12 NCERT Examplar Solution
12 NCERT Examplar Solution
Q. 5 If A = {a, b, c, d } and the function f = {(a, b), (b, d), (c, a), (d, c)}, write
-1
f .
Sol. Given that, A = {a, b, c, d }
and f = {(a, b ), (b, d ), (c, a), (d , c )}
f -1 = {(b, a), (d , b ), (a, c ), (c, d )}
Q. 7 Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by
g(x) = a x + b, then what value should be assigned to a and b?
Sol. Given that, g = {(1, 1), (2, 3), (3, 5), (4, 7)}.
Here, each element of domain has unique image. So, g is a function.
Now given that, g (x ) = ax + b
g(1) = a + b
a + b =1 …(i)
g(2 ) = 2 a + b
2a + b = 3 …(ii)
From Eqs. (i) and (ii),
2(1 - b ) + b = 3
Þ 2 - 2b + b = 3
Þ 2 -b = 3
b = -1
If b = - 1, then a = 2
a = 2, b = - 1
Q. 8 Are the following set of ordered pairs functions? If so examine whether
the mapping is injective or surjective.
(i) {(x, y) : x is a person, y is the mother of x}.
(ii) {(a, b) : a is a person, b is an ancestor of a}.
Sol. (i) Given set of ordered pair is {(x, y) : x is a person, y is the mother of x}.
It represent a function. Here, the image of distinct elements of x under f are not distinct,
so it is not a injective but it is a surjective.
(ii) Set of ordered pairs = {(a, b ) : a is a person, b is an ancestor of a}
Here, each element of domain does not have a unique image. So, it does not represent
function.
Q. 9 If the mappings f and g are given by f = {(1, 2), (3, 5), (4, 1)} and
g = {(2, 3), (5, 1), (1, 3)}, write fog.
Sol. Given that, f = {(1, 2), (3, 5), (4, 1)}
and g = {(2, 3), (5, 1), (1, 3)}
Now, fog (2 ) = f{g (2 )} = f(3) = 5
fog (5) = f{g (5)} = f(1) = 2
fog (1) = f{g (1)} = f(3) = 5
fog = {(2, 5), (5, 2 ), (1, 5)}
1
Q. 14 Let f : R ® R be the function defined by f (x) = , " x Î R.
2 - cos x
Then, find the range of f .
K Thinking Process
Range of f = { y ÎY : y = f(x) : for some in x} and use range of cos x is [-1,1]
1
Sol. Given function, f( x ) = , " x ÎR
2 - cos x
1
Let y=
2 - cos x
Þ 2 y - ycos x = 1
Þ ycos x = 2 y - 1
2y - 1 1 1
Þ cos x = =2 - Þ cos x = 2 -
y y y
1
Þ -1 £ cos x £ 1 Þ -1 £ 2 - £ 1
y
1 1
Þ - 3 £ - £ -1 Þ 1£ £ 3
y y
1 1
Þ £ £1
3 y
é1 ù
So, y range is ê , 1ú.
ë3 û
Q. 15 Let n be a fixed positive integer. Define a relation R in Z as follows " a,
b Î Z , aRb if and only if a - b is divisible by n. Show that R is an
equivalence relation.
Sol. Given that, " a, b Î Z, aRb if and only if a - b is divisible by n.
Now,
I. Reflexive
aRa Þ (a - a) is divisible by n, which is true for any integer a as ‘O’ is divisible by n.
Hence, R is reflexive.
II. Symmetric
aRb
Þ a - b is divisible by n.
Þ - b + a is divisible by n.
Þ -(b - a) is divisible by n.
Þ (b - a) is divisible by n.
Þ bRa
Hence, R is symmetric.
III. Transitive
Let aRb and bRc
Þ (a - b ) is divisible by n and (b - c )is divisible by n
Þ (a - b ) + (b - c ) is divisibly by n
Þ (a - c ) is divisible by n
Þ aRc
Hence, R is transitive.
So, R is an equivalence relation.
1
Q. 37 If f : R ® R be defined by f (x) = , " x Î R. Then, f is
x
(a) one-one (b) onto (c) bijective (d) f is not defined
K Thinking Process
In the given function at x = 0, f(x) = ¥. So, the function is not define.
1
Sol. (d) Given that, f( x ) = , " x ÎR
x
For x = 0,
f(x ) is not defined.
Hence, f(x ) is a not define function.
3x 2 3x 2
(c) (d)
x + 2x 2 - 4
4
9x + 30 x 2 - 2
4
x
Sol. (a) Given that, f(x ) = 3x 2 - 5 and g (x ) =
x2 + 1
gof = g {f(x )} = g (3x 2 - 5)
3x 2 - 5 3x 2 - 5
= 2 2
=
(3x - 5) + 1 9x - 30x 2 + 25 + 1
4
3x 2 - 5
=
9x - 30x 2 + 26
4
3x + 2
f : R - ìí üý ® R be defined by f (x) =
3
Q. 42 If , then
î5þ 5x - 3
1
(a) f -1( x) = f ( x) (b) f -1( x) = - f ( x) (c) ( fof ) x = - x (d) f -1( x) = f ( x)
19
Sol. (a) 3x +2
Given that, f( x ) =
5x -3
3x +2
Let y=
5x -3
3x + 2 = 5xy - 3 y Þ x(3 - 5 y) = - 3 y - 2
3y + 2 3x + 2
x= Þ f -1(x ) =
5y - 3 5x - 3
\ f -1(x ) = f(x )
