d. 𝑦(𝑛) =
∞
∑ (−1.5)k x(n−k)
k=0
h(k) =(−1.5)k
Because | a |= 1.5 > 1, therefore
∞ ∞
a∨¿n +1
∑ ¿ h( k)∨¿=∑ ¿−1.5∨¿k =1−¿
−1.5∨¿ n+1
¿¿¿
=> ∞ (Not stable)
k=−∞ k=0
1−¿ a∨¿=1−¿ ¿¿
1−¿−1.5∨¿ ¿
e. 𝑦(𝑛) =
∞
∑ (−1.5)k x(n−k)
k=0
h(k) =(−0.5)k
Because | a |= 0.5 < 1, therefore:
∞ ∞
1
∑ ¿ h( k)∨¿=∑ ¿−0.5∨¿ k =
1−¿−0.5∨¿=2 ¿
¿¿
k=−∞ k=0
Is stable
1. Find the DTFT 𝑋(𝜔) of the sequences 𝑥(𝑛). Find the magnitude and the phase of
DIGITAL SIGNAL PROCESSING 2025 – HOMEWORK #4
the 𝑋(𝜔).
a. 𝑥(𝑛) = {1, 2, 3, 4, 𝟎, 4, 3, 2, 1}
𝑋 (𝜔 ) =
+∞
𝑋(𝜔) =
+∞
∑ x ( n ) e− jωn = x ( 0 ) e− j 0+ x (1 ) e− jω+ x (2 ) e− j 2ω
𝑋(𝜔) =2e −jω −3e −j2ω = 2[cos(𝜔) −¿ jsin(𝜔)] − 3[cos(2𝜔) −jsin(2𝜔)]
n=∞
∑ x (n) e − jωn
= ∑ x ( n) e
− jωn
= e2jω+ejω+1+e−jω+e−2jω
𝑋(𝜔) = 2cos(2ω)+2cos(ω)+1
n=∞ n=−2
𝑋(𝜔) =
+∞ +∞
1 1
∑ x (n )e
− jωn
=∑ (0.5 e ¿¿− jω)n ¿ =
1−0.5 e
− jω
=
1−0.5 cos ( ω ) + j 0.5 sin ( ω )
n=−∞ n=0
𝑋(𝜔) =
1−0.5 cos ( ω )− j 0.5 sin ( ω ) 1−0.5 cos ( ω )− j0.5 sin ( ω )
2 2 =
[ 1−0.5 cos ( ω ) ] + [ 0.5 sin ( ω ) ] 1.25−cos ( ω )
Magnitude: |𝑋(𝜔)| =
√( )( )
2 2
1−0.5 cos ( ω ) −0.5 sin ( ω )
+
1.25−cos ( ω ) 1.25−cos ( ω )
− j 0.5 sin ( ω )
𝑋(𝜔) =
− jω
+∞ +∞
ae acos ( ω )−ajsin ( ω )
∑ x (n) e − jωn
= ∑ n(ae ¿¿− jω) ¿ =
n
( 1−ae − jω 2
)
=
1−2 acos ( ω ) + a
2
n=∞ n=0
XR(𝜔) = 2 ; XI(𝜔) =
acos ( ω ) −ajsin ( ω )
;
1−2 acos ( ω ) +a 1−2 acos ( ω ) +a2
Magnitude: |𝑋(𝜔)| =√ X R2 + X I 2
∑ ∑ ( e− jω )
− jωn n
x (n )e =
n=−∞ n=0
1 × ( 1−q M ) 1−e
M −1 − jω M
X ( ω )= ∑ q =
n
= − jω
n=0 1−q 1−e
M
Multiply numerator and denominator by e−jω (to symmetrize):
2
X ( ω )=e
− jω
( M −1)
2
×
sin( M2ω )
sin ( )
ω
2
Magnitude: |𝑋(𝜔)| = |
( 2 )
Mω
sin
|
sin ( )
ω
2
Phase: arg[𝑋(𝜔)] = −ω ×
M −1
𝑥(𝑛)=δ(n)−2δ(n−2)+3δ(n−3)
( { )
ω0
b. 𝑋(𝜔) =
, n=0
{
1, ω ∈ [−ω 0 , ω 0 ] ;
0 , ω ∈ [ −π , π ] [ −ω 0 , ω 0 ] .
x ( n ) = π
sin ( ω 0 n )
,n≠0
πn
n≠ 0 :
𝑥(𝑛)= ∫ X ( ω ) e = ∫ e d ω=
π ω0
1 1 1 1 j ω n j −ω n 2 jsin ( ω ) sin ( ω )
jωn jωn
( e −e )= =0 0
2 −π 2 −ω 2 jn 0
2 jn n
n = 0:
𝑥(0)= ∫ X ( ω ) e = ∫ e d ω= ( ω 0 +ω 0 )= 0 = ❑0
π ω0
1 jω0 1 0 1 2ω ω
2 −π 2 −ω 2 0
2
( { )
ω0
c. 𝑋(𝜔) =
1−
, n=0
{
1 ,ω ∈ [ −π , π ] [− ω0 , ω0 ] ;
0 ,ω ∈ [ −ω 0 ,ω 0 ] .
x ( n ) = π
−sin ( ω 0 n )
,n≠0
πn
n≠ 0 :
𝑥(𝑛)= ∫ X ( ω ) e =
π −ω0 π
1 1 1
2 −π
jωn
2 ∫e jωn
d ω+¿ ∫ e d ω ¿
2ω
jωn
−π 0
1 1 j−ω n j−π n j π n j ω n
x ( n )= [ e −e + e −e ]= 1 [ 2 jsin ( πn )−2 jsin ( ω0 n ) ]
0 0
2 jn 2 jn
n=0:
𝑥(0)= 1
−ω0
❑
({ )
ω2−ω1
d.𝑋(𝜔)=
, n=0
{
1, ω ∈ [−ω 2 ,−ω1 ] ∪ [ ω1 , ω2 ] ;
0 , ω ∈ [−,−ω2 ] ∪ [−ω1 , ω1 ] ∪ [ ω2 , π ] .
