0% found this document useful (0 votes)
12 views38 pages

Daa Unit - 3

The document discusses various optimization techniques, primarily focusing on dynamic programming and its comparison with greedy methods and divide and conquer strategies. It explains the principles of dynamic programming, including the principle of optimality, and provides examples of optimal binary search trees and knapsack problems. The document emphasizes the efficiency of dynamic programming in solving complex problems by considering all possible sequences and avoiding redundant computations.

Uploaded by

mmaneeshacse
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
12 views38 pages

Daa Unit - 3

The document discusses various optimization techniques, primarily focusing on dynamic programming and its comparison with greedy methods and divide and conquer strategies. It explains the principles of dynamic programming, including the principle of optimality, and provides examples of optimal binary search trees and knapsack problems. The document emphasizes the efficiency of dynamic programming in solving complex problems by considering all possible sequences and avoiding redundant computations.

Uploaded by

mmaneeshacse
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 38
a St Martins égguneris avese- Mt Material Syllabus = General Method ~ Applications optimal binary Search 1ees — 0/4 Knapsack problem All pairs shortest path problem ~ Travelling Sales pason problem b ~ Reliability Destgr General Method Dynantic Programming ‘6 typically applied to optimization problems - For a given Psoblem Me may get ony of Splatters - prom alt those solutions We Seeks for the. optimum , ‘ ue Solution). And Such numba Solution Crfintmum Value or maximum val an. optimal; soleetfon. becomes the Solution tothe given. problem method EE Diflerence belocen Dyooonte Regroriting b Gieedy Qynamie programming, Gueedy method vs Gxscedy meld tgpatthon bs, $5 alt osed sor cbtatatng eptimam. Selarion.¢ + Dynaettc’| programing -algextth used'for obtaining opfimom golertion . 2. Dynamic Programming “considers 2. The greedy method 14 @ all posible Sequencét Yn order cbtain —slaatight -foricaad methed for cthe optimum Solution i Choosing “the. optimum choice ' i oF Solution. Lt simply Picks Up-the optimum Solut’on 10tthout . tevising -the previous Solutions . F Dynamic Prog taming Uses Botlomup 3. The Greely method “Wxes. roach 49 oblain he inal Solertion top clown ‘appioach to dba a the nal Sokelfon ™ rf Be annxandeed that owl! qeneiate i RRA cee eddie DeSemiAnAe taiythablly Sotoge MM Material, 1 in divide and conquer algestthm We fake the problem and divide tt ‘into small sob problems these Sub problems are then. Solved findependentty - And finally al the Solutfons of Sob-problems are collected togetho. to. get the Solation forthe given Preblem - These b- Problems ave Solved Jade pendently without Considesing the common Sob &. Divide and conquer ts Recliisiuely define the value of an_ optimal Solution . —_— > SiMartins.toginaerig Colege-8M Material. por thet gout have to develop a recurvence relation that velaks a Solution 4o ik