0% found this document useful (0 votes)
58 views9 pages

MCQ QUESTIONS On Complex Number

The document contains a series of multiple-choice questions (MCQs) focused on complex numbers, covering various concepts and properties. Each question presents a scenario or equation related to complex numbers, with four answer options provided. The questions range from basic definitions to more complex applications and theorems in the field of complex analysis.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
58 views9 pages

MCQ QUESTIONS On Complex Number

The document contains a series of multiple-choice questions (MCQs) focused on complex numbers, covering various concepts and properties. Each question presents a scenario or equation related to complex numbers, with four answer options provided. The questions range from basic definitions to more complex applications and theorems in the field of complex analysis.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

MCQ QUESTIONS FOR COMPLEX NUMBERS

101
1. If a + ib =  i k , then ( a , b ) equals to
k =1

(a) ( 0,1 ) (b) ( 0, 0 ) (c) ( 0, −1) (d) ( 1,1)

n
 1+ i 
2. If   = −1, n  , then least value of n is :
 1− i 
(a) 1 (b) 2 (c) 3 (d) 4

2
3. The conjugate of a complex number z is z = . Then Re ( ) equals to
1− i
(a) −1 (b) 0 (c) 1 (d) 2

4. The number of complex number z such that z − i = z + i = z + 1 is

(a) 0 (b) 1 (c) 2 (d) inf inite

5. If z + 2 z = π + 4i , then Im ( z ) equals

(a) π (b) 4 (c) π 2 + 16 (d) None of these

6. If z = z + 3 − 2i , then z equals

7 7 5 5
(a) + i (b) − + 2i (c) − + 2i (d) + i
6 6 6 6

( )
11
7. If ω (  1) is a cube root of unity and 1 + ω 2 = a + bω + cω 2 , then ( a , b, c ) equals

(a) ( 1,1, 0 ) (b) ( 0,1,1 ) (c) ( 1, 0,1 ) (d) ( 1,1,1 )

1 + y + ix
8. If x 2 + y 2 = 1 and x  −1 then equals
1 + y − ix

(a) 1 (b) 2 (c) x + iy (d) y + ix

9. If z is non-zero complex number, then arg( z ) + arg( z ) equals

(a) 0 (b) π (c) 2π (d) None of these

10. If z  and 2 z = z + i , then z equals to

3 1 3 1 3 1 3 1
(a) + i (b) + i (c) + i (d) + i
6 2 6 3 6 4 6 6

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 1 of 9


7 7
 1 1   1 1 
11. If z =  + i + − i  , then
 3 2   3 2 

(a) Re ( z ) = 0 (b) Im ( z ) = 0 (c) Re( z )  0, Im ( z )  0 (d) Re( z )  0, Im ( z )  0

( ) = (1 + ω )
n n
12. If ω (  1) is a complex cube root of unity and 1 + ω 4 8
, then the least positive
integral value of n is

(a) 2 (b) 3 (c) 6 (d) 12

1 + cos θ + i sin θ  π
13. If z =  0  θ   then z equals
sin θ + i ( 1 + cos θ )  2

θ
(a) 2 sin θ (b) 2 cos θ (c) 1 (d) cot  
 2

14. All the roots of ( z + 1) = z lie on


4 4

(a) a straight line parallel to x -axis

(b) a straight line parallel to y -axis

(c) a circle with centre at −1 + 0i

(d) a circle with centre at 1+ i

15. If α (  1 ) is a fifth root of unity and β (  1 ) is the fourth root of unity then
z = ( 1 + α )( 1 + β ) ( 1 + α 2 )( 1 + β 2 )( 1 + α 3 )( 1 + β 3 ) equals

(a) α (b) β (c) αβ (d) 0

16. Suppose z1 , z2 , z3 are vertices of an equilateral triangle whose circum −3 + 4i , then


z1 + z2 + z3 is equal to

(a) 5 (b) 10 3 (c) 15 (d) 15 3

5
17. If z  0 lies on the circle z − 1 = 1 and ω = , then ω lies on
z
(a) a circle (b) an ellipse (c) a straight line (d) a parabola

