0% found this document useful (0 votes)
55 views79 pages

Combine PDF

The document provides an analysis of trusses, defining them as two-force members made of bars connected by joints, and categorizing them into plane and space trusses. It discusses the assumptions necessary for finite element analysis of trusses, including uniform cross-sectional area and isotropic material properties, and explains the calculation of stiffness matrices and stress components. Additionally, it outlines the process for determining displacements and stresses in truss elements under applied loads.

Uploaded by

SHANTHOSH K V
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
55 views79 pages

Combine PDF

The document provides an analysis of trusses, defining them as two-force members made of bars connected by joints, and categorizing them into plane and space trusses. It discusses the assumptions necessary for finite element analysis of trusses, including uniform cross-sectional area and isotropic material properties, and explains the calculation of stiffness matrices and stress components. Additionally, it outlines the process for determining displacements and stresses in truss elements under applied loads.

Uploaded by

SHANTHOSH K V
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 79

ANALYSIS OF TRUSSES

A Truss is a two force members made up of bars that are


connected at the ends by joints. Every stress element is in either tension
or compression. Trusses can be classified as plane truss and space truss.

Plane truss is one where the plane of the structure remain in


plane even after the application of loads

While space truss plane will not be in a same plane

Fig shows 2d truss structure and each node has two degrees of freedom.
The only difference between bar element and truss element is that in
bars both local and global coordinate systems are same where in truss
these are different.

There are always assumptions associated with every finite element


analysis. If all the assumptions below are all valid for a given situation,
then truss element will yield an exact solution. Some of the
assumptions are:

Truss element is only a prismatic member ie cross sectional


area is uniform along its length
It should be a isotropic material
Constant load ie load is independent of time
Homogenous material

50
A load on a truss can only be applied at the joints (nodes)
Due to the load applied each bar of a truss is either induced
with tensile/compressive forces
The joints in a truss are assumed to be frictionless pin joints
Self weight of the bars are neglected

Consider one truss element as shown that has nodes 1 and 2 .The
coordinate system that passes along the element (x l axis) is called
local coordinate and X-Y system is called as global coordinate
system. After the loads applied let the element takes new position
say locally node 1 has displaced by an amount q 1l and node2 has
moved by an amount equal to q2l.As each node has 2 dof in
global coordinate system .let node 1 has displacements q1 and q2
along x and y axis respectively similarly q 3 and q4 at node 2.

Resolving the components q1, q2, q3 and q4 along the bar we get two
equations as

51
Or

Writing the same equation into the matrix form

Where L is called transformation matrix that is used for local global


correspondence.

Strain energy for a bar element we have

U = ½ qTKq
For a truss element we can write

U = ½ qlT K ql
Where ql = L q and q1T = LT qT

52
Therefore

U = ½ qlT K ql

Where KT is the stiffness matrix of truss element

Taking the product of all these matrix we have stiffness matrix for truss
element which is given as

53
Stress component for truss element

The stress in a truss element is given by

= E

But strain = B ql and ql = T q

Therefore

How to calculate direction cosines


Consider a element that has node 1 and node 2 inclined by an angle
as shown .let (x1, y1) be the coordinate of node 1 and (x2,y2) be the
coordinates at node 2.

54
When orientation of an element is know we use this angle to calculate l
and m as:

l = cos m = cos (90 - ) = sin

and by using nodal coordinates we can calculate using the relation

We can calculate length of the element as

55
3
2

Solution: For given structure if node numbering is not given we have to


number them which depend on user. Each node has 2 dof say q1 q2 be
the displacement at node 1, q3 & q4 be displacement at node 2, q5 &q6
at node 3.

Tabulate the following parameters as shown

For element 1 can be calculate by using tan = 500/700 ie = 33.6,


length of the element is

= 901.3 mm
Similarly calculate all the parameters for element 2 and tabulate
56
Calculate stiffness matrix for both the elements

Element 1 has displacements q1, q2, q3, q4. Hence numbering scheme
for the first stiffness matrix (K1) as 1 2 3 4 similarly for K2 3 4 5 & 6 as
shown above.