ì x, if x is rational
Q. 43 If f : [0, 1] ® [0, 1] be defined by f (x) = í
î1 - x, if x is irrational
then ( fof )x is
(a) constant (b) 1 + x (c) x (d) None of these
Sol. (c) Given that, f: [0, 1] ® [0, 1] be defined by
ì x, if x is rational
f (x ) = í
î 1 - x, if x is irrational
\ (fof )x = f(f(x )) = x
2x - 1
Q. 45 If f : N ® R be the function defined by f (x) = and g : Q ® R
2
3
be another function defined by g(x) = x + 2. Then, (gof ) is
2
7
(a) 1 (b) 1 (c) (d) None of these
2
2x - 1
Sol. (d) Given that, f( x ) = and g (x ) = x + 2
2
æ 3 ö
3 é æ 3 öù ç 2 ´ - 1÷
(gof ) = g ê f ç ÷ ú = g ç 2 ÷
2 ë è 2 øû çç 2 ÷÷
è ø
= g(1) = 1 + 2 = 3
ì2x : x > 3
Q. 46 If f : R ® R be defined by f (x) = ïí x 2 : 1 < x £ 3
ï3x : x £ 1
î
Then, f (-1) + f (2) + f (4) is
(a) 9 (b) 14 (c) 5 (d) None of these
ì2 x : x > 3
ï
Sol. (a) Given that, f( x ) = í x 2 : 1 < x £ 3
ï3x : x £ 1
î
f(-1) + f(2 ) + f(4) = 3 (-1) + (2 )2 + 2 ´ 4
= - 3 + 4 + 8= 9
Fillers
Q. 48 Let the relation R be defined in N by aRb, if 2a + 3b = 30. Then, R = …..
.
Sol. Given that, 2 a + 3b = 30
3b = 30 - 2 a
30 - 2 a
b=
3
For a = 3, b = 8
a = 6, b = 6
a = 9, b = 4
a = 12, b = 2
R = {(3, 8), (6, 6), (9, 4), (12, 2 )}
x
Q. 51 If f : R ® R be defined by f (x) = , then ( fofof )(x) = ……… .
2
1+x
x
Sol. Given that, f( x ) =
1 + x2
(fofof )(x ) = f [ f{f(x )}]
æ x ö
ç ÷
é æ ö ù ç 1 + x 2 ÷
ç x ÷
= f êf ú= f ç ÷
ê ç 2 ÷ ú ç 2
÷
ë è 1 + x øû x
ç 1+ 2 ÷
è 1 + x ø
é 2 ù æ ö
x 1+ x ú= f ç x ÷
=fê
ê ú ç 2 ÷
è 1 + 2x
2 2
ë 1 + x ( 2 x + 1) û ø
x
1 + 2x 2 x 1 + 2x 2
= =
x2 1 + 2 x 2 1 + 3x 2
1+ 2
1 + 2x
x x
= =
1 + 3x 2 3x 2 + 1
Q. 58 The relation R on the set A ={1, 2, 3} defined as R = {(1, 1), (1, 2), (2,
1), (3, 3)} is reflexive, symmetric and transitive.
Sol. False
Given that, R = {(1, 1), (1, 2), (2, 1), (3, 3)}
(2, 2 ) Ï R
So, R is not reflexive.
Q. 59 The composition of function is commutative.
Sol. False
Let f( x ) = x 2
and g(x ) = x + 1
fog (x ) = f {g (x )} = f (x + 1)
= (x + 1)2 = x 2 + 2 x + 1
gof (x ) = g { f(x )} = g (x 2 ) = x 2 + 1
\ fog (x ) ¹ gof(x )
æ 2p ö
Q. 5 Find the value of tan -1 ç tan ÷.
è 3 ø
æ 2p ö æ pö
Sol. We have, tan-1 ç tan -1
÷ = tan tan ç p - ÷
è 3 ø è 3ø
æ p ö
= tan-1 ç - tan ÷ [Q tan-1(- x ) = - tan-1 x]
è 3ø
p p é æ -p p öù
= - tan-1 tan = - -1
êQ tan (tan x ) = x, x Î çè 2 , 2 ÷ø ú
3 3 ë û
æ 2pö 2p
Note Remember that, tan-1 çtan ÷ ¹
è 3 ø 3
æ p pö 2p æ - p p ö
Since, tan-1(tan x) = x, if x Î ç - , ÷ and Ï ç , ÷
è 2 2ø 3 è 2 2ø
-p æ-4ö
Q. 6 Show that 2 tan -1 (- 3) = + tan -1 ç ÷.
2 è 3 ø
Sol. LHS = 2 tan-1(-3) = - 2 tan-1 3 [Q tan-1(- x ) = - tan-1 x, x Î R]
é 1 - 32 ù é -1 1 - x
2 ù
= - êcos -1 2ú
-1
êQ 2 tan x = cos 2
, x ³ 0ú
ë 1 + 3 û ë 1 + x û
é -1 æ - 8 ö ù é -1 æ - 4 ö ù
= - êcos ç ÷ = - êcos ç ÷
ë è 10 ø úû ë è 5 ø úû
é æ 4 öù
= - ê p - cos -1 ç ÷ ú {Q cos -1(- x ) = p - cos -1 x, x Î [- 1, 1]}
ë è 5 øû
æ 4ö é æ 4ö 4 3 3ù
= - p + cos -1 ç ÷ êlet cos -1 ç ÷ = q Þ cos q = Þ tan q = Þ q = tan-1 ú
è ø ë
5 è ø
5 5 4 4û
æ 3ö ép æ 3 öù
= - p + tan-1 ç ÷ = - p + ê - cot -1 ç ÷ ú
è 4ø ë 2 è 4 øû
p -1 3 p -1 4
= - - cot = - - tan
2 4 2 3
p -1 æ - 4 ö
= - + tan ç ÷ [Q tan-1(- x ) = - tan-1 x]
2 è 3 ø
= RHS Hence proved.