25
18. If z = 3i + , then z cannot exceed
z + 3i
(a) 3 (b) 8 (c) 16 (d) 18

19. If z − 1 = z + 1 = z − 2i , then value of z is

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 2 of 9


5 3
(a) 1 (b) 1 (c) (d)
4 4

20. Ther number of complex numbers satisfying z = iz 2 is

(a) 1 (b) 2 (c) 3 (d) 4

21. If z  , z  , and a = z 2 + 3z + 5, then a cannot take value

−2 5 11 11
(a) (b) (c) (d) −
5 2 4 5

22. Suppose a, b, c  , and a = b = c = 1 and abc = a + b + c, then ab + bc + ca is equal to

(a) 0 (b) −1 (c) 1 (d) None of these


2
23. The Number of complex numbers z which satisfy z 2 + 2 z = 2 is

(a) 0 (b) 2 (c) 3 (d) 4

24. Suppose a  and the equation z + a z + 2i = 0 has no solution in , then a satisfies the
relation.

(a) a  1 (b) a  1 (c) a  2 (d) a  2

be such that z = ( 1 + z ) = 1, then the least value


n n
25. Suppose z is a complex number and n
of n is

(a) 3 (b) 6 (c) 9 (d) 18

z−i 1
26. Let z   i be a complex number such that is purely imaginary number, then z + is
z+i z

(a) a non-zero real number other than 1

(b) a purely imaginary number

(c) a non-zero real number

(d) 0

27. The points z1 , z2 , z3 , z4 are in the complex plane are the vertices of a parallelogram taken in
order if and only if

(a) z1 + z4 = z2 + z3 (b) z1 + z3 = z2 + z4 (c) z1 + z2 = z3 + z4 (d) None of these

28. If the complex numbers z1 , z2 and z 3 represent the vertices of an equilateral triangle such that

z1 = z2 = z3 , then

(a) z1 + z2 + z3 = 0 (b) z1 + z2 − z3 = 0 (c) z1 − z2 + z3 = 0 (d) z1 + z2 + z3  0

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 3 of 9


6
 2πk 2πk 
29. The value of S =   sin
k =1 7
− i cos
7 
is

(a) −1 (b) 0 (c) −i (d) i

30. The complex numbers sin x + i cos 2 x and sin x − i cos 2 x are conjugate to each other for

 1
(a) x = nπ, n  I (b) x =  n + π, n  I (c) x = 0 (d) no value of x
 2 

31. If z1 and z 2 are two complex numbers and a, b are two real numbers, then
2 2
az1 − bz2 + bz1 + az2 equals

( )
(a) a 2 + b 2 z1 z2 (b) a 2 + b 2 ( )( z1
2
(
+ z2 2 ) (c) ( a 2 + b 2 ) z1 + z2
2 2
) (d) 2ab z1 z 2

32. If a and b are real numbers between 0 and 1 such that the points z1 = a + i , z2 = 1 + ib and
z3 = 0 form an equilateral triangle, then

(a) a = b = 2 − 3 should look like this

(b) a = 2 − 3, b= 3 −1

(c) a = 3 − 1, b = 2 − 3

(d) None of these

π
33. If z  0 is a complex number such that arg( z ) = , then
4
2
( ) 2 2
( )
(a) Re z = 0 (b) Im z = 0 (c) Re( z ) = Im z
2
( ) (d) None of these

34. Let z and w be two non-zero complex numbers such that z = w and arg ( z ) + arg ( w ) = π.
Then z equals

(a) w (b) − w (c) w (d) − w

z −1
35. If z = 1 and w = ( where z  −1 ) . Then Re( w ) equals
z +1

1 z 1 2
(a) 0 (b) − (c) (d)
z +1
2
z +1 z +1 2
z +1
2

36. Let z and w be two complex numbers such that z = w = 1 and z + iw = z − iw = 2. Then z
equals

(a) 1 or i (b) i or -i (c) 1 or -1 (d) i or -1

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 4 of 9


z − 5i
37. The complex numbers z = x + iy which satisfy thew equation = 1 , lie on
z + 5i

(a) the x -axis

(b) the straight line y = 5.