Global stiffness matrix: the structure has 3 nodes at each node 3 dof
hence size of global stiffness matrix will be 3 X 2 = 6
ie 6 X 6

57
From the equation KQ = F we have the following matrix. Since node 1
is fixed q1=q2=0 and also at node 3 q5 = q6 = 0 .At node 2 q3 & q4 are
free hence has displacements.
In the load vector applied force is at node 2 ie F4 = 50KN rest other
forces zero.

By elimination method the matrix reduces to 2 X 2 and solving we get


Q3= 0.28mm and Q4 = -1.03mm. With these displacements we
calculate stresses in each element.

58
Solution: Node numbering and element numbering is followed for the
given structure if not specified, as shown below

Let Q1, Q Q8 be displacements from node 1 to node 4 and

Tabulate the following parameters

Determine the stiffness matrix for all the elements

59
Global stiffness matrix: the structure has 4 nodes at each node 3 dof
hence size of global stiffness matrix will be 4 X 2 = 8
ie 8 X 8

From the equation KQ = F we have the following matrix. Since node 1


is fixed q1=q2=0 and also at node 4 q7 = q8 = 0 .At node 2 because of
roller support q3=0 & q4 is free hence has displacements. q5 and q6
also have displacement as they are free to move.
In the load vector applied force is at node 2 ie F3 = 20KN and at node 3
F6 = 25KN, rest other forces zero.

60
Solving the matrix gives the value of q3, q5 and q6.

61
(94

A Aam stenclne Composed a Sui


Genetally, d n a
FEm eah mele
wlidh a
i on Elet Comnecll tozeer
at Ahs nd. The
, latzl
nge
fae stnlise shouI
atangenmeb
be
b a
Sc that whan t
t loadel, hes i
nololie noian
H u ban a stAmeluse

unss all stencle?


mist hat
Su s to dct
teion R aleltes
aL elkeg

Sucil to temso aptenSio


emptensnon TRurscs
TRunskos
Rnsan ake onpusim at py To
sttckus
stalical dalinin ale
Ga
FE
PRoedute Can be Usdndalenin
Cuns
to handle
vsd to take up
loadl
ExBaidap Dams, CAanmn Sion
Sppoek Buigo towers, stali!
ome a Suppottis Ro lla
SPo
s
ppott & hiqd
TAnntes a
CAns d nls
Plne tRunse-i 2 D
) Specu Tns.
Tunsu 833D 3D ns TRuns
made to Sae
The followa ansumpkm oR

O TAss a r e t
i T Loacks He tunt o n e t > okways

2.
2 e Aame aPeet tRame
3 T oG in te tans menbe a ho
w o t faicion

S Rt te bax io neelil.
S (he tRuns menked Can onl 6e in itkej

dict CopRnsion i tnion


6 Tt sloulA e a
uons a a
TotAop
MaliiaQ

mbes alL
iven y n

Papect tkom
3()- 4-2(4)-3.
4fs.
DeleR min ale (ss
(15
A diloi min o Tms o n whtch a n
be
Complele
Coplel nalqpel b 0sg ttu stae coneltan
Saibarun EF-o
Tndaliirnia le Rms
Tlet inalk tRunss ale
sch canet be
Cowpltl,
stae Constion o onalpel y osin
2
ty but alo usng Convereu
USm
mehod ke melhos Conaeae
ol melthod
Selcom.
Chee meih oe becom
analp CopkcalA
deloinal tauns & 3D
he sple E altna Live nelho d TRuss e.
i FEM.

Vis

2-D Aans
TAuns mande i ZduL 4A O a tnrs
tAus

eXnent. nch tAms ce t n dcs ut tyion


Copnsion Zn a tans t ,all te lools
&eacLcon a appkA at pn joG o l
TRns t ma daked&
atwo-
thwonoded elent ha -dof at
eoch no de.

oR nodu the Conkeo ondig


dsplacnmal al

Conal to taL 1D
At<ulu,, plane tnes
h - auco & (1o-6)
Cwlh -aus 1t Can be
upAnenlad
bal to-adialis a in oca
Roca0
tas elet.
Plo n(Cs & Gcs.