x ( n ) π
sin ( ω 2 n ) −sin ( ω 1 n )
,n≠0
πn
n≠ 0 :
𝑥(𝑛) = ∫ X ( ω ) e = ∫ e d ω+¿ ∫ e d ω ¿
π −ω1 ω2
1 jωn 1 jωn 1 jωn
2 −π 2 −ω 2ω 2 1
𝑥(𝑛) =
1 −jω n −jω n jω n jω n 1
(e −e + e −e )=
1 2
(2 jsin ( ω2 n ) −2 jsin ( ω 1 n ) )
2 1
2 jn 2 jn
𝑥(𝑛) =
sin ( ω2 n ) −sin ( ω 1 n )
n
n = 0:
𝑥(0)= ∫ X ( ω ) e = ∫ 1 d ω+¿ ∫ 1 d ω ¿
π −ω1 ω2
1 0 1 1
2 −π 2 −ω 2ω 2 1
e. 𝑋(𝜔)=
1− ,n=0
{
0 , ω ∈ [−ω 2 ,−ω1 ] ∪ [ ω1 , ω2 ] ;
1 ,ω ∈ [−,−ω 2 ] ∪ [−ω 1 , ω 1 ] ∪ [ ω 2 , π ] .
x ( n ) π
sin ( ω1 n )−sin ( ω2 n )
, n≠ 0
πn
n≠ 0 :
𝑥(𝑛) = ∫ X ( ω ) e = ¿ ¿
π
1 jωn 1
2 −π 2
𝑥(𝑛) =
1
( e j−ω n−e j−π n + e jn−e j−ω n +e j π n−e j ω n )
2 1 2
2 jn
𝑥(𝑛) =
1
2 jn
( j 2 sin ( πn )− j 2 sin ( ω2 n ) + j2 sin ( ω 1 n ) ); j 2 sin ¿)¿ 0 for all n
n = 0:
𝑥(𝑛) = ∫ X ( ω ) e = ¿ ¿
π
1 jωn 1
2 −π 2
magnitude response:
| H ( ω )| = |1+2 cos ( ω )−2 jsin ( ω ) +3 cos ( 3 ω )−3 jsin ( 3 ω )|
∣H(ω)∣=(√ ¿ ¿ ¿
phase response:
arg( H ( ω )) = arg ¿
b. 𝑦(𝑛) = 0.8𝑦(𝑛 − 1) + 𝑥(𝑛)
c.
DTFT:
∞ ∞ ∞
∑ y ( n) e− jωn
=0.8 ∑ y (k )e − jω ( k+1)
+ ∑ x ( n ) e− jωn ; k=n−1
n=−∞ k=−∞ n=−∞
− jω
Y(ω) = 0.8e Y(ω) + X(ω)
frequency response:
Y (ω) 1 1 1−0.8 cos ( ω )−0.8 jsin ( ω )
H ( ω )= = − jω =
=
X ( ω ) 1−0.8 e 1−0.8 cos ( ω ) +0.8 jsin ( ω ) ( 1−0.8 cos ( ω ) )2 + ( 0.8 sin ( ω ) )2
magnitude response:
∣H(ω)∣=(
√( ) (( )
2 2
1−0.8 cos ( ω ) −0.8 jsin ( ω )
2 2
+ 2 2
( 1−0.8 cos ( ω ) ) + ( 0.8 sin ( ω ) ) 1−0.8 cos ( ω ) ) + ( 0.8 sin ( ω ) )
phase response:
( )
−0.8 sin ( ω )
2 2
arg( H ( ω )) =arg
( 1−0.8 cos ( ω ) ) + ( 0.8 sin ( ω ) )
1−0.8 cos ( ω )
2 2
= arg ( −0.8 sin ( ω )
1−0.8 cos ( ω ) )
( 1−0.8 cos ( ω ) ) + ( 0.8 sin ( ω ) )
d. 𝑦(𝑛) = 0.5𝑦(𝑛 − 1) + 𝑥(𝑛) + 0.5𝑥(𝑛 − 1)(Thành)
DTFT:
∞ ∞ ∞ ∞
k = n −1 ;
Y(ω) = 0.5e− jωY(ω) + X(ω) + 0.5e− jωX(ω)
frequency response:
Y (ω) 1+0.5 e
− jω
H ( ω )= = =
X ( ω ) 1−0.5 e− jω
1+ 0.5 cosω− j 0.5 sinω ( 1+0.5 cosω− j 0.5 sinω ) ( 1−0.5 cosω+ j0.5 sinω )
=
1−0.5 cosω+ j 0.5 sinω ( 1−0.5 cosω )2 + ( 0.5 sinω )2
1−0.25 ( cos 2 ( ω )−sin 2 ( ω ) ) + j 0.5 sin ( ω ) cos ( ω )
H ( ω )=
( 1−0.5 cosω )2+ ( 0.5 sinω )2
magnitude response:
∣H(ω)∣=
|1+ 0.5 e− jω| √( 1+ 0.5 cos ( ω ) )2+ ( sin ( ω ) )2
=
|1−0.5 e− jω| √( 1−0.5 cos ( ω ) )2+ ( sin ( ω ) )2
phase response:
( )
0.5 sin ( ω ) cos ( ω )
( )
2 2
( 1−0.5 cosω ) + ( 0.5 sinω ) 0.5 sin ( ω ) cos ( ω )
arg( H ( ω )) =arg = arg
1−0.25 ( cos ( ω ) −sin ( ω ) )
2 2
1−0.25 ( cos2 ( ω ) −sin2 ( ω ) )