x2 + x + 1 q
Þ sin q =
1 Ö– x 2 – x
x2 + x + 1 é sin q ù
Þ tan q = êQ tan q = ú
- x2 - x ë cos q û
x2 + x + 1
Q q = tan-1
- x2 - x
= sin-1 x 2 + x + 1
On putting the value of q in Eq. (i), we get
x2 + x + 1 p
tan-1 x (x + 1) + tan-1 =
2
-x -x 2
æx + yö
We know that, tan-1 x + tan-1 y = tan-1 çç ÷, xy < 1
÷
è 1 - xy ø
é x2 + x + 1 ù
ê x (x + 1) + ú
ê - x2 - x ú p
\ tan-1 ê ú=2
2
ê 1 - x (x + 1) × x + x + 1 ú
ê - x 2 - x úû
ë
é x2 + x + 1 ù
ê x2 + x + ú
-1 ê - 1(x 2 + x ) ú p
Þ tan ê ú=2
2
ê 1 - (x 2 + x ) × (x + x + 1) ú
ê -1 (x 2 + x ) úû
ë
x2 + x + - (x 2 + x + 1) p 1
Þ = tan =
[1 - - (x + x + 1] (x 2 + x )
2 2 0
Þ [1 - - (x 2 + x + 1)] (x 2 + x ) = 0
Þ - (x 2 + x + 1) = 1 or x2 + x = 0
2
Þ - x - x - 1 = 1 or x(x + 1) = 0
2
Þ x + x + 2 = 0 or x (x + 1) = 0
- 1± 1- 4 ´2
\ x=
2
Þ x = 0 or x = -1
For real solution, we have x = 0, - 1.
Q. 9 If 2 tan -1 (cos q) = tan -1 (2 cosec q), then show that q = p , where n is any
4
integer.
K Thinking Process
æ 2x ö
Use the property, 2 tan-1x = tan-1 çç ÷ to prove the desired result.
2÷
è1 - x ø
Sol. We have, 2 tan-1(cos q) = tan-1(2 cosec q)
æ 2 cos q ö
Þ tan-1 çç 2 ÷
÷ = tan-1(2 cosec q)
è 1 - cos q ø
é -1 -1 æ 2 x öù
êQ 2 tan x = tan çç ÷
2 ÷ú
êë è 1 - x ø úû
æ 2 cos q ö
Þ ç ÷ = (2 cosec q)
è sin2 q ø
Þ (cot q × 2 cosec q) = (2 cosec q) Þ cot q = 1
p p
Þ cot q = cot Þ q =
4 4
æ 1ö æ 1ö
Q. 10 Show that cos ç 2 tan -1 ÷ = sin ç 4 tan -1 ÷.
è 7ø è 3ø
K Thinking Process
1 - x2 2x
Use the property 2 tan-1 x = cos -1 and 2 tan-1x = tan-1 , to prove LHS = RHS.
1 + x2 1 - x2
æ 1ö æ 1ö
Sol. We have, cos ç 2 tan-1 ÷ = sin ç 4 tan-1 ÷
è 7ø è 3ø
é æ æ 1ööù
2
ê ç1- ç ÷ ÷ú
ç è7 ø÷ú é -1 1 ù
é 2 ù
-1 æ 1 - x ö
Þ cos êcos ç
- 1
÷ ú = sin êë2 × 2 tan 3 úû
-1
êQ 2 tan x = cos çç ÷
2 ÷ú
ê æ 1ö
2
êë è 1 + x ø úû
ê çç 1 + ç ÷ ÷÷ ú
ë è è7 ø øû
é é æ öù
æ 48 ö ù ê ç
2 ÷ú
ç ÷ú é öù
ê ç ÷ú -1 æ 2 x
Þ cos êcos ç -1 49
÷ = sin ê2 × tan - 1 3 -1
êQ 2 tan x = tan çç ÷ú
50 ÷ ú ê ç 2 ÷ú 2 ÷
ê ç
ç ÷ú çç æ
1- ç ÷
1ö
÷÷ ú êë è1 - x ø úû
ë è 49 ø û ê
ë è è 3ø øû
é æ 48 ´ 49 ö ù é 18 ù
Þ cos êcos -1 çç ÷ ú = sin ê2 tan-1 æç ö÷ ú
÷
ë è 50 ´ 49 ø û ë è 24 ø û
é æ 24 ö ù æ 3ö
Þ cos êcos -1 ç ÷ ú = sin ç 2 tan-1 ÷
ë è 25 ø û è 4ø
æ 3 ö
ç 2´ ÷
é -1 æ 24 ö ù -1 4 ÷ é -1 -1 2 x ù
Þ cos êcos ç ÷ ú = sin ç sin êëQ 2 tan x = sin 1 + x 2 úû
ë è 25 ø û çç 9 ÷
1+ ÷
è 16 ø
24 æ 3 /2 ö
Þ = sin çç sin-1 ÷
25 è 25/16 ÷ø
24 48 24 24
Þ = Þ =
25 50 25 25
\ LHS = RHS Hence proved.