/v 2SnG
2

ON

LCS Gcs
(
A tAuns n t Con e
uputnlal Les &
CCs o ho m in +u

T
T Tuns enut banes i nsinlag fo 1D
el tn Lcs she in acl nod wLW Loe
1 dof.
L Gcs cah node
oa Russ elnt w20 hae
dof
T LCs
Soten Conl x - ac, wih
Runs ako-
arent tam nodel towauA
node 2. AManltla, Me Les dnoteA
Pine(').
Th Gc Acel dotunot deped an te
Oitakim let. ConideRia
te
alerrt &
Os Concapt Pojeclion, tu
node & diplacunet telat:onhp
te in Gcs
LCS Can be
xptenu 4) estasLio as
nblow

, Cos8 + Can9
V ,Co s0 +V,Sao
Co S9 S8 O 7/ 2
O Cos8 Sin

Now
Zlaodud t dia ceton Cos we

u) 2

- Cos& *
)-
MS =A-4,
-)

M
O

n a R a adove
Con be wsttan a
whet
fv-1f
L Call TRaa fotnnadon mal
Oa

Les

2,Co s+

SAB o ,
O O Cos Sm8

(4 (7,-*.)
shete Re- lsh of elmt
M

/
Cas totnakem
mai dplearntmal

AE

SuAskh

Ve
wi k AE6
e
m o0
L

M
0
o

42

M
- M
M

4.

m 2

2 - 2 -R
n m
.M
-R2Rn m
- m
we hane Stkan iven

e stss
ducrd e n b

. m
e ns elemel
a) daplacenent n Lcs slen
, V , V, ale
0.3-8mm 2Smm, o.S2Smnn e l'o mm
Repele u.
(se 1o0
b) stans n t lnet
Az 1250 m?
e)stns maliix. E 2x10N
o
stAain cnk
(25,s0)
odl
ONu

(125D, to oo)
R
M: Sim 8 42- 4,

(12s0-2s0 +
(too -2% .
o

Cos9 12 -2s0

ME
Sid= lo00-5so
0
2D
a) m O ol
o O

0.8
04 03 S
0 04 0.6 025
0-S2s

0.4S
065

O 4Smm.
(o6Smm

-R

- 0-8

2So -06
7o3)
0-s
o 525

-0
0.61S
2 So

4& sm 2
M
2
-Ren- m
2

-R
-m m
2

0-8
0-xo -

0.g
2
-0-8xo-6
R5T K}E0o.8x0.
0.8xo
o6
O62
-o- xo- -0-62
-0.2 -

o.? x oL 8.82
0-x0-6
-o-fxo-G - 0-62

0-8xo o6

-28 o-9 -128 -o.9


0. 9 o-92 0-1 -0.92
-28-o.1 1-2 &

-o-9 -o.32 O.6 D.12

2 ir.
- m

492
61S )
(2 Sd

O 024 206
(I13
. sothe ot dplacamet Sba 3btse laacl , ,

fo fta given plau t i s .


2
ooomm
2o00n

E-2x10
2
SoomM
I Sbomm

fEMo

(o,)

sotSo 0 1 38 mm

Cos8 -X= %o-0


0.8 32

M Sn8 = - 4
0 SS
o1.38
arnt ()
, 1o-*of +(o-da)= 7son
M Sbo- Sbo

ant no Ae m
m
2

ISo o o1-78 D-8 32 o Ss 46 0-672


0o
looo O

Stans ma .
-
-Rn M

- -m 2

= ISDox2x1o o-6 2 0-4 -o612 -4C


o) 3& o-4C o4G - 0.30?

D-C12-o:4) o-612 D4GI


o-102 o-4

3
2-3 S3 -2.3
S3 Io2 -S3 -o2
2
-2.31.S3 3 tlS3
3
-1S3 - I-02 1S3 I.02
(14
elemet (
AeE M Ren -M

2
-m

=ooDx2x1o -

O O O

O
O

lo a.66 0 2.66 O 3

O O
-2.6C O 2.66
0

oo Stfnes makii
3
2.3 1S3-2.3 -IS3 O

S3 -02 1S3 --02

-2.3 -|S3 (S3 -260 0

-1S3 I02 S3 o2

O O -2.66 2.64 O

O O O
Th ovetall Ey E"
x1a-fe
2 +*3-

o 3 +s S3 -2.6C
--S3 1.42 IS3 2
-2.6 -2000
R

Badopan emialm nthod 3C

ns4.16 1-S3 o
(S3 -02
-Dooo

16, -S3 zo
-S3, + :02 =
*oud/s .9.