( 1−0.5 cosω )2+ ( 0.5 sinω )2
4. Find the output 𝑦(𝑛) of the system (applying DTFT properties).
a. 𝑥(𝑛) = ℎ(𝑛) = {1, 𝟎, 1}
y(n) = h(n) * x(n) (convolution propertie)
∞
y ( n )= ∑ x ( k ) h ( n−k )
k=−∞
h(n)\x(n) 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1
y(n) = {1, 0, 2, 0, 1}
b. 𝑥(𝑛) = 𝑢(𝑛 + 2) − 𝑢(𝑛 − 3), ℎ(𝑛) = 2𝛿(𝑛 − 1) − 3𝛿(𝑛 − 2)
𝑥(𝑛) ={1, 1, 1, 1, 1}
h(n) ={0, 2, − 3}
y(n) = 𝑥(𝑛)* ℎ(𝑛) (convolution)
∞
y ( n )= ∑ x ( k ) h ( n−k )
k=−∞
h(n)\x(n) 1 1 1 1 1
0 0 0 0 0 0
2 2 2 2 2 2
−3 −3 −3 −3 −3 −3
y(n) = (0, 2, −1, −1 ,−1 ,−1 ,−3)
c. ℎ(𝑛) = 0.5𝑛𝑢(𝑛), 𝑥(𝑛) = 0.25𝑛𝑢(𝑛)
y(n) = 𝑥(𝑛)* ℎ(𝑛) (convolution properties)
DTFT:
Y(ω) = H(ω ¿ × X (ω)
∞ ∞
1
H(ω ¿= ∑ h ( n ) e − jωn
=∑ 0.5 u ( n ) e− jωn =
n=−∞ n=1 1−0.5 e− jω
∞ ∞
1
X(ω) ¿ ∑ x ( n ) e− jωn=∑ 0.25u ( n ) e− jωn=
1−0.25 e− jω
n=−∞ n=1
1 −1 2
Y(ω) = ↔ Y ( ω )= +
( 1−0.5 e − jω
) ( 1−0.25 e − jω
) 1−0.25 e
− jω
1−0.5 e
− jω
[ ]
−1
−1 1
y(n) = DTFT( Y ( ω ) ) =DTFT =an u ( n )
1−a e− jω
{10,,nn<k≥ k
∞
y ( n )= ∑ x ( k ) h ( n−k ); u ( n−k )=
k=−∞
∞ jkπ n jkπ
y ( n )= ∑ e 2
0.8 ( n−k )
u ( n−k ) = ∑ e 2
0.8( n−k )
k=−∞ k=−∞
∑ (0.8 e )
∞ j ( n −m ) π jnπ ∞ − jmπ jnπ n − jπ m
y ( n )= ∑ 0.8 e
m 2
=e 2
∑ 0.8 m e 2
=e 2 2
jnπ jnπ
jnπ
1 2 1 1
y ( n )=e 2
× e × e 2
×
=
( ( π2 )− j 0.8 sin ( π2 )) = ( π2 )
− jπ
1−0.8 e 2 1− 0.8 cos 1+ j 0.8 sin
jnπ
1
y(n) =e 2
×
1+ j 0.8
e. 𝑥(𝑛) = 2 − 5 sin(𝑛𝜋) , ℎ(𝑛) = 0.25𝑛𝑢(𝑛)
y(n) = 𝑥(𝑛)* ℎ(𝑛) (convolution properties)
∞ n
y ( n )= ∑ x ( k ) h ( n−k )=¿ ∑ 2 ×0.25( n−k ) u ( n−k ) ¿
k=−∞ k=−∞
This is a geometric series with common ratio q=0.25 and n+1 terms.
1. Find the 4-point DFT 𝑋(𝑘) of the sequences, then compute its IDFT 𝑥(𝑛).
DIGITAL SIGNAL PROCESSING 2025 – HOMEWORK #5
n=0 n=0
1
x (0) =
4
( X ( 0 ) W 4 + X ( 1) W 4 + X ( 2)W 4 + X ( 3 ) W 4 )
−0 ×0 −1× 0 −2 ×0 −3 ×0
1
x ( 0 )=
4
[ 1+ ( 2− j )−1+ ( 2+ j ) ]=1
1
x (1) =
4
( X ( 0 ) W 4 + X ( 1) W 4 + X ( 2) W 4 + X ( 3) W 4 )
−0 ×1 −1 ×1 −2× 1 −3 ×1
1
x (1 )=
4
[ 1+ ( 2− j ) j−1 (−1 ) −( 2+ j ) j ]=1
x (2) =( X ( 0 ) W −0
4
×2
+ X ( 1 ) W −1×
4
2
+ X ( 2 ) W −2
4
×2
+ X ( 3 ) W −3
4
×2
)
1
x (2 )=
4
[ 1+ ( 2− j )(−1 )−1 ( 1 ) + ( 2+ j )(−1 ) ]=−1
x (3) =( X ( 0 ) W −0
4
×3
+ X (1 ) W −1×
4
3
+ X ( 2 ) W −2
4
×3
+ X ( 3 ) W −3×
4
3
)
1
x (3 )=
4
[ 1+ ( 2− j )(− j )−1 (−1 )+ ( 2+ j ) j ]=0
b. 𝑥(𝑛) = {𝟒, −3, 2, 1}
N=4
DFT:
3 3 − jnπk
X(k) = ∑ x ( n ) W kn
4 =∑ x ( n ) e
2
n=0 n=0
For k = 0:
For k = 1:
X(1) = 2 + 4j
For k = 2:
For k = 3:
X(3) = x(0)e0 + x(1)e−j3π/2 + x(2)e−j3π + x(3)e−j9π/2
k=0 k=0
For n = 0:
1 1
x(0) =
4
[ X ( 0 ) e + X ( 1 ) e + X ( 2 ) e + X ( 3 ) e ]= [ 4 + ( 2+4 j ) +8+ ( 2−4 j ) ]
0 0 0 0
4
1
x(0) = [4 + 2 + 8 + 2] = 4
4
For n = 1:
1
x(1) =
4
[ 0 jπ / 2 jπ
X ( 0 ) e + X ( 1 ) e + X ( 2 ) e + X (3 ) e
j3 π / 2
]
1
x(1) = [4(1) + (2 + 4j)(j) + 8(−1) + (2 – 4j)(−j)] = −3
4
For n = 2:
1
x(2) = [X(0)e0 + X(1)ejπ + X(2)ejπ/2 + X(3)ej3π]
4
1
x(2) = [4(1) + (2 + 4j)(−¿1) + 8(1) + (2 −¿ 4j)(−¿1)] = 2
4
For n = 3:
1
x(3) = [X(0)e0 + X(1)ej3π/2 + X(2)ej3π + X(3)ej9π/2]
4
1