(c) a circle passing through origin

(d) None of these

38. The inequality z − 4  z − 2 represents the region given by

(a) Re ( z )  0 (b) Re ( z )  3 (c) Re ( z )  0 (d) Re ( z )  3

z1 − z2
39. If z1 and z 2 are two complex numbers such that = 1, then
z1 + z2

(a) z 2 = kz1 , k  (b) z2 = ikz1 , k  (c) z2 = z1 (d) None of these

40. For any complex number z , the minimum value of z + z − 2i is

(a) 0 (b) 1 (c) 2 (d) None of these

41. If x = 2 + 5i , then the value of x 3 − 5 x 2 + 33 x − 19 is equal to

(a) −5 (b) −7 (c) 7 (d) 10

1 − iz
42. If z = x + iy & w = , then w = 1 implies, that in the complex plane
z−i
(a) z lies on the imaginary axis

(b) z lies on real axis

(c) z lies on the unit circle

(d) None of these

1
43. The real part of z = is
1 − cos θ + i sin θ

1 1 1
(a) (b) (c) tan θ (d) 2
1 − cos θ 2 2

2z + 1
44. If the imaginary part of is −4 , then the locus of the point representing z in the complex
iz + 1
plane is

(a) a straight line (b) a parabola (c) a circle (d) an ellipse

45. The area of the triangle whose vertices are the points represented by the complex number z , iz
and z + iz is

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 5 of 9


1 2 1 2 1 2 1
(a) z (b) z (c) z (d) z
4 8 2 2

x +1 w w2
46. If w is a complex cube root of unity, then a root of the equation w x + w2 1 = 0 is
w2 1 x+w

(a) x = 1 (b) x = w (c) x = w 2 (d) x = 0

z1 z2
47. Let z1 & z2 be two complex numbers such that + = 1, then the origin and points
z2 z1
represented by z1 & z2

(a) lie on a straight line (b) form a right triangle (c) form an equilateral triangle (d) None of these

( )
n
48. If 1 + x + x 2 = a0 + a1 x + a2 x 2 + ... + a2 n x 2 n , then value of a0 + a3 + a6 + ... is

(a) 1 (b) 2n (c) 2n−1 (d) 3n−1

1 1 − 2i 3 + 5i
49. Let z = 1 + 2i −5 10i , then
3 − 5i −10i 11

(a) z is purely imaginary (b) z is purely real (c) z = 0 (d) None of these

1
x y
50. If ( x + iy ) 3 = a + ib, then + equals
a b

(
(a) 4 a + b
2 2
) 2
(
(b) 2 a − b
2
) (
(c) 2 a + b
2 2
) (d) None of these

51. If z  , the minimum value of z + z − i is attained at

(a) exactly one point (b) exactly two points (c) infinite number of points (d) None of these

52. For all complex numbers z1 , z2 satisfying z1 = 12 and z2 − 3 − 4i = 5 , the minimum value of
z1 − z2 is

(a) 0 (b) 2 (c) 7 (d) 17

z−2
53. If z lies on the circle z − 1 = 1, then equals to
z

(a) 0 (b) 2 (c) −1 (d) None of these

1 1 1
54. If 1, w , ...., w n −1 are the nth roots of unity , then value of + + .... + is
2− w 2− w 2
2 − w n −1

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 6 of 9


(a) n
1
(b)
n 2n − 1 ( ) (c)
( n − 2 ) 2 n −1
(d) None of these
2 −1 2n + 1 2n − 1
π π
55. If w = cos + i sin , then value of 1 + w + w 2 + ... + w n−1 is
n n