3-Syv, +2.347 V =E
2
(-) C-)
2.18 3 V
2oo0_x.96.
- 0-036Sm
0-0l I nn
StAan stns n enent O (us

-o 812 0.SS4 o
ol.18
-

832 0-SS

0.ol

-0'036 S
ol 38B
E =-1. 2 2t% 10

6, E - 2-4S6 N

stAain stAs n
ennat .
-m m

-I 0.ol

0.o36|

O
0 .133 Nmn

To Aha Reac m.

R
2.v+1$ha - 2.3 -1:53,
=

-2.3(o-otu-1(-o.
-o-0365)= Ru1
R 30S4.SN

1s tl-ofV -1:SV-102= koS"


-IS(0.01)--t2-0.03us) = Ru
K 2olon

Rs
Rt -2.66
+2 vss
KH 2126 N.
(2K
3 (
A fDoMm

Sm 2o00 2

2
ISoO m.
o 4oo topo
T

2 2m

modellia
2o00

(o,o)
Looo,o
El k
oo0-o+ (os 2
ooonm

M d- 0
e, = 2o00 oo o)+
-

Eris-)
Re, 2 5 o mm

20oo2000 -4ooo - 0.8

M
So o ~ o -z 0 6.
2SDD

slnet G Aon node

Re, (2o0-o)+(1Do -0

Ll CoJlactae
2 34 (234
Soo
34 S% 34 S%
M Sbo - 0 S6I2
0.6.
2 Soo

t Re M

00D

2Sbo -08 0 G - 0 4 8 |0-6 o


2

o-866 048
3 25 Do
o60-36
sf sa lnet O

ke Ae m2 -Krg 2

Re - R
-m2 2

= -

-1
O

O
O4
2 3

O
o
O O 2
-0.4 O
O 3

3
0-64 - o48
Soo x 2x to o-64 o-48
2Soo O 36
-06 O-48
o-48.36|4
O6
-0 G8
- 0 36
-0.48
.Go76 -0 3092 S

Ke o
S
-03072 O
2304 0 3072
O Jo ?2
3
-

0-2 Jo G
-o4096 0-3012 oo96 -03092s
0-3012 - o23o4 - 0 30 792 o 230
E t 2

0-64 o448 -0.64-o48

- 036
Sox 2xto* 0-48 0-36 -048 2

-0-64-048 b44 0-48 S

0-48 0 36 6
-0-48 0 3

2 S
-4o1 0 302 - 0.30 22
l 0

0-30 72 0 230 -0.702-0-23o4


2

-01 -o-302 o4o1 S

-030 12 -0-23o o302 o-23

bastznns nalix
2

08016 0-3072 -04 -0-4o1 -o3012

0-2304 O O 0-3042 -0:23 o 2


o 302
-0-3012 -o4o9% 0 3042
-04 o-9o1
0 3 0 72 - 0 23o4
-o 30 92 0-2304

0-302 0-N92 O
- 0-o1 -0.3092-0.4o1

- .2304 0-30 92 -2304 o:4608


-o-3012

Ovull EE
2-o -o-to16 0-3o2
0-3032 030 -0-3042-034H
o3092
-901 -o-Bo 2 -o4016

Ruo
-0-ko16 -oBo2o-4o1 O-Bo?z O-8192

-0-o 2 -o304 to 3o?2 -03o4 O 0.46o


s RHdoo
Kuj -12oo0

appi ta B.c mis alim meih ol


ela 2,4Row Co luns e hane.
0-801 o-302
O
-o.4o o 8192
1 8Doo
0 30 92
-12ooD

0.9D16 , - 0-4o16 Vs +0:3092 =

-o-401,to:8(92*0Vgs
D.3092 V7+ O ve+o.G6a 8%

sotm he odboveL
0 3 mm
0 246m

- 0 6om m
stAa sttens t emest
- m

yu
= -| O
O
ood
03

0-34oo
E, = S* IoS

2
O 1S N

stain& stens fot laat .