Sebsolertion Using the mathematfcal notation of Step 4. compute an optimal Sletten from computed information ulrciole of optimality the dynamic. Programnting algoiitim obtains the Solutfon Using principle optimality. “the principle of optimality Stafesthat “in an optimal Sequence of decisions or chdices » Cach Sobsequente must alto be optimal” Hhen at %& not possible to apply ‘the principle of optimality itt almost ‘imposible to cbfain ~the solution using “the dynamic programming approach - ‘or example : Finding of Shortest path ina qiver geoph uses the Principle ef optimality. =o St.Martins Enginnerig College - MM Material OBST (optimal Binary Search twee) Suppoge Ne are Seaxclting for “hat reqettied ord we have -to look up diconary - Bak this look up cpaation is move tHme consuming process. To avoid this problem, We can build ost. Sn this frequently Seaching Nords axe nearer to the woot and less frequently Searching words ase awoy from ‘the soot- Sucha binasy Search tree maner cur task moie Simplified as well “as cHtictent- “ths type of ey search tute $4 also Called “optimal fnavey Seasch tee > * (ssi). let fa, a, -- = any bea set oh identifiers Soch sthad aicar< ~-- an tet PCi) be the probability of Searching % (on Successful Search of M%. qi) bethe probability of Seaachiay, element X a Head fom dictionary, Stdlaninspsinneri i RoiRerGp clege MMaterial +: method, Me Can perform folowing SHEPS - Nap = Mts HPP eT} Cy = min i ee ick 3 Ab Cig =0 and tp eat Hy ae Goz® Cn =O Gq, =D Gs *P Gq =? To =o TU=0 «G20 gO Mele =O Sintlasty ere mia f Cj rer Haj tht } icky Let feo fel so, o G73 * nin | en $43 +N} = 04849 =) Cy ate v3 =2 Sov k=3 Cy = MALS Ss tos} = 44049 Cig = lb Yar 3 fiom. the above two sSolutfons Le will Select wi dimum valeur of ¢)3 15 12+ That means =a giver “th minimum volute me le feQ f=y 2 ES OS Be Nee Algorithm. OBST CPi 4, Ws Cr¥) for i: =0 to n do Chis =07 wULidieo ahaa s> MUG Kaye RIM Ci = Cika t Kj thy vay =i 4 for mi=24ondo for jo 4o n-m de t i¢my Kt min value CC,7/ 1,5 )} Clg): = MLD IT Heth we HOUR, WijT tek Eh 4 tavtte CCLosA) ¥ Coen) J. iS thyiMeHg College - MM Material Algorithm. Min -value Con ij) z minimum = for Case s[tg- to rit .fi)do 1 ff CcCt, mt] +¢0m,f]) < minimum then minimums = ¢Cimajeclmj)t Kiem! J Yetun Kk} f ro Ear Gealing dice Algnithm butid- tree (0a,1,j) I Ti = newCnode) ; REE NRG T > data: - alk; T> left = build— téee (1,0, 1, K-)" To vight = bald -tree (1,a,K J); Example: S Using algortthn. OBST , compute Att, sy £ Cay tor Identiti set {,ar, 45, ay} = fond, qoie, prfat, Stop} with Plate} = {tbo j 15; ‘ho ,tno} 9 fo=u]= 454i, "5, 20, ho} sd: The table for WI Can be sepresented a5 Woo=ts| Mn = tho | tay =%5| Has = J ae Hot = ag] Mia Ha | Aas = oof = 1a ig a Ups = Is]. St.MariinsénginnerigColege- MM Material. 