 π   π
(a) 1 + i cot   (b) 1 + i cot   (c) 1+ i (d) None of these
 2n   n

z
56. If z = 1& z  1, then all the values of lie on :
1 − z2
(a) a line not passing through the origin

(b) z = 2

(c) the x -axis

(d) the y -axis,

57. The locus of the centre of a circle which touches the circle z − z1 = a & z − z2 = b  a
externally is

(a) an ellipse (b) a hyperbola (c) a circle (d) a pair of straight lines.
2
58. If z 2 − 1 = z + 1, then z lies on

(a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

59. If z 2 + z + 1 = 0, where z is a complex number, then values of


2 2 2 2
 1  1  1  1
S =  z +  +  z 2 + 2  +  z 3 + 3  + ... +  z 6 + 6  is
 z  z   z   z 

(a) 12 (b) 18 (c) 54 (d) 6

60. If z + 4  3, then maximum value of z + 1 is

(a) 4 (b) 10 (c) 6 (d) 0

61. If z, w be two complex numbers such that z + iw = 0 and arg ( zw ) = ππ then arg z equals

3π π π 5π
(a) (b) (c) (d)
4 2 4 4

62. If z1 + z2 + z3 = 0 & z1 = z2 = z3 = 1, then value of z1 + z2 + z3 equals


2 2 2

(a) −1 (b) 0 (c) 1 (d) 3

63. If z satisfies the relation z − i z = z + i z , then

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 7 of 9


(a) Im ( z ) = 0 (b) z = 1 (c) Re ( z ) = 0 (d) None of these

β−α
64. If α &β are distinct complex numbers with β = 1 , then value of equals
1 − αβ

(a) 1 (b) α (c) 2 (d) None of these

1 − z + z2
65. Suppose z  ,&z  . If w = is a real number, then z equals
1 + z + z2

(a) 1 (b) 2 (c) 3 (d) 2 3

4
66. If z − = 2, then the minimum value of z is
z

(a) 1 (b) 2 + 2 (c) 3 + 1 (d) 5 +1

1
67. If ω = 2, then the set of points x + iy = ω − lie on
ω
(a) circle (b) ellipse (c) parabola (d) hyperbola

 1 
68. If z = 1, z  1, then value of arg   cannot exceed
 1− z 

π 3π
(a) (b) π (c) (d) 2π
2 2

z2
69. If z  1, is real , then point represented by the complex z lies
z −1
(a) on circle with centre at the origin

(b) either on the real axis or on a circle not passing through the origin

(c) on the imaginary axis

(d) either on the real axis or on a circle passing through the origin
100
3 3
70. If 3 ( x + iy ) =  + i
49
 , y & x = ky , then value of k is
2 2 

1 1 1
(a)  (b) 2 2 (c)  (d) 
3 3 2 2

( ) ( )
71. If ( 4 + i ) z + z − ( 3 + i ) z − z + 26i = 0, then the value of z is
2

(a) 13 (b) 17 (c) 19 (d) 11

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 8 of 9


 π π
72. Let z = a  cos + i sin  , a  , a  1, then S = z 2015 + z 2016 + z 2017 + .... equals
 5 5

a 2015 a 2015 a 2015 a 2015


(a) (b) (c) (d)
z −1 1− z 1− a a −1

73. If z = 20i − 21 + 20i + 21, then one of the possible value of arg ( z ) equals

π π 3π
(a) (b) (c) (d) π
4 2 8

74. If ( a + ib ) = x + iy , ( x , y , a , b  ) , then ( b + ia )
11 11
equals

(a) y + ix (b) − y − ix (c) − x − iy (d) x + iy

, ω  1, is a cube root of unity and ( a + bω ) = x + yω, then ( b + aω )


7 7
75. If a, b, x, y 
equals

(a) y + xω (b) − y − xω (c) x + yω (d) − x − yω

Mathematics(Complex number, MCQ)/Santanu Banerjee/9874288577/Page 9 of 9

You might also like