G - -
vs

-0.6o o6 3

O2

x o 2330.
-o-4 o
E 13216 K1
932t6x1* 2 * 1

O 1.6472 Nm

(-R M

- o.6 o 0-4

O24
-o-46o4

x -

o 094G
2sod

-3.129 x * 2 x

6.3sS2 n

Ralons ue hane.
0-9p, o A2 -
-

o41, -
0.4o1d y -

oZo ?2%: Ra,r


4 - 009912.

Ru - *132-64n

h 0-392v, +0-23 V2 - o 30?21- 0 2304

R =0 03oS

K 3oSD.41

R -
0-302V, t
. 2 Vy t o:3o72Vs+ 0 23 4

0 3072(0 3) + 03042(o-44) +
0.23o4(-o 46o4
- o l2266

K2 12,266. 446

SDDMm 12k
3

2
A22opmm

oOMm
modll
12

o,0) SDOnMM
5o,)
1.) ) oomm

Ho0mn

(100,-Joo)
elnet O
e =(gao-o)+ (o-o)2 SoD mm

M O 20.
-

Sod

2lant

e =
(1eo-5oo) +bose *
SDom
M
=0D- Soc 20 8
ME-So-0 -o 6

5b 0

2 Sooo-0- 4 0 64 6 36
S E u . malx o elemt O.

2 R
M -Xm -m

- -KXm
2
-m ~m M

200x o 4* (o

Soo
D

-1

o O

O -0 28 O

= lo O O 2

-0-28 O O 0-2 3

LO O

o-64 -0 6
oox o-9xio
-o48 o 36
Soo -0-3
-o 6
- O.48
to-48 0-36 -0-4 8 O 36
0 1912 -o-1)44 - 0-(2
1
o-344 3

-0-344 oloo 8 o 1344 -0-loo3

o 1344 - 0.(34 G
-o 712 o112

-0 loo8 -0-1S4G -loo8


+0 1344

Roal stms mali


t] k+ Ke

0-2? -0-28 O O

O O O

-028 OO 0-S2 -o-(344 -0-1H2 0-1344 3

O O - o l344 o-loo& -134 -0-loo 8

O - 0.1R2 o 1344 0-12 -0-1344 S

O +0-1344 -0-loo 8 -01344 O-loo&

T oul E

0-28 412-o134, -1992 034


O
O-o1344 0 loot 0344 -oloo8
o134 -12000
O-0-19420-134t-4-o 31
O0-1344e-laaj-0l144 aloos
Eldal ,2, S
ow& colun.
0-4S2 -0-134 , O

-0-134 o-loo a -12000

0-4S92, -1a44 y
-
o 0

--1344 O-lo o8 -|2000,S


-0.S9imm
= - l-1S2mm

sba & sheens k arnet O

-|- -M

V
O

o.SHG
-132
-oS14
SO0

E-1l428 K1o

.42xIo O)xto
- 9.996NM2
stlain sttens at elml).