x(3) = [4(1) + (2 + 4j)(−¿j) + 8(−¿1) + (2 −¿ 4j)(j)]
4
N=4
3 3 − jnπk
DFT: X(k) = ∑ x ( n ) W kn
4 =∑ x ( n ) e
2
n=0 n=0
3 3 − jnπk
X(k) = ∑ x ( n ) W =∑ x ( n ) e
kn
4
2
n=0 n=0
For k = 0:
For k = 1:
For k = 2:
X(2) = 8
For k = 3:
k=0 k=0
For n = 0:
1
x(0) =
4
[ X ( 0) e + X ( 1) e + X (2) e + X ( 3) e ]
0 0 0 0
1
x(0) =
4
[ 1.4+ ( 0.8−0.6 j )+ 0.2+ ( 0.8+0.6 j ) ]
1
x(0) = [1.4 + 0.8 + 0.2 + 0.8 − 0.6j + 0.6j] = 0.8
4
For n = 1:
1
x(1) =
4
[ 0 jπ / 2 jπ
X ( 0 ) e + X ( 1 ) e + X ( 2 ) e + X (3 ) e
j3 π / 2
]
1 1
x(1) = [1.4+(0.8j−0.6 j 2 )−0.2−(0.8j+0.6 j 2 )] = ¿1.4 + 0.8j + 0.6 − 0.2 − 0.8j + 0.6)
4 4
=0.6
For n = 2:
1
x(2) = [X(0)e0 + X(1)ejπ + X(2)ejπ/2 + X(3)ej3π]
4
1
x(2) = [1.4(1) + (0.8−0.6j)(−1) + 0.2(1) + (0.8+0.6j)(−1)]
4
1
x(2) = (1.4 − 0.8 + 0.2 − 0.8 + 0.6j − 0.6j) = 0
4
For n = 3:
1
x(3) = [X(0)e0 + X(1)ej3π/2 + X(2)ej3π + X(3)ej9π/2]
4
1
x(3) = [1.4(1) + (0.8 − 0.6j)(−j) + 0.2(−1) + (0.8 + 0.6j)(j)]
4
1
x(3) = (1.4 − 0.8j − 0.6 − 0.2 + 0.8j − 0.6) = 0
2. Consider a digtal sequence sampled at the rate of 20kHz. If we use 𝑁 = 8000 point
4
DFT to compute the spectrum 𝑋(𝑘), determine the frequency resolution and the
frequency when 𝑘 = 2, 𝑁/2, 𝑁 − 2, 𝑁. the frequency resolution is:
fs 20000
∆f= = =2.5 Hz
N 8000
3. Compute the circular convolution of 𝑥(𝑛) and ℎ(𝑛). Compare to the linear
convolution.
a. 𝑥(𝑛) = ℎ(𝑛) = {𝟏,1,1}
circular convolution:
x(n) 1 1 1 y(n)
1 1 1 3
h(n) 1 1 1 3
1 1 1 3
y(n) = {3, 3, 3}
Linear convolution:
x(n)\h(n) 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
y(n) = {1, 2, 3, 2, 1}
The linear have length is 3 + 3−1=5
b. x(𝑛) = {𝟎,1,2,3}, ℎ(𝑛) = {𝟏,2,3,4}
circular convolution:
x(n) 0 1 2 3 y(n)
1 4 3 2 16
2 1 4 3 15
h(n)
3 2 1 4 16
4 3 2 1 10
y(n) = {16,15,16,10}
linear convolution:
h(n)\x(n) 0 1 2 3
1 0 1 2 3
2 0 2 4 6
3 0 3 6 9
4 0 4 8 12
y(n) ={0, 1, 4, 10, 16, 17, 12}
The linear length is 4 + 4−1=7
circular convolution:
x(n) 0 1 2 3 0 0 0 y(n)
h(n) 1 0 0 0 4 3 2 0
2 1 0 0 0 4 3 1
3 2 1 0 0 0 4 4
4 3 2 1 0 0 0 10
0 4 3 2 1 0 0 16
0 0 4 3 2 1 0 17
0 0 0 4 3 2 1 12
y(n) = {0, 1, 4, 10, 16, 17, 12}
linear convolution:
h(n)\x(n) 0 1 2 3 0 0 0
1 0 1 2 3 0 0 0
2 0 2 4 6 0 0 0
3 0 3 6 9 0 0 0
4 0 4 8 12 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
y(n)={0, 1, 4, 10, 16, 17, 12, 0, 0, 0, 0, 0, 0}
The linear have length is 7 + 7−1=13
The circular length is 7
4. Evaluate 𝑋(𝑘) using the decimation-in-time FFT method. Determine the number
of complex multiplications
a. x(𝑛) = {𝟏,1}
N= 2
f1(n) = x(2n) = x(0)
f2(n) = x(2n+1) = x(1)
N
X(k) = F 1 ( k )+W kN F 2 ( k ), k = −1=0
2
k=0: X ( 0 )=F1 ( 0 ) +W 02 F 2 ( 0 )
N N
X(k+ ¿ = F 1 ( k )−W kN F2 ( k ) , k = −1=0
2 2
N=2 → X ( k +1 )=F 1 ( k )−W kN F 2 ( k )
k=0: X(1) = F 1 ( 0 )−W 02 F2 ( 0 )
X(0)=x(0)+ W 02 x (1 )=1+1=2
X(1)=x(0)−W 20 x (1 )=1−1=0
N
number of complex multiplications: log 2 ( N )=1 log 2 ( 2 )=1
2
b. x(𝑛) = {𝟎.𝟖,0.4,−0.4,−0.2}
N= 4
f1(n) = x(2n) = x(0), x(2)
f2(n) = x(2n+1) = x(1), x(3)
N
X(k) = F 1 ( k )+W kN F 2 ( k ), k =0, , −1=1
2
k=0: X ( 0 )=F1 ( 0 ) +W 04 F 2 ( 0 )