4,748, $4) -ton% = 4s. 43 2tho, 4" Ihe = let rot ho = td = ho 0 fet for pblalai = HAS = Sie = aoe To Ay = My + P3445 xt + 4, st+tek loo Nay = Naat Pa # Ty ect th =o joo jae Her = Nort Pet he = Je: SHEP ol Zttte a bo ' 20 I ferge3 2 Uys = ly t Pst 45 for2t) = 13h, 2& a eet bo egtbtt Zo tea fey He = Wha tp A tg 2 bea Fag MY = | eBbrs iho . feo ges ly, = Ay, + Pat 43 oe tolerate = 18 ebrhty i 20, tr St.Martinsnginnerig College - MM Material Nig = Wis + Py t Fy = IB oe hd os 1S ao tate “20 tzo f=4 Kloy = Noat Py ty oft of ASE Ue gtaotz = ™ho Computing jr values Coo=o | Cy=0 | G,=0 C5370 Cyyleo TorO | TO | Gae0 | aso | rey co Goi ="lao] Sin =Bhr0 | C23 = fon) Cag = Fu tye i NED | Hee" togee met fs) or =Abd Crs ¢ y= Yh Yor= 2] %32 2 rasa 232 | Cy = 24 Cos = BE | Crq = 24 teense oy = Sire ee { Ci + Cag thy tet feo, fel ° o taofeq ket OBsT With minimum lest Vets ‘220 ¢, | StMastins Egiinerigeoligga. MM Material: , 22] Qe Var bei» Prey, Pom lB , P3=PH= NG 7 (a) construct “the optimal Binary Seaych ee. a8 a minima) cost tree. tb constsuct the tables of Values Nig, Ci, Vij Computed by the aloxithm 40 compute cthe wots of optimal Sobtyces Sl The table we an be vepresented as Tetse= | e= 3] Meri e | Hers y [Naf | Ka“Ahe| see] Hor Pig Ma= Shy |Moy= She | weg = Mega 4; HY : | let jzo f= tet f=3 fey | Ug, = Hoot Pit Ti aa the tatty j Sota es mkt th a) o+ at ha 2 Te mio ht by ed let feo feu sel Upp = Hoy + Pate eet, fee bey Ua = Hat Pete iets te +StMartins Enginnerig College-- MAEMaterial Wy = ag = ba + Pat by Whey = Brat Pa thy Aung le . ie tw th et TE by 2 by 219 tet feo f23 Vox = Wor #Ps tha = Jo ep ded et ett wet ti Rog = pg, = Lee ty = Fe computing Oy and Vip values eo Vp = 0 Coy = the [Cin = 616 |r, =3hte! Cae = Fhe hoe t |= 2 |vaze 3 | Seeep Co2= We [Cis = [ey 8116 Voz wl] Yiat > |e 23 J Coa AUIG] Cee= lie wos? 1 | Y= Qa ke, — cy = min ) Chest + eee + if} -O2KST let feo j=l ocleg! So, Kel Cor = Coot Cy toy = o+ot Co =i Yor =I tee fat fer Cn = ent Sy tN lekgo, So, Kee = 04046 1 aks So, Ke3 we. Dies Startins Enginnerig College - MM Material Cy = Gs t%y? Psy = of0t3 Te Gu HH tel feo Jor O OF wea 9 ox a bag fn chich “the object 1 that hos pacity KI. Then “the pit that “the objective 14 to obtain filling of fver. n objecld and a knapsack Metght Wi 15 40 be placed. ~the knapSacls har a cay can be earned 1s PIX} knapsact with maximam. profit earned « 1 l maximiged I PIX] Subject to Constraint i Li xt Nk ythen. Cp;,Wj) Can be eliminated . this paging dule ts also called as “domminance'sule. Sn purg'a) aule basically the dominated ‘eples gels purged. Jin Short , yemove the Paiv With les profit and move Merqht- _Ex! consider knapsack instance M=8, and n=y - tet Pj and Wi are a& Shown below- i | pry { tfo x £ 3 3 4 G16 s pF A pe iydla ne aedlenceog dectaton, S18, S)% st ste { to, 05 Si = { select next patr of (p,nyb add fr 7th sy e fey si 2 {meege 32 Sf = 4 C00), C2) gl {select next pair Cpyis) and add te oith $f efi), 2.53} ge? = {mage sit si} = 160) C2, C13), 3,5)} gt 2 {select neck pay pus) and add Ht with s*f = {6.4),C6.6), C0, BAI} 8 - [Mage sesh} = (0,0), CHO), (23), 03,5), C54), C6), CHD, (8,4) 5 St.Martins Enginnerig Cotleye’ Min Material °° aasome (Pz, 195) = (3/5) and ( Py, WK) = (5,4) ~ Here Pi < PK and My>Wyg 1 true hence ve wil eliminate Paty (pp, ) near) from <. se] 6.5), G4), 6.9), tn, 9), C12.) C812), DY gts { 0) £429, (2139 5:99, 610), 49, 6D (615), 8/8), Ca) C12), C131 1, cy a) F 64 contains all porsible Solutions 0} (P.49) Pairs « Now, Ne will conbider the Knapsack capacity w=8- So, Me can Select pair (8,9), it tata sth. go, consider 47 object (pj Wi) = (6,5) vyemaining Wetght = (8-6, 8-§) hey (a3) = TE KT 24 object pats (2139 ES Hence arabjerk is Q9 ‘vemaiining wei ght = (2-2, 3*3) hes) (0,0) Se, ro wait remaining - So, We get the final Solution a4 f 0,1, 0, 4 ER consider the knapsack for the Gnatance N=Y~ (091, We, '3,9q) F105, 6.9 and [ Pi, Px,P3, Pay = 1215/8. 