Re
-0S9I4
-of t06 806 152

08 xo5H4 od »|952 -

Sod

O-49.99 N

Sonon ree

0-1 - 2Ev,

Ru, IS,191.2

Kts -o.1912
+0. 1344
KH-1s,11° 71
0-J4 , -

d.loot ,.
Ku ,11
544 N
E 2.Ixto n
2
A 6x l
2

2
A 600mn

looo

,2o0o

Oyu
2
o,0) ko0o, o

Re, (hoo-+ (0-0)* 4o0omnm


oo -O

0-400o)(3oou-o)2 So
o-4 o00 0-8
3o 00 -0
SDOO
22
2

|4ooD
2 -o80L -o-48 0-64 o-36

St s maliia
2 3
Ke.)- AE 1
2 m -m 2

-m 4

60ox 2.Isjo*
-

O O

0 3IS
-0.3IS

O
2
-0-3IS O .31S
3
O O

6o0 2.Iio
0
64-o48 0 6 04 $

-O 8 O 3 -48 o-3L

-o-64 o-48 0o 64 -048


+0-48 -o 36 -048
o61 28 0 1201 -olC(28 .12014 3

-01201 o 010 2 0l201


-0-09o72|G
-o-16128 o 1201 o-b12 -0201 S

0 0107 2
-201 0-01022 -0-12016

oeal SE-s max

2 S

0.31S O-0-31S O
O

3IS O D.463 -0-1201C-0-161 0-l2o1


O -0.l20G 0.01o? O-120-0-00
- o-l20%
O -0-161 0-12p14 0-6
O O +0.010
12b o.0104 -0-12

C1a-{r
o-31 0-315 0 OT
-0 4
-0-1 o4 763 -0:1201 - 161 o1 Rt
-o (2 04¢ -0 01o? 1 2 i -0 0o?

---4t0-124 t - 0 - f
O12_09%0:0102 p:12 Di¢ o.q102
Ru
12
Ppp e l n mebhod. bppg he s.c
st s low & Column hawe
o-4 6 v 0-121u -lopoxioo
- 0-12( -o.09 V O

SnC node (2 alorwe to dplac ksta amomlE


Sbnm veticalD, donw and .w hawe z-So
the suwLsihi akove
o496V-O-12(-So) = - lo

0.3s -0.1S, = Ru./os


Ku = lo 62. (3 kN

Ru,0
-

oz to.0 Vs =
R«zs
Ku - 47.11 kar

-o 161,+ 0zis =
Kt7/s
-62 13 kw
o 121 V. o01ot
Ku-49.ttK
elnt O sbtain & sttus.

G el-l - -

-31
- So

33-t/ooo
E-842 Klo

. 1-~ -7
s
0-8--6 -o- o-6 339
- So

.o32
(12s)
E-210°m m

modell
B = l o o n m m

(0,400) >(300)

4okn

30
Coo) C3oo,o)

Elannert
e 3e0-e)+(o-) 300

e 3oo- lea) (uoo- )*


3 00
Se, koo mm
300- Jo0
M O-0 C 0

M= 4o0-6

4oo

Re, Jo-1oo+ (eo-tooy


30omM
Aey soa-o) (o-4)
Xe, Soo mm
S= o-Boo -

0.
SDo

3uo
AE
- o o e -0.8
E t no
e M
2

3o0

3 -

Soo 0 -0.8-o.48 .3

SKPrns a i fst lneLO.

3e-
O
o
2 3
O -0.66 o

O
2
0.66 O -66 3

Ke loox2x to O

o0 O

O
LO
S 0 -0.S
S

O 3 24
Ke O

-o.S o 0S 0s

he,= loox2Io
300

66

-6-66 O
o-6C O

o8

3
36
-o-48 03 e-L8
Soe -o
0.6
-

03 0-48
o-48-o-64 8
o 48 3 -0
-0-48
- 06 -O48
o-64
3

loS
-o
12 -o 14
o12
012
C.256 o-/12
-25%|
|-o.144 0.112 o144 -0192

0-112 -0-SC -o-112 0-2S


Globa s t s maliz

K-.]-[t.]+[t«/+lk
2 3 4 S

O -0-66 O
0-66

O
2
- o.l44 o 112
0-04 0.12
-0-66
3
-0 S O 12 -0-2S6
0-136

- o 66 O
O o-66
O

O -6 S +0.S O 6
O

-0-144 o-192 -0-66 0-8 oh - 0-192

O O -o-192 0-2S6
O o-112 -0-

ovealX E" E

R
R

S
O
(124)
P p g ekanminaon mksod B . c & dl nd
5 Ro colun we hoNe.
3
0.8o4 ,, t o tO =
4o KIO
O-66 s 0

O493S mm
stAnsen s & stlas in ehnut O)