k=1: X(1) = F 1 ( 1 ) +W 14 F 2 (1 )
N N
X(k+ ¿ = F 1 ( k )−W kN F2 ( k ) , k =0,1,… , −1=1
2 2
N=2 → X ( k +2 )=F 1 ( k )−W k4 F2 ( k )
k=0: X(2) = F 1 ( 0 )−W 04 F 2 ( 0 )
k=1: X(3) = F 1 ( 1 )−W 14 F2 ( 1 )
X ( 0 )=[ x ( 0 )+ x ( 2 ) ] +W 4 [ x ( 1 )+ x ( 3 ) ] =0.4+1 ×0.2=0.6
0
X ( 2 )= [ x ( 0 ) + x ( 2 ) ] −W 4 [ x ( 1 ) + x ( 3 ) ] =0.4−0.2=0.2
1
N
number of complex multiplications: log 2 ( N )=2 log 2 ( 4 )=4
2
c. 𝑥(𝑛) = {𝟒,3,2,1,1,2,3,4}
N= 8
f1(n) = x(2n) = x(0), x(2), x(4), x(6)
f2(n) = x(2n+1) = x(1), x(3), x(5), x(7)
8
X(k) = F 1 ( k )+W kN F 2 ( k ), k =0,1,…, −1=3
2
k=0: X ( 0 )=F1 ( 0 ) +W 08 F 2 ( 0 )
k=1: X(1) = F 1 ( 1 ) +W 18 F 2 ( 1 )
k=2: X(2) = F 1 ( 2 ) +W 28 F 2 ( 2 )
k=3: X(3) = F 1 ( 3 ) +W 38 F 2 ( 3 )
N 8
X(k+ ¿ = F 1 ( k )−W kN F2 ( k ) , k =0,1,… , −1=3
2 2
N=8 → X ( k + 4 )=F 1 ( k )−W k4 F2 ( k )
k=0: X ( 4 )=F 1 ( 0 )−W 08 F 2 ( 0 )
k=1: X(5) = F 1 ( 1 )−W 18 F 2 (1 )
k=2: X(6) = F 1 ( 2 )−W 28 F 2 2
k=3: X(7) = F 1 ( 3 ) −W 38 F 2 ( 3 )
For N = 8, indices are 3-bit binary:
Decimal Binary Bit-reversed New index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
0
X ( 0 )=F1 ( 0 ) +W 8 F 2 ( 0 )=10+10=20
1 2
(2 2
2 )
X(1) = F 1 ( 1 ) +W 8 F 2 ( 1 )=3+ (− j ) (−1 ) + √ − j √ ( 1+ (− j )(−3 ))
1
X(5) = F 1 ( 1 )−W 8 F 2 (1 )=( 3+ j ) − ( −2√ 2 − j √22 ) ( 1+3 j )
X(6) = F 1 ( 2 )−W 28 F 2 2=0−(− j ) ⋅0=0
3
X(7) = F 1 ( 3 ) −W 8 F 2 ( 3 )=( 3− j )− ( −2√ 2 − j √22 ) ( 1−3 j )
N
number of complex multiplications: log 2 ( N )=4 log 2 ( 8 ) =12
2
a. 𝑥(𝑛) = {𝟏, 2, 3, 4}
∞ 3
X ( z )= ∑ x ( n ) z−n = ∑ x ( n ) z−n=z 0 +2 z−1+ 3 z −2 + 4 z−3
n=−∞ n=0
b. 𝑥(𝑛) = {1, 2, 3, 𝟒}
∞ 0
X ( z )= ∑ −n
x (n ) z = ∑ x ( n ) z−n=4 z 0+ 3 z 1 +2 z 2+1 z 3
n=−∞ n=−3
c. 𝑥(𝑛) = 10𝑢(𝑛)
∞ ∞
X(z)= ∑ 10u ( n ) z −n = 10 ∑ ¿ ¿
n=−∞ n=0
d. 𝑥(𝑛) = 0.5𝑛𝑢(𝑛)
∞ ∞
X(z)= ∑ n
0.5 u ( n ) z −n
= ∑ ¿¿
n=−∞ n=0
e. 𝑥(𝑛) = 10sin(0.25𝜋𝑛)𝑢(𝑛)
∞ ∞
X(z) = ∑ 10 sin ( 0.25 πn ) u ( n ) z =10 ∑ sin ( 0.25 πn ) u ( n ) z −n
−n
n=−∞ n=0
−1
z sin ( 0.25 π )
X(z) =
1−2 z−1 cos ( 0.25 π ) + z −2
∞
1
X(z)= 3 z
−4
∑ u ( k ) z−k =3 z −4 × 1−z −1
k=0
g. 𝑥(𝑛) =2(−0.5 )n u ( n )
∞ ∞
X(z)= ∑ 2¿ ¿ = 2 ∑ ¿ ¿
n=−∞ n=0
2z
X(z)=
1−(−0 ,5 z ¿¿−1)¿
∞ ∞ −1
X2(z)= ∑ −0.75 u ¿ ¿ = −∑ ¿ ¿ = X(z)=
n
1−(0 ,75 z ¿¿−1)=
−z
¿
n=−∞ n=0
z −0.75
2
−z 2 z −3 z +2.5 z
X(z)= − =
z−1 z−0.75 ( z−1 ) ( z−0.75 )
−1
10 z −1
z n
Z { 2 } =10 × Z { 2 }=10 ×n ×1 ×u ( n )
( z−1 ) ( z−1 )
2z −1 2.5 ×0.8 z −1 0.8 z
−1
Z { 2} =
Z 2
=2.5 × Z { n
2 }=2.5 ×n × ( 0.8 ) ×u ( n )
( z−0.8 ) ( z−0.8 ) ( z−0.8 )
−4
4z −1 −5 z
−1
Z { }=4 × Z z =4 u ( n−5 )
z−1 z−1
{ }
−1
z −1 −2 z ( n−2 )
−1
Z { 2 }=
Z z 2
= ( n−2 ) 1 u ( n−2 )=( n−2 ) u ( n−2 )
( z−1 ) ( z−1 )
Z { z ×1} =δ ( n−8 )
−1 −8
−83.33 7.33 z 76 z 12 z
X(z) = + + −
1 z−0.6 z−0.1 ( z−0.1 )2
Z { −83.33 }= −83.33 δ ( n )
−1
7.33 z
−1
Z { }= 7.33 ( 0.6 )n u ( n )
z−0.6
76 z
−1
Z { }= 76 ( 0.1 )n u ( n )
z−0.1
−12 z
−1
Z { }= −12 n ( 0.1 )n u ( n )
( z−0.1 )2
x(n)= −83.33 δ ( n )−7.33 ( 0.6 )n u ( n ) +76 ( 0.1 )n u ( n ) +12 n ( 0.1 )n u ( n )