æ 3ö
Q. 11 Solve the equation cos (tan -1 x) = sin ç cot -1 ÷.
è 4ø
æ 3ö
Sol. We have, cos (tan-1 x ) = sin ç cot -1 ÷
è 4ø
æ ö
Þ cos ç cos -1
1 ÷ = sin æ sin-1 4 ö
ç ÷ ç ÷
2
x + 1ø è 5ø
è
x
Let tan-1 x = q1 Þ tan q1 =
1
1 1
Þ cos q1 = Þ q1 = cos -1
2 2
x +1 x +1
3
-1 3 5 4
and cot = q2 Þ cot q2 =
4 4
4 4 q2
Þ sin q2 = Þ q2 = sin-1
5 5 3
1 4
Þ =
2
x +1 5
{Q cos (cos -1 x ) = x, x Î[- 1, 1] and sin (sin-1 x ) = x, x Î [- 1, 1]}
On squaring both sides, we get
16 (x 2 + 1) = 25
Þ 16x 2 = 9
2
æ 3ö
Þ x2 = ç ÷
è 4ø
3 -3 3
\ x=± = ,
4 4 4
8 3 77
Q. 14 Prove that sin -1 + sin -1 = sin -1 .
17 5 85
8 3 77
Sol. We have, sin-1 + sin-1 = sin-1
17 5 85
8 3
\ LHS = sin-1 + sin-1
17 5
-1 8 -1 3
= tan + tan
15 4 17
8 8 8
Let sin-1 = q1 Þ sin q1 =
17 17 q1
8 8 15
Þ tan q1 = Þ q1 = tan-1
15 15
3 3
and sin-1 = q2 Þ sin q2 =
5 5
3 -1 3
Þ tan q2 = Þ q2 = tan
4 4
é 8 3 ù
+ é
ê ú -1 æ x + y ö ù
= tan-1 ê 15 4 ú -1 -1
êQ tan x + tan y = tan ç ÷ú
8 3 ë è 1 - xy ø û
ê1 - ´ ú
ë 15 4 û
é 32 + 45 ù
-1 ê ú æ 77 ö
= tan ê 60 ú = tan-1 ç ÷
60 - 24 è 36 ø 5
ê ú
ë 60 û 3
77 77
Let q3 = tan-1 Þ tan q3 = q2
36 36
77 77 4
Þ sin q3 = =
5929 + 1296 85
77
\ q3 = sin-1
85
77
= sin-1 = RHS Hence proved.
85
Alternate Method
8 3 77
To prove, sin-1 + sin-1 = sin-1
17 5 85
8
Let sin-1 =x 17
17
8 8
Þ sinx =
17 x
2 15
æ 8 ö
Þ cos x = 1 - sin2 x = 1 - ç ÷
è 17 ø
289 - 64 225 15
= = =
289 289 17
3
Let sin-1 = y
5
3 9
Þ sin y = Þ sin2 y = 5
5 25
9 3
\ cos 2 y = 1 -
25 y
2
æ 4ö 4 4
Þ cos 2 y = ç ÷ Þ cos y =
è 5ø 5
Now, sin(x + y) = sin x × cos y + cos x × sin y
8 4 15 3
= × + ×
17 5 17 5
32 45 77
= + =
85 85 85
æ 77 ö
Þ (x + y) = sin-1 ç ÷
è 85 ø
8 3 77
Þ sin-1 + sin-1 = sin-1
17 5 85
5 3 63
Q. 15 Show that sin -1 + cos -1 = tan -1 .
13 5 16
5 3 63
Sol. We have, sin-1 + cos -1 = tan-1 ...(i)
13 5 16
5
Let sin-1 =x
13
5 13
Þ sin x =
13 5
and cos 2 x = 1 - sin2 x x
25 144 12
= 1- =
169 169
144 12
Þ cos x = =
169 13
sin x 5 / 13 5
\ tan x = = = ...(ii)
cos x 12 / 13 12
Þ tan x = 5 / 12 ...(iii)
3 3
Again, let cos -1 = y Þ cos y =
5 5
\ sin y = 1 - cos 2 y 5
2
æ 3ö 9 4
= 1- ç ÷ = 1-
è 5ø 25 y
16 4 3
sin y = =
25 5
sin y 4 / 5 4
Þ tan y = = = ...(iii)
cos y 3 / 5 3
We know that,
tan x + tan y
tan (x + y) =
1 - tan x × tan y
5 4 15 + 48
+
12 3 36
Þ tan (x + y) = Þ tan (x + y) =
5 4 36 - 20
1- ×
12 3 36
63 / 36
Þ tan(x + y) =
16 / 36
63
Þ tan (x + y) =
16
63
Þ x + y = tan-1
16
5 4 63
Þ tan-1 + tan-1 = tan-1 Hence proved.
12 3 16
1 2 1
Q. 16 Prove that tan -1 + tan -1 = sin -1 .
4 9 5
1 2 1
Sol. We have, tan-1 + tan-1 = sin-1 ...(i)
4 9 5
-1 1
Let tan =x
4
1
Þ tan x =
4
1
Þ tan2 x =
16
1
Þ sec 2 x - 1 =
16
1 17
Þ sec 2 x = 1 + =
16 16
1 17
Þ =
cos 2 x 16
16
Þ cos 2 x =
17
4
Þ cos x =
17
16 1
Þ sin2 x = 1 - cos 2 x = 1 - =
17 17
1
Þ sin x = ...(ii)
17
2
Again, let tan-1 = y
9
2 4
Þ tan y = Þ tan2 y =
9 81
4
Þ sec 2 y - 1 =
81
4 85
Þ sec 2 y = + 1=
81 81
81 9
Þ cos 2 y = Þ cos y =
85 85
2 2 81 4
Þ sin y = 1 - cos y = 1 - =
85 85
2
Þ sin y = ...(iii)
85
We know that, sin (x + y) = sin x × cos y + cos x × sin y
1 9 4 2
= × + ×
17 85 17 85
17 17 1
= = =
17 × 85 17 × 5 5
1
Þ (x + y) = sin-1
5
-1 1 -1 2 -1 1
Þ tan + tan = sin Hence proved.
4 9 5
æ1 3ö 4 - 7
Q. 18 Show that tan ç sin -1 ÷ = and justify why the other value
è2 4ø 3
4+ 7
is ignored?