-R -m
e M

O
-

049

6, -(o.49s)
3 oD

E . ool 6 sg

0 E E = 33t.69 m
8 t
M

E, M

Re
6499s
O - O
oo

ECat

Qes-[ -1
.M

- M
-06 8 o- - o 8
0-495
Soo

(-b-6 -o 6 xo-494s)
Soa

E S.14x lo-

O E =-|19.4 Nm

To fnd f a seaconn
o , - o-66 = R
Kt -3 2,83sN

Kv = -

o.112, + o94V,- o4+ ol2,-02f67,

KHas -o:l4
4+ 0- 192, o.s61 -

t
o-8g, o1
-

K H64 w

R = o-112,- 0i,-o21, oí -
lert -Deli ine
s h ow in
6 A 4 bas euns
istlns n each ele
NOda dioplacmet
a toL
2
al tta Supprt A=loo mm
ik)Raclm
2SKN E:2x1oS Nm
(030)
3 3
v (ue,3e)

om)L

3omm

21
20 kN
400) (uoye)
4 omm

Node dala

ede nno

O O
2

3 30
=40mmy
4 30

le o-to+ Co-3)
Qe33omM
Re go-o)t(So--)*
Qes Sonn
Re o-io) -+ (30- 3o)
hoMm
Emt tasle
Emt 2
M
ho de node

2 O

2 2 3 30
3
3 So 0.8 -

o-6 0-48 640 36.


3
-

sLkmans malix elnetO.


2 --m
K AE
2
m

-n
n

2 3 4
loox2x(o
O
2

O
o 4

3
s -5 o

2
3

O 3

0 0 -
30
0
-1

3 S

O O o 3
2= l o
o 6.67 o-66

O O
O -6.63 o 66

-64 o-48 O.64 -0.48


K3 lox2x 10
0-48 o 36 -0.48 -036 2
30
-o-64 -o4 o.64 0-48s
-o48 -0-36 o48 0 36

o s -42
2 441.12 -14
25 -192 R-S6 .92
-192 92 1-44

2x1ox100 S
SO
O
10
- O
o o7 -S0 S o
O o 8

o o o o*
(30
sEPhnens malix

x- [.]-1t«J+[E<,].lk«]
2 S 6 8

12 -Ss O -2-S6 192 0 O

O O 0-1.12 -144 o O
2
k i
-S O S O 3

OO 6-6 -6-69 0 O

S6-1-2 O O
O s6 1.92 -S
S

-192 - I4G
O
O -66 192 o oO 6.
O O - os O
OS

O O O O 8

OUeRalQ.9

Fo

lo S

F 2oxio

Fs=o

Fe -2SKio
Fy= o
FsO
nodel-6t kaad Sppat o,,=o.

hode2' Polle Sppott o (y dspkemt 2u)


hodeh higed Suppot o , u #0 .

O
2oxi
10 O 9s6 192
-42 8 - I | |V
-2Skio

9s6is + 192 = 0 .2
-12/s +8:1 -0-24 -56

S9- V= 0-2S/o
-4-33x 1o

-o.0833 m

stRus n a c elornert

elant O

-ola
O

o O +0t2xio+o
O2o0N
Elemut
- M

&0-6 -o.8-o 6 o.00833


So -0 03271,

0-S2 N

m
3
PRve lannuta0 st smaCa as E Load Uelts f
-Db emel Undes
ARady decud Part A
Sac TRackon fotce
Load vela
Bod fotce veelA

Derve StAai Mal & steLs


ML f cST
larnent (2-D lemt)

(n

Cx)

(x
)
Cons dex a ota csT nat as slho.
Let ,2,vs be te
nodadplacemel ako -dtis
Y-d".

U- N, ,tN r
Vs
V N, V, f N, n,+ N, V
T shape 4 a Lij
N, &, N2 N-a
In Li as Slape , Au stlay in t u a n e t

C G onstat. Henee Sueh a tASanzla ee


shet stAain s Cantat, C i i , h elanmel Call

CsT
E &Lec
U: & n (1--a) +

+2l4,-«)+

-
V &. + 2% + ( - £ - ) .