3. Find transfer functions 𝐻(𝑧) of the following systems.
a. 𝑦(𝑛) = 0.5𝑥(𝑛) − 0.5𝑥(𝑛 − 1)
Z{y(n)}=Z{0.5x(n)}−Z{0.5x(n−1)}
Y(z)=0.5X(z)−0.5Z{x(n−1)}
We have Z{x(n−n0)}=z−n0X(z)
For a delay of one sample (n0=1), this becomes Z{x(n−1)}=z−1X(z)
Y(z)=0.5X(z)−0.5z−1X(z)
Y(z)=X(z)(0.5−0.5z−1)
Y (z)
H(z)= =0.5−0.5z−1
X ( z)
We have Z{x(n−n0)}=z−n0X(z)
Y(z)−0 , 3 z−1 Y ( z )=X ( z )
y(n) −0 , 3 y ( n−1 )=x ( n )
y(n)=x(n)+ 0 , 3 y ( n−1 )
b. H(z)=0.1+0.2 z−1 +0.3 z−2
Y ( z)
H ( z )= = 0.1 + 0.2z⁻¹ + 0.3z⁻²
X (z )
We have Z{x(n−n0)}=z−n0X(z)
Y(z) = X(z) · (0.1 + 0.2z⁻¹ + 0.3z⁻²)
Y(z) = 0.1X(z) + 0.2z⁻¹X(z) + 0.3z⁻²X(z)
y(n) = 0.1x(n) + 0.2x(n−1) + 0.3x(n−2)
2 −2
z −0.25 1−0.25 z
c. H(z)= 2
= −1 −2
z +1.1 z+ 0.18 1+1.1 z +0.18 z
Y (z) 1−0.25 z
−2
H(z)= =
X ( z ) 1+1.1 z −1+ 0.18 z −2
Y(z)+Y(z) 1.1 z−1+Y ( z ) 0.18 z−2=X ( z )−X ( z ) 0.25 z −2
We have Z{x(n−n0)}=z−n0X(z)
y(n)+1.1y(n−1 ¿+0.18 y (n−2)=x (n)−0.25 x (n−2)
y(n)= x (n)−0.25 x (n−2)¿−1.1 y (n−1)−0.18 y (n−2)
2
z −0.1 z +0.3
d. H(z)= 3
z
Y ( z ) −1
H(z)= =z −0.1 z −2 +0.3 z−3
X ( z)
Y(z)=X(z) z−1− X ( z ) 0.1 z −2+ X ( z ) 0.3 z−3
We have Z{x(n−n0)}=z−n0X(z)
y(n)=u(n−1 ¿−0.1u(n−2)+0.3 u(n−3)
5. Sketch the z-plane pole-zero plot and determine the stability of the system
2
z +0.25
a. H ( z )=
( z −0.5 ) ( z 2+3 z +2.5 )
Numerator (Zeros): z2+0.25=0
z=± j0.5
So the zeros are at:
z=+j0.5z
z=−j0.5z
Denominator (Poles):(z−0.5)( z 2+3z+2.5)=0
{
z=0.5
z=1.5 ± j
2
Pole at:
{
z=0.5 ,|z|<1
j
z=1.5 ± ,|z|=1.58>1 ( outsideunitcircle )
2
System is not stable
z−0.5
b. H(z)=
( z+ 0.25 ) ( z 2+ z+ 0.5 )
Numerator (Zeros): z−0.5 =0
z=0.5
Denominator (Poles): ( z +0.25 ) ( z 2+ z +0.5 )=0
{
z =−0.5
j
z=−0.5 ±
2
Pole at:
{
z =−0.5 ,|z|<1
j
z=−0.5 ± ,| z|=0.707< 1
2
System is stable
2
z + 2 z +1
c. H(z)= 2
z +5 z +6
{ z=−2 ,|z|>1
z=−3 ,|z|>1
System is unstable
2
z + 4 z+5
d. H(z) = 3 2
z +2 z + 6 z
Numerator (Zeros): z 2+ 4+ 5= 0
z=−2 ± j
Denominator (Poles): z 3 +2 z 2 +6 z =0
{z=−1z=0± j √ 5
Pole at:
{ z=0 ,|z|<1
z=−1 ± j √ 5 ,|z|=2.449>1
System is unstable
{
δ ( n )= 1 ,n=0
0,n≠0
We take k from 0 to 2 so that we calculate h(n) from 0 to 2 with result different from 0
and
n from 3 to infinite the result will be 0
n=0=¿ h ( 0 )=0.1n=1=¿ h ( 1 )=0.25n=2=¿ h ( 2 ) =0.2
h ( n )={ 0.1 , 0.25 ,0.2 }
2. Design a three-tap lowpass FIR filter with a cutoff frequency of 800Hz, and a
sampling rate of 8000Hz. Determine the transfer function and difference equation of
the system.