1} and m=2l sa st =e Mi} 2 ee {eo} lef = {en0j Bg paki ! g' = {metge ses} oF 10 = 40,0), 2105 a hoe 46,15), (7, 25)4 eh = 4 toon, (2,10), C5115), Cs 25)5 si = {84 (1o,u) , (13,28), 15.304 gb = f toy C20), C5715), C86), (10,16), (13.217, : us.) a . $n), 3,9), C620), CUI), CH, 25), O43), = SkMajtine Enginnerig Coed “Mm Material ”, 14,30) C16 40. (3119), C6124), C4015) (1,25), C | Now, 34 contains all poastble Solutions of (Pit) Paies « Pair (4,25) 1s eliminated from S* becaue of purging ae Now, We WIT consider-the Knapsacn capacity W= 2! Go, we will select paty (13,21) (2, Wess. F Hence set 3 %5 (8,6) ss remaining wetght = (3-81 ai-b) SiS Ss” Hence set 2 14 (6115) yemaintng weight = (6-8, 1s-15) = 6,0 So, no weight vematatag. So, We get th final Selection as { eh Ten EX'S Salve the following OBA knapsack problem wsing dynamic Progamming {01 )P2, Ps, Py} = ZM2t, 31,93}, Leo wes Ws, Buds 22,11, 2015) y mayo, n=y- * Given dato 4 | pt fut fae 2 {a {a 3 [ 8) [22 y [33 [te so2 1,0} se fw ay sh = {60,0925 si = form, 32,9} sre | €0,0),C12), 21) 2 ra} gh 4 (31,22), Clr2 ay) 152,93), (63, 959} 2 J coye),C1,2) Cat), C3213),C31 122) C24) (52, 33), (63, 35) } 3 SP = | 033,15), C0 (17) C54, 26), 065,28) , (64 317, (15,3, St.Martins énginnerig College” MM Material” °*” (G3, 35), (33,15) 3 Cute FI), C54, 26), C65, 28), (60,32 (45,39) (85/48), C16, 50) F & consides. knapsack weight m= lo We will seaach for afaple fa which value of uo Thee TA no tap having 48, $0, Ve Whtlaneay by value toe will Select (95/30).€84 ath object is( Pi Wi) = (93.18) Femaining weight = (35-33, 37-15) 2 (aajes?. So, Fobject b > 31,22) aremaining weight = Caq2-al, 24-22) sinttiiray esl, OP object fA C12) = Cite, 2-2) = (0,0) $0, no YeMatiafaeg wvelgh So, we get the final Solution as J 40,245 yernaining weFght cee mat, 28, omiiey tind = Lip beSbon Lape Pte 19h Givin data. 1 | Pi fW? wt 2 2 ls | 3| 4 sh = {com} gy = Loy} ahs {toi e129} st 2 | ¢13),¢3,5)} SPs | C010),C12) £23) (35)} 7 gto 1 t,39/€515), C66) ,C418)$ Sf Cop0), CH2),C23) , 5), 4138), 088), Og (3,8)} Here 6,5) fs eliminated Using purging vale - SL Martins Enigtire fi 4 ‘ i fte will Search for & tup teak ‘Wu Material " So, we will Select (6,6) es. 314 object is 60.3) remaining wetght = (6-4, 6-3) = (23) | (a3)es* ond objet 4a (2,3) Yemaining weight = (.22,3-3) = (0.0) Ao sematining coetght - $0, We get He final solution a Jo, 4,4} Ll Bass heat path ste Soppose if given graph i Weighted Graph - Then objective {5 4o ind Shortest path bdiacen each and every Paiy of node present fa given graph. : To find Shortat path between. every pate Of nodes Using dynamic prayramming , We need to find AG ‘for Keo ton. Ay represent