3
æ1 3ö 4- 7
Sol. We have, tan ç sin-1 ÷ =
è 2 4ø 3
é1 æ 3 öù
\ LHS = tan ê sin-1 ç ÷ ú
ë2 è 4 øû
1 -1 3 3
Let sin = q Þ sin-1 = 2q
2 4 4
3 2 tan q 3
Þ sin 2 q = Þ =
4 1 + tan2 q 4
Þ 3 + 3 tan2 q = 8 tan q
Þ 3 tan2 q - 8 tan q + 3 = 0
Let tan q = y
\ 3 y2 - 8 y + 3 = 0
+8 ±
64 - 4 ´ 3 ´ 3 8 ± 28
Þ y= =
2 ´3 6
2 [4 ± 7 ]
=
2×3
4+ 7
Þ tan q =
3
é4 + 7 ù
Þ q = tan-1 ê ú
ë 3 û
ì 4+ 7 1 p é æ1 3 öù ü
íbut > . , since max ê tan ç sin-1 ÷ ú = 1ý
î 3 2 2 ë è2 4 øû þ
æ 4 - 7 ö 4 - 7
\ LHS = tan tan-1 çç ÷=
÷ = RHS
è 3 ø 3
p 3
Note Since, - < sin-1 < p / 2
2 4
- p 1 -1 3
Þ < sin < p / 4
4 2 4
æ -p ö 1 æ -1 3 ö p
\ tan ç ÷ £ tan ç sin ÷ £ tan
è 4 ø 2è 4ø 4
æ 1 -1 3 ö
Þ -1 < tan ç sin ÷ <1
è2 4ø
æ d ö æ d öù
+ tan-1 çç ÷ + K + tan-1
÷
ç
ç 1+ a × a
÷ú
÷
è 1 + a3 a4 ø è n -1 n ø úû
é a - a1 a - a2 a - an -1 ù
= tan ê tan-1 2 + tan-1 3 + K + tan-1 n ú
ë 1 + a2 × a1 1 + a3 × a2 1 + an × an -1 û
= tan [(tan-1 a2 - tan-1 a1 ) + (tan-1 a3 - tan-1 a2 ) + ... + (tan-1 an - tan-1 an -1 )]
= tan[tan-1 an - tan-1 a1 ]
é a - a1 ù é -1 æ x - y ö ù
= tan ê tan-1 n ú
-1 -1
êQ tan x - tan y = tan ç ÷ú
ë 1 + an × a1 û ë è 1 + xy ø û
a - a1
= n [Q tan (tan-1 x ) = x ]
1 + an × a1
Objective Type Questions
Q. 20 Which of the following is the principal value branch of cos -1 x?
p p p
(a) é - , ù (b) (0 , p) (c) [0 , p ] (d) (0 , p) - ìí üý
ëê 2 2 ûú î2 þ
Sol. (c) We know that, the principal value branch of cos -1 x is [0, p ].
Y
5p
2
2p
3p
2
p
p
2
1
X¢ X
–1 O p
–
2
–p
–3p
2
–2p
5p
–
2
Y¢
\ y = cos -1 x
2p
3p
2
p p
2 1 2
X¢ X
–2 –1 O – p
2
–p
Y¢
\ y = cosec -1 x
Q. 22 If 3 tan -1 x + cot -1 x = p, then x equals to
1
(a) 0 (b) 1 (c) -1 (d)
2
Sol. (b) Given that, 3 tan-1 x + cot -1 x = p ...(i)
-1 -1 -1
Þ 2 tan x + tan x + cot x=p
-1 p é -1 -1 pù
Þ 2 tan x = p - êëQ tan x + cot x = 2 úû
2
p
Þ 2 tan-1 x =
2
2x p é -1 2 x ù
Þ tan-1 = -1
êQ 2 tan x = tan , " x Î (-1, 1)ú
1 - x2 2 ë 1 - x 2
û
2x p
Þ = tan
1 - x2 2
2x 1
Þ 2
= Þ 1 - x2 = 0
1- x 0
Þ x2 = 1 Þ x = ± 1 Þ x = 1
Hence, only x = 1satisfies the given equation.
Note Here, putting x = -1 in the given equation, we get
3 tan-1(-1) + cot -1(-1) = p
é æ -p ö ù é æ -p ö ù
Þ 3 tan-1 êtan ç ÷ ú + cot -1ê cot ç ÷ ú = p
ë è øû 4 ë è 4 øû
æ pö æ pö
Þ 3 tan-1 ç - tan ÷ + cot -1 ç - cot ÷ = p
è 4ø è 4ø
æ pö æ pö
Þ -3 tan-1 çtan ÷ + p - cot -1 ç cot ÷ = p
è 4ø è 4ø
p p
Þ -3 × + p - = p
4 4
Þ -p + p = p Þ 0 ¹ p
Hence, x = -1 does not satisfy the given equation.
é æ 33p ö ù
Q. 23 The value of sin -1 êcosç ÷ ú is
ë è 5 øû
3p -7p p -p
(a) (b) (c) (d)
5 5 10 10
Sol. (d) We have,
æ 33p ö -1 é æ 3p ö ù -1 é æ 3p ö ù
sin-1 ç cos ÷ = sin êcos ç 6p + ÷ ú = sin êcos ç ÷ [Q cos(2np + q) = cos q]
è 5 ø ë è 5 øû ë è 5 ø úû
é æp p öù -1 æ pö
= sin-1 êcos ç + ÷ = sin ç - sin ÷
ë è 2 10 ø úû è 10 ø
æ pö
= - sin-1 ç sin ÷ [Q sin-1(- x ) = - sin-1 x ]
è 10 ø
p é -1 æ -p p öù
=- êQ sin (sin x ) = x, x Î çè 2 , 2 ÷ø ú
10 ë û
Q. 24 The domain of the function cos -1 (2x - 1) is
(a) [0, 1] (b) [-1, 1] (c) (-1, 1) (d) [0 , p ]