Using Rectangular window
Solution:
f c =800 Hz
f s=8000 Hz
f c ×2 π 800 ×2 π
ωc= = =0.2 π
fs 8000
{
ω0
{
, n=0 0.2, n=0
h ( n ) = π =¿ h ( n ) =
Lowpass filter: sin ( 0.2 πn )
sin ( ω 0 n ) ,n≠0
,n≠0 πn
πn
Choose the filter length N = 3
n=0=¿ h ( 0 )=0.2n=1=¿ h ( 1 )=0.187n=−1=¿ h (−1 ) =0.187
¿> h ( n )=[0.187 ,0.2 , 0.187]
To achieve causality
'
(
h ( n )=hd n−
N−1
2 ) =hd ( n−1 )
3. Design a three-tap highpass FIR filter with a cutoff frequency of 1000Hz, and a
sampling rate of 8000Hz, using Hamming window. Determine the transfer function
and difference equation of the system.
Solution:
f c =1000 Hz
f s=8000 Hz
f c ×2 π 1000 ×2 π
ωc= = =0.25 π
fs 8000
{
ω0
{
1− , n=0 0.75 , n=0
h ( n ) = π =¿ h ( n ) =
Highpass filter: −sin ( 0.25 πn )
−sin ( ω 0 n ) , n≠ 0
,n ≠ 0 πn
πn
Choose the filter length N = 3
n=0=¿ h ( 0 )=0.75n=1=¿ h ( 1 )=−0.225n=−1=¿ h (−1 ) =−0.225
=>h ( n )=[−0.225 , 0.75 ,−0.225]
To achieve causality
h' ( n )=hd n−(N−1
2 )
=hd ( n−1 )
{
2 πn
0.5−0.5 cos ( ), 0 ≤n ≤ N−1
ω hann= N −1
0 , Otherwise
n=0=¿ ωhann (0)=0n=1=¿ ω hann ( 1 )=1n=2=¿ ω hann ( 2 )=2−2=0
=>ω hann=[0 ,1 , 0] (3)
h ' ( n )=[−0.225 , 0.75 ,−0.225] (1)
From (1) and (3) we will calculate the h2 ( n ) =h' ( n ) × ωhann ( n )=[0 , 0.75 , 0]
¿> heff 2 ( n )=[0 ,0.75 ]
−1
¿> H eff 2 ( z )=0.75 z
¿> y eff 2 (n)=0.75 x ( n−1 )
4. Design a five-tap bandpass FIR filter with a lower cutoff frequency of 2000Hz, an
upper cutoff frequency of 2400Hz, and a sampling rate of 8000Hz, using Hann
window. Determine the transfer function and difference equation of the system.
Solution:
f cl=2000 Hz
f cu=2400 Hz
f s=8000 Hz
f cl ×2 π 2000 ×2 π
ω cl= = =0.5 π
fs 8000
f ch ×2 π 2400 ×2 π
ω cu= = =0.6 π
fs 8000
{
ω cu−ω cl
{
,n=0 0.1 , n=0
π
Bandpass filter: h ( n )= =¿ h ( n )= sin ( 0.6 πn ) −sin ( 0.5 πn )
sin ( ω cu n ) −sin ( ω cl n ) , n≠ 0
,n≠0 πn
πn
Choose the filter length N = 5
n=−2=¿ h (−2 )=−0.0935
n=−1=¿ h (−1 ) =−0.0156
n=0=¿ h ( 0 )=0.1
n=1=¿ h ( 1 )=−0.0156
n=2=¿ h ( 2 ) =−0.0935
=>h ( n )=[−0.0935 ,−0.0156 , 0.1 ,−0.0156 ,−0.0935]
To achieve causality
h' ( n )=hd n−( N−1
2 )
=hd ( n−1 )
{
2 πn
0.5−0.5 cos ( ), 0 ≤n ≤ N−1
ω hann= N −1
0 , Otherwise
n=0=¿ ωhann ( 0 )=0n=1=¿ ω hann ( 1 )=0.5n=2=¿ ω hann ( 2 )=1n=3=¿ ωhann ( 3 )=0.5
n=4=¿ ω hann ( 4 )=0
=>ω hann=[0 , 0.5 ,1 , 0.5 , 0] (3)
h ' ( n )=[−0.0935 ,−0.0156 , 0.1 ,−0.0156 ,−0.0935](1)
From (1) and (3) we will calculate the h2 ( n ) =h' ( n ) × ωhann ( n )
h2 ( n ) =[0 ,−0.0078 ,0.1 ,−0.0078 , 0]
¿> heff 2 ( n )=[0 ,−0.0078 , 0.1 ,−0.0078 , 0]
−1 −2 −3
¿> H eff 2 ( z )=−0.0078 z +0.1 z −0.0078 z
=> y eff 2=−0.0078 x ( n−1 ) +0.1 x ( n−2 ) +0.0078 x (n−3)
5. Design a five-tap bandstop FIR filter with a lower cutoff frequency of 3000Hz, an
upper cutoff frequency of 3600Hz, and a sampling rate of 8000Hz, using Blackman
window. Determine the transfer function and difference equation of the system.