path behucen iH) via WeWlLGy K . kt ka Kt ae min | Ag ATC FAK "consider given graph dnd -find shortest path between every Paty of nodes using dynamic Programming. Ae= Wl t az q aoe Ifo gi ‘[: o 2 alsa 0 | Alas min {Aks LMat ais} wo 2 ef i Sat etal Ag = Te fay Abt Alo} te. Ss = min {3,488} =3 3 ' o & & A a Sa t 4 4 4e 2 {S20 2 Ap min} Ay, Aist Ai B ys, at. = mio la, ee} © 3 e e 4p = aio | ab, Maat 5) smin | 8, 243} = 5 AP gives Shostext distance beboeen any Paty of vetices- i, av « in 4 ° t2ay ' 1 2 abort & So) sala tind tel dh ee 4 ' a : Sau S Aga 2 Lady Ait righ “eat Aan Why tart ed eed = Ag Wh ter thd HH A, Mad BAS ays= fig teas tis} deeds ip College, MM Material .,,... =Afeey 8) Alada) Kent} eee Aly = doy, Hig 14h, Art Mes Ae = 1m, ata d 44 we —— = 5 ata) Lys at Mah fae} bes y 3 1 fo o ¢ eH. Gif nerfe z s fie cnt oe eo B pee e 6 lets ebay, Ma ta) EY 7 Ear f= (te, 844 ‘ a Aist 85y } (te, ae ; oly Mat Ms iat af * (GiB) & S a * =(n, 5#4) Ae tea* at ™ ide, ay 3 i, “bh tier «eee at = Car te. 1644} Ye de, Aly +a} = ey id a, Aye Mer} + ir Ags Jo3s, a3yt ys} = {5,243} =5 Wa fats ate me Ai {Ae Sle ete Lapa = jm, 145} Ait) * = fr, But Ht i Starting fupinnerig-@ollege> MM Btaterteet=-*) (S) matiix graph vsing Floyd algorithm - ae tr 3 qs ! oan! 8 : a ett 2 ee At > G0 Yk y ~ 46 2 05 s[a ee %% & z (21s. Fa eo yey = (3,666) 73 ae ives! 2 A ta Set) 0 24e0 3 208 aang pecan) 3/44 04 © As {Ag, Ds G Pow Ve S bal a sl(s © « #0 Oat tea ee = ie Aly i ; athe aaiaal ° 6, 64854 es ditties f 5 \ a, fa to Aid if N = Ags = of a (xs tb )o+ fs -{A55, A etist =f i) Gh BFL )EE Ag «ffs agit his} *S a Ais Alyy = Mow, ay ty = & 3H) of : 5 t. a3] as filalntda = eh)° wee a eo aGir 8 asl} = bea, eotb)2% 2/603 2 “ar lies ob? IES. 7 1 Al gal alee etbyae el ects” Bh at YB Bo Met, Meat At (#48) gloat Be | ue wet a = Sit 'F Tals, alas alg} = Ce 15#3) 8 we 2 AY. eur moon 3 ng Enginnerig College - MM Materiat: * 60 3 A8 wpe 44 06 be ats 4 2 1, Ait Ab pe @- aed Boe Be, Pe 7 a Aer Wag? lee , 2¢4) Mat Pra, nists} en . =u a de re Meg t Ais} eilaae Ass = Maar GS 2 2 @ 5s Reg tay Mtg) Me a+) ag # A ey 23 6.6 3 im Al, ={Ae, Ay 1% om : is ik he i : ' a4) =f, by =Geues)"* 3 FL ee he fad, at Mad = © a Abs [nag May t a RGus “gc el) ey, fat ad galt, | CG 7t8 E fal asa} ( ; io ae sy ai stn} ea ae -fat a feat fab, Abs? ab} We, 1 eet paitoor? Ascal lw what aie the differences between Divide and conquer and Dynamic, Progyamming . k : Uy What are the differences between greedy method , dynamic Programming approach - (3) Give the commonly osed designing steps for dynamic programm algorithm. : F tq Uthat ts princtple of optimality ' Explain wtih some, Suitable example? i ; U) consider “the Knapsack ‘instance | Hl G,4,2,3) and ber ghts w tth & Objects and a capacity Mell, profits p= (5 = (4,316,242) Solve ik Using dgnamic programming ap proach inary Search algorithm with “the help of ) Explain optimal. bi Wap discuss “the time complexity of Some Suttable example. gee algorthin . ules in O[4 knapsack problem. 87 shortest Path Explain With a~ gm example . (D Detine merging and purging q (8 iytte an. algorithm for all pairs

You might also like