Sol. (a) We have, f(x ) = cos -1(2 x - 1)
\ -1 £ 2 x - 1 £ 1
Þ 0 £ 2x £ 2
Þ 0 £ x £1
\ x Î[0, 1]
æ 2 ö
Q. 26 If cosç sin -1 + cos -1 x ÷ = 0, then x is equal to
è 5 ø
1 2
(a) (b) (c) 0 (d) 1
5 5
æ 2 ö
Sol. (b) We have, cos ç sin-1 + cos -1 x ÷ = 0
è 5 ø
2
Þ sin-1 + cos -1 x = cos -1 0
5
2 p
Þ sin-1 + cos -1 x = cos -1 cos
5 2
2 p
Þ sin-1 + cos -1 x =
5 2
p 2
Þ cos -1 x = - sin-1
2 5
-1 -1 2 é -1 -1 pù
Þ cos x = cos êëQ cos x + sin x = 2 úû
5
2
\ x=
5
4p
Q. 30 If tan -1 x + tan -1 y = , then cot -1 x + cot -1 y equals to
5
p 2p 3p
(a) (b) (c) (d) p
5 5 5
4p
Sol. (a) We have, tan-1 x + tan-1 y =
5
p -1 p -1 4p
Þ - cot x + - cot y =
2 2 5
-1 -1 4p é -1 -1 pù
Þ - (cot x + cot y) = -p êëQ tan x + cot x = 2 úû
5
æ pö
Þ cot -1 x + cot -1 y = - ç - ÷
è 5ø
-1 -1 p
Þ cot x + cot y =
5
æ 2a ö æ 2 ö æ ö
Q. 31 If sin -1 çç ÷ + cos -1 ç 1 - a ÷ = tan -1 ç 2x ÷, where a, x Î ] 0, 1[,
2 ÷ ç1 +a ÷2 ç1 - x ÷
2
è1 +a ø è ø è ø
then the value of x is
a 2a
(a) 0 (b) (c) a (d)
2 1 - a2
æ 2a ö æ 1 - a2 ö æ 2x ö
Sol. (d) We have, sin-1 çç 2
÷ + cos -1 ç
÷
÷
ç 1 + a2 ÷ = tan
-1 ç
ç1 - x2
÷
÷
è1 + a ø è ø è ø
Let a = tan q Þ q = tan-1 a
æ 2 tan q ö æ 1 - tan2 q ö -1 2 x
\ sin-1 çç 2 ÷
÷ + cos -1 ç ÷
ç 1 + tan2 q ÷ = tan 1 - x 2
è 1 + tan q ø è ø
2x
Þ sin sin2 q + cos cos 2 q = tan-1
-1 -1
1 - x2
2x
Þ 2 q + 2 q = tan-1
1 - x2
2x
Þ 4 tan-1 a = tan-1
1 - x2
2x
Þ 2 × 2 tan-1 a = tan-1
1 - x2
2a 2x é -1 2 x ù
Þ 2 × tan-1 = tan-1 -1
êQ 2 tan x = tan ú
1 - a2 1 - x2 ë 1 - x2 û
æ 2a ö
2 × çç ÷
-1 è 1 - a2 ÷ø æ 2x ö
Þ tan 2
= tan-1 çç 2
÷
÷
æ 2a ö è1 - x ø
1 - çç ÷
2 ÷
è1 - a ø
2a
\ x=
1 - a2
é æ 7 öù
Q. 32 The value of cot êcos -1 ç ÷ ú is
ë è 25 ø û
25 25 24 7
(a) (b) (c) (d)
24 7 25 24
é æ 7 öù
Sol. (d) We have, cot êcos -1 ç ÷ ú
ë è 25 ø û
7
Let cos -1 =x
25
7
Þ cos x = 25 24
25
2
æ7 ö
\ sin x = 1 - cos 2 x = 1 - ç ÷ x
è 25 ø
7
625 - 49 24
= =
625 25
7
cos x 25 7
\ cot x = = = ...(i)
sin x 24 24
25
æ7 ö æ7 ö
Þ x = cot -1 ç ÷ = cos -1 ç ÷
è 24 ø è 25 ø
æ -1 7 ö æ -1 7 ö 7 é -1 7 -1 7 ù
\ cot ç cos ÷ = cot ç cot ÷= êëQ cot 24 = cos 25 úû
è 25 ø è 24 ø 24
æ1 2 ö
Q. 33 The value of tan ç cos -1 ÷ is
è2 5ø
5+2
(a) 2 + 5 (b) 5 - 2 (c) (d) 5 + 2
2
æ1 2 ö
Sol. (b) We have, tan ç cos -1 ÷
è2 5ø
1 2
Let cos -1 =q
2 5
2 2
Þ cos -1 = 2q Þ cos2 q =
5 5
2 2
\ (1 - 2 sin q) =
5
2 2
Þ 2 sin q = 1 -
5
2 1 1
Þ sin q = -
2 5
1 1
Þ sin q = -
2 5
\ cos 2 q = 1 - sin2 q
1 1 1 1
= 1- + = +
2 5 2 5
1 1
Þ cos q = +
2 5
1 1
-
2 5 = 5 -2 é sin q ù
\ tan q = êQ tan q = ú
1 1 5+2 ë cos qû
+
2 5
5 -2 1 2
Þ q = tan-1 = cos -1
5+2 2 5
æ1 2 ö 5 -2
\ tan ç cos -1 ÷ = tan tan
-1
è2 5ø 5+2
5 -2 5 -2
= ×
5+2 5 -2
( 5 - 2 )2
= = 5 -2
5-4
æ 2x ö
Q. 34 If | x | £ 1, then 2 tan -1 x + sin -1 çç ÷ is equal to
2 ÷
è1 + x ø
p
(a) 4 tan -1 x (b) 0 (c) (d) p
2
Sol. (a) 2x
We have, 2 tan-1 x + sin-1
1 + x2
Let x = tan q
2 tan q
\ 2 tan tan q + sin-1
-1
[Q tan-1 (tan x ) = x]
1 + tan2 q
é 2 tan q ù
= 2 q + sin-1 sin2 q êQ sin 2 q = ú
ë 1 + tan2 q û
= 2q + 2q [Q sin-1 (sin x ) = x]
=4q [Q q = tan-1 x ]