Solution:
f cl=3000 Hz
f cu=3600 Hz
f s=8000 Hz
f cl ×2 π 3000 ×2 π
ω cl= = =0.75 π
fs 8000
f cu ×2 π 3600 ×2 π
ω cu= = =0.9 π
fs 8000
{
ωcu −ω cl
{
1− , n=0 0.85 , n=0
π
Bandpass filter: h ( n )= =¿ h ( n )= sin ( 0.75 πn )−sin ( 0.9 πn )
sin ( ω cl n ) −sin ( ω cu n ) ,n ≠ 0
,n≠0 πn
πn
Choose the filter length N=5
n=−2=¿ h (−2 )=−0.0656
n=−1=¿ h (−1 ) =0.127
n=0=¿ h ( 0 )=0.85
n=1=¿ h ( 1 )=0.127
n=2=¿ h ( 2 ) =−0.0656
¿> h ( n )=[−0.0656 , 0.127 , 0.85 ,0.127 ,−0.0656 ]
To achieve causality
(
h' ( n )=hd n−
N−1
2 )
=hd ( n−1 )
Solution:
a. Highpass filter with a cutoff frequency Ωc
Ωp s
H 1 ( s )= =
Ωp Ωc Ωc + s
+Ω p
s
b. Bandpass filter with upper and lower band edge frequencies Ωu and Ωl respectively
Ωp 1 S(Ω u−Ωl )
H 2 ( s )= 2
= 2 = 2
S +Ω l Ω u S +Ωl Ωu S + S ( Ω u−Ωl ) +Ω l Ωu
Ωp +Ω p +1
S(Ω u−Ωl ) S (Ωu −Ωl )
c. Bandstop filter with upper and lower band edge frequencies Ωu and Ωl respectively
Ωp
H 3 ( s )=
Ωp S ¿ ¿ ¿
2
S +Ω u Ωl
¿ 2
S + S ( Ω u−Ωc ) +Ω c Ωu
100
3. Given an analog filter H ( s )= . Convert it to the digital transfer function and
s +100
difference equation, using a sampling period T = 0.01s and bilinear transformation
design
Solution:
100
Lowpass : H ( s )= ; T =0 , 01(s)
s +100
Transfer function:
1 1 −1
+ z
−1
1 00+100 z 3 3
¿> H (z)= −1 =
3 00−100 z 1
1− z −1
3
Difference equation:
1 1 1
¿> y (n)= y (n−1)+ x (n)+ x (n−1)
3 3 3
1
4. Use the normalized lowpass filter with a cutoff frequency of 1 rad/s H ( s )= ,
s +1
bilinear
transformation and a sampling rate of 90Hz to design digital IIR filters:
a. Lowpass filter with a cutoff frequency of 15Hz
b. Highpass filter with a cutoff frequency of 15Hz
c. Bandpass filter with a lower cutoff frequency of 10Hz, an upper cutoff frequency
of 30Hz
d. Bandstop filter with a lower cutoff frequency of 10Hz, an upper cutoff frequency
of 30Hz
Solution:
a. Lowpass
f c =15 Hz
fc 15 π
¿> ωc =2 π =2 π =
fs 90 3
2
( ) ω
Ωc = tan c =180 tan
T 2 ( ) π
3 ×2
≈ 103,923
1 Ωc 103,923
H ( s )= = =
s s +Ωc s+103,923
+1
Ωc
−1
103,923 103,923 z +103,923
¿> H ( z )= =
( )
−1
z−1 283 , 923−76,077 z
180 × + 103,923
z +1
−1
0,366+ 0,366 z
¿> H ( z )= −1
1−0,268 z
¿> y (n)=0,366 x (n)+0,366 x (n−1)+0,268 y ( n−1)
b. Highpass
f c =15 Hz
fc 15 π
¿> ωc =2 π =2 π =
fs 90 3
2
( )ω
Ωc = tan c =180 tan
T 2 ( )
π
3 ×2
≈ 103,923
1 s
H ( s )= =
Ωc Ωc + s
+1
s
¿> H ( z )=
180 × ( z +1 )
z−1
103 , 923+180 × (
z+1 )
z−1
180 z −180
¿> H ( z )=
103 , 923 z+103,923+ 180 z−180
180 z−180
¿> H ( z )=
283 , 923 z−76,077
−1
( ) 0,634−0,634 z
¿> H z = −1
1−0,268 z
¿> y (n)=0,634 x (n)−0,634 x (n−1)+0,268 y (n−1)
c. Bandpass
ωu × f s fu 15 2π
f u=30 Hz=¿ f u= ¿> ωu= ×2 π= × 2 π =
2π fs 90 3
ωl × f s fl 10 2π
f l=10 Hz=¿ f l= ¿> ωl= × 2 π= ×2 π =
2π fs 90 9
{
¿> u
Ω ≈ 311, 77
Ωl ≈ 65 ,51
1 246 , 26 s
H ( s )= 2 = 2
s +20424 s +246 , 26 s +20424
+1
s × 246 ,26
¿> H ( z )=
( )
246 , 26 ×180
z −1
z+1
( )
2
( z−1 ) z−1
1802 +246 , 26 ×180 +20424
( z +1 )
2
z +1
−2
0 , 46−0 , 46 z
¿> H ( z )= −1 −2
1−0 , 25 z −0 , 09 z
¿> y (n)=0 , 46 x (n)−0 , 46 x (n−2)+0 , 25 y (n−1)−0 , 09 y (n−2)
d. Bandstop
ωu × f s fu 15 2π
f u=30 Hz=¿ f u= ¿> ωu= ×2 π= × 2 π =
2π f s 90 3
ωl × f s fl 10 2π
f l=10 Hz=¿ f l= ¿> ωl= × 2 π= ×2 π =
2π fs 90 9
{
¿> u
Ω ≈ 311, 77
Ωl ≈ 65 ,51
2
1 s +20424
¿> H ( s ) = = 2
s ×246 , 26
2
+1 s +20424 +246 , 26 s
s +20424
( z−1 )2
1802 × 2
+20424
( z +1 )
¿> H ( z )= 2
( z −1 )
1802 ×
( z+1 )
2
+246 , 26 ×180
z−1
( )
z +1
+20424
−2
0 , 54−0 ,25 z +0 , 54 z
( )
⇒H z = −2
1−0 , 25 z−0 , 09 z
¿> y (n)=0 , 54 x (n)−0 , 25 x (n−1)+0 , 54 x (n−2)+ 0 ,25 y (n−1)−0 , 09 y (n−2)