=&(-) +1(-«) +u
Conateut

& mobes

u O
N O
N O
NT

V
L t mat 36
P te ay pant wilTi, Can be
expksosed
tuns sLape f gnodad o-odaa

N*+
*+N*2 t NX3
Y N4+ , 2+ N,

4 &1t 4. +
(1-E-n)Y
4 () e +
(Y»-43) +
P
- *i
&.

ecnea
3 t 27? + , 3

nS & enl
to Ealal sEan, e hare to Use p a a dettvaloes

&

he x

Call tAann feemalan nalE

Joco bian the TAanofrnalon T)


T iUse fo tonskotnn nala
maliir
Co-oidn ai
Corlien o-dinr. {l Cale2
3

T i n d a n g eP e i a g a li e z

&cha s itoXe
malua.
a

M23 SR

T -323

on

Co- ciss s T
. mn
= ) 42, 2
X23 23
2+ 1
2 -
3
Co-oce 4T)

T
ven as

23-

u
IT
.

Adarn E0«O
& -(1,
= ( 6).
(,) -a ( )

) (1,-s)

23 -g(-e)
TI
- )tig (-u)
Duve B-malhx 2Dlurt (cs7

Staain matix 6

+v

hom )&1 thon phanious detvaon


Ysa-) t2 (-ts)

- ,-) + a (s)+» (*«)|

122 - 3-3
=--+
2=412
-*It%
(x-x)

1,( s)- ha e)
3)
i)-22(-«) - x1(y-)

x)- ,-9,)+ Xs (,-)+,(1,-e) Yia(-«) -

= 2 , + (*-a)+1+ a 1
+(17-41 -g
X2, +
X2, +X13 ,+ 4,2 +412 % i7 -

16 T
32
32 O 2

O.
L8]- nt stain
Ht desplacnlmalx
taen stkai selaz
to Six nodad deplocam
nodalNod doplacmet nmaliie.
sERain Mai
DeRve sttain &sttns
elent(20-nat) acobian mabix)

,)
3

L
(x)

x(o)
Consider a
loca uadala@zia a t
,2, 3 E4
hanui node
Lt ,vVs V2 te nodal diplaamat ae -d
4-drn
Cowni der
desplocmnt (uv) at a poit (x,) tRi
He
t n t tan be Aeptastalas in tatnn ok t
shape
ps , 4 oda dsplacimne .

U= N,, t
N, + N, s t
N,4,
'V

GL
o
ere NJ shape f" aki x.
Noda dipkummut malx

The Co-isa Po
be Aapiperlrd in teenms oape Prs & nodal a-ddi nla
N ,X+N2 X2 +N, 2 +N y
N 4, +N, 4 +N,9+ N, Y

Assun a
) o ta f"
(En)

US paulad deva UsCa ala pae


dvaene

f
Jx

iCaiiad jacoban malkx. shape P ki,eas


N ()(-)

x )(-a)x, (tes)-)k,+(«&Ken) oc
+

d EE t

(1-&)x, -(1ea)* +(te &) x,+ (1-s )x.}-

l-i(1-)t (l-n)'% +(tt) 1a


-(t+) ©
Let
T
then"OLconw

TT

Cabete T =7
Tobian malx.

T2-T2
I7I-T T

d d1=T| d&d. ).
osove E Can Le Ud ft
devin e
stnans ma
Dve stAaini lacnnt ulaI Bn
-al
fo uadslala elet

stain diplacak rALon 2D

By Considss f-u *" ) >pAwzous duzu on

T-71
ITT J

I7

Pt fv E" (1 PAan20we deeiuaGn.

T 2
((42
,,& w

-T

wL 4" O, & maliix fr&usaig O

-S2 n
O T
T

coher -J
O -J

-Tar

U N, ,+ N,, +
N, Vs t N, V, 7
V N tNL V, + N, V t Ny ve
= -(-a)4, - (#), +(ea) y +(1-a),>0-

-(-a) +(1-, +(trm)- (a)u


N , +
dnz + Ng +
dN
=
-(-a), -(148J, +
(1+&)%+(-)%
& 0,0,0 maliix m

--)o () (*n) o
(tr) o
-(1-E.) (1) o
(&)
= o -C-)
o
(-) o
o
(1) O
(ttn)o (
o - -+)
O
Sushe s"

ARoo StAuss
fr-J-fe}

Numerca TL on
ALd neulkal plo blmo & devaton has ben
donn in Pant A ( chaptes )

You might also like