= 4 tan-1 x
–¥ –1 1/Ö2 1 +¥
Alternate Method
p
- sin-1 x > sin-1 x
2
p p
> 2 sin-1 x Þ > sin-1 x
2 4
1 1
>x Þ < x £1
2 2
é -p p ù
We know that, sin-1x Î ê , ú
ë 2 2û
Fillers
æ 1ö
Q. 38 The principal value of cos -1 ç - ÷ is ......... .
è 2ø
Sol. Q 0 £ cos -1 x £ p
æ 1ö æ 2p ö 2p
cos -1 ç - ÷ = cos -1 ç cos ÷ =
è 2ø è 3 ø 3
æ 14p ö
Q. 43 The value of cos -1 ç cos ÷ is ......... .
è 3 ø
æ 14p ö æ 2p ö
Sol. We have, cos -1 ç cos -1
÷ = cos cosç 4p + ÷
è 3 ø è 3 ø
2p
= cos -1 cos [Q cos(2np + q) = cos q]
3
2p
= {Qcos -1 (cos x ) = x, x Î [0, p ] }
3
æ 14 p ö 14 p
Note Remember that, cos -1 ç cos ÷¹
è 3 ø 3
14 p
Since, Ï[0 , p]
3
æ 2x ö
Q. 46 If y = 2 tan -1 x + sin -1 ç ÷, then ......... < y < ......... .
ç 1 + x2 ÷
è ø
2x
Sol. We have, y = 2 tan-1 x + sin-1
1 + x2
2 tan q
\ y = 2 tan-1 tan q + sin-1 [ let x = tan q]
1 + tan2 q
é 2 tan q ù
Þ y = 2 q + sin-1 sin2 q êQ sin2 q = ú
ë 1 + tan2 q û
Þ y = 2 q + 2 q = 4q [Q q = tan-1 x]
Þ y = 4 tan-1 x
Q - p / 2 < tan-1 x < p / 2
4p
\ - < 4 tan-1 x < 4p / 2
2
Þ - 2 p < 4 tan-1 x < 2 p
Þ - 2p < y < 2p [Q y = 4 tan-1 x ]
æ x-yö
Q. 47 The result tan -1 x - tan -1 y = tan -1 çç ÷÷ is true when the value of
è 1 + xy ø
xy is ......... .
æx - yö
Sol. We know that, tan-1 x - tan-1 y = tan-1 çç ÷
÷
è 1 + xy ø
where, x y >-1
True/False
Q. 49 All trigonometric functions have inverse over their respective
domains.
Sol. False
We know that, all trigonometric functions have inverse over their restricted domains.
Q. 50 The value of the expression (cos -1 x)2 is equal to sec 2 x.
Sol. False
2
é 1ù
Q [cos -1 x ]2 = êsec -1 ú ¹ sec 2 x
ë xû
é æ 1 öù p
Q. 55 The principal value of sin -1 êcosç sin -1 ÷ ú is .
ë è 2 øû 3
Sol. True
é æ 1 öù é æ p öù
Given that, sin-1 êcosç sin-1 ÷ ú = sin-1 êcos sin-1 ç sin ÷ ú
ë è 2 ø û ë è 6 øû
-1 é pù
= sin êcos ú [Q sin-1 (sin x ) = x]
ë 6û
-1 3
= sin
2
-1 p p
= sin sin =
3 3
3
Matrices
Short Answer Type Questions
Q. 1 If a matrix has 28 elements, what are the possible orders it can have?
What if it has 13 elements?
Sol. We know that, if a matrix is of order m ´ n, it has mn elements, where m and n are natural
numbers.
We have, m ´ n = 28
Þ (m, n)= {(1, 28), (2, 14), (4, 7), (7, 4), (14, 2), (28, 1)}
So, the possible orders are 1 ´ 28, 2 ´ 14, 4 ´ 7, 7 ´ 4, 14 ´ 2, 28 ´ 1.
Also, if it has 13 elements, then m ´ n = 13
Þ (m, n) = {(1,13), (13,1)}
Hence, the possible orders are 1 ´ 13, 13 ´ 1 .
é ù
êa 1 x ú
ê
Q. 2 In the matrix A = 2 3 x - 2
y ú , write
ê -2 ú
ê0 5 ú
ë 5 û
(i) the order of the matrix A.
(ii) the number of elements.
(iii) elements a23 , a31 and a12 .
éa 1 x ù
ê ú
2 3 x2 - yú
Sol. We have, A=ê
ê0 -2 ú
5
ê 5 ú
ë û
(i) the order of matrix A = 3 ´ 3
(ii) the number of elements = 3 ´ 3 = 9
[since, the number of elements in an m ´ n matrix will be equal to m ´ n = mn]
(iii) a23 = x 2 - y, a31 = 0, a12 = 1
[since, we know that a ij , is a representation of element lying in the
ith row and jth column]
Q. 3 Construct a 2 ´ 2 matrix, where
( i - 2 j )2
(i) aij = (ii) aij =|-2i + 3 j|
2
Sol. We know that, the notation, namely A = [a ij ] m ´ n indicates that A is a matrix of order m ´ n,
also 1 £ i £ m, 1 £ j £ n; i , j Î N.
(i) Here, A = [aij ]2 ´2
(i - 2 j )2
Þ A= ,1£ i £2 ;1£ j £2 ...(i)
2
(1 - 2 )2 1
\ a11 = =
2 2
2
(1 - 2 ´ 2 ) 9
a12 = =
2 2
(2 - 2 ´ 1)2
a21 = =0
2
(2 - 2 ´ 2 )2
a22 = =2
2
é 1 9ù
Thus, A = ê2 2 ú
ê ú
êë 0 2 úû 2 ´2
(ii) Here, A = [a ij ]2 ´2 =½-2 i + 3 j ½, 1 £ i £ 2; 1 £ j £ 2
K Thinking Process
We know that, two matrices are added, if they have same order.
é ù é x y zù
Sol. We have, A = ê 3 1ú and B = ê ú
ë 2 3û 2 ´ 2 êëa b 6úû 2 ´ 3
Here, A and B are of different orders. Also, we know that the addition of two matrices A and
B is possible only if order of both the matrices A and B should be same.
Hence, the sum of matrices A and B is not possible.
é3 1 -1ù é2 1 -1ù
Q. 7 If X =ê ú and Y = ê ú , then find
ë5 -2 -3û ë7 2 4 û
(i) X + Y.
(ii) 2X - 3Y.
(iii) a matrix Z such that X + Y + Z is a zero matrix.
é 3 1 -1ù é2 1 -1ù
Sol. We have, X = ê ú and Y = ê
ë 5 -2 -3û 2 ´ 3 ë7 2 4úû 2 ´ 3
é3 + 2 1 + 1 -1 - 1 ù é 5 2 -2 ù
(i) X + Y = ê =
ë 5 + 7 -2 + 2 -3 + 4úû ê12 0 1 ú
ë û
é 3 1 -1ù é 6 2 -2 ù
(ii) Q 2 X = 2 ê ú=ê ú
ë 5 -2 -3û ë10 -4 -6 û
é2 1 -1ù é 6 3 -3ù
and 3Y = 3 ê ú=ê ú
ë7 2 4 û ë21 6 12û
é 6 - 6 2 - 3 -2 + 3 ù é 0 -1 1 ù
\ 2 X - 3Y = ê ú=ê ú
ë10 - 21 -4 - 6 -6 - 12 û ë -11 -10 -18û
é 3 + 2 1 + 1 -1 - 1 ù é 5 2 -2 ù
(iii) X + Y = ê ú= ê ú
ë 5 + 7 -2 + 2 -3 + 4û ë12 0 +1û
é 0 0 0ù
Also, X+Y+Z=ê ú
ë 0 0 0û
We see that Z is the additive inverse of (X+Y) or negative of ( X+Y ).
é -5 -2 2 ù
\ Z=ê ú [Q Z = - ( X + Y )]
ë -12 0 -1û
é0 1ù é0 -1ù
Q. 9 If A = ê ú and B = ê ú , then show that
ë1 1û ë1 0 û
( A + B ) ( A - B ) ¹ A 2 - B 2.
é 0 1ù é0 -1ù
Sol. We have, A=ê ú and B = ê 1
ë 1 1û ë 0 úû
é 0 + 0 1 - 1ù é 0 0ù
\ ( A + B) = ê ú=ê
ë 1 + 1 1 + 0û ë2 1úû 2 ´ 2
é 0 - 0 1 + 1ù é 0 2 ù
and ( A - B) = ê ú=ê ú
ë 1 - 1 1 - 0û ë 0 1û 2 ´ 2
Since, ( A + B) × ( A - B) is defined, if the number of columns of (A + B) is equal to the number
of rows of ( A - B), so here multiplication of matrices ( A + B) × ( A - B) is possible.
é 0 + 0 0 + 0ù é 0 0ù
Now, ( A + B)2 ´ 2 ×( A - B)2 ´ 2 = ê ú=ê ú …(i)
ë 0 + 0 4 + 1û ë 0 5û
Also, A2 = A × A
é 0 1ù é 0 1ù
=ê ú×ê ú
ë 1 1û ë 1 1û
é 0 + 1 0 + 1ù é1 1ù
=ê ú=ê ú
ë 0 + 1 1 + 1û ë1 2 û
é 0 - 1ù é 0 - 1ù
and B2 = B × B =ê ú. ê ú
ë1 0 û ë1 0 û
é 0 - 1 0 + 0 ù é -1 0 ù
=ê ú=ê ú
ë 0 + 0 -1 + 0û ë 0 -1û
é1 1ù é -1 0 ù é2 1ù
\ A 2 - B2 = ê ú-ê ú=ê ú ...(ii)
ë1 2 û ë 0 -1û ë 1 3û
Thus, we see that
(A + B) × (A - B) ¹ A 2 - B2 [using Eqs. (i) and (ii)]
é 0 0ù é2 1ù
Þ ê 0 5ú ¹ ê 1 3ú Hence proved.
ë û ë û
é 1 3 2ù é1 ù
Q. 10 Find the value of x, if [1 x 1] êê 2 5 1úú ê 2 ú = 0.
ê ú
êë15 3 2úû êë x úû
é 1 3 2ù é 1ù
Sol. We have, [1 x 1]1 ´ 3 ê 2 5 1ú ê2 ú =0
ê ú ê ú
êë15 3 2 úû 3 ´ 3 êë x úû 3 ´ 1
é ù
ê 1ú
Þ [1 + 2 x + 15 3 + 5x + 3 2 + x + 2 ]1 ´ 3 ê2 ú =0
êx ú
ë û3 ´1
é ù
ê 1ú
Þ [16 + 2 x 5x + 6 x + 4]1 ´ 3 ê2 ú =0
êx ú
ë û3 ´1
Þ [16 + 2 x + (5x + 6) × 2 + (x + 4) × x ]1 ´ 1 = 0
Þ [16 + 2 x + 10x + 12 + x 2 + 4x ] = 0
Þ [x 2 + 16x + 28] = 0
2
Þ [x + 2 x + 14x + 28] = 0
Þ (x + 2 ) (x + 14) = 0
\ x = -2,-14
é5 3ù 2
Q. 11 Show that A = ê ú satisfies the equation A - 3 A - 7I = O and
ë - 1 - 2û
hence find the value of A -1 .
é5 3ù
Sol. We have, A=ê ú
ë -1 -2 û
é5 3ù é5 3ù
\ A2 = A × A = ê ú×ê ú
ë -1 -2 û ë -1 -2 û
é 25 - 3 15 - 6 ù é22 9ù
=ê ú=ê
ë -5 + 2 -3 + 4û ë -3 1úû
é 5 3 ù é15 9 ù
3A = 3 ê ú=ê ú
ë -1 -2 û ë -3 -6û
é 1 0ù é7 0ù
and 7I = 7 ê ú=ê ú
ë 0 1û ë 0 7 û
é22 9ù é15 9 ù é7 0ù
\ A2 - 3 A - 7 I = ê ú-ê ú-ê
ë -3 1û ë -3 -6û ë 0 7 úû
é22 - 15 - 7 9 - 9 - 0ù
=ê ú
ë -3 + 3 - 0 1 + 6 - 7 û
é 0 0ù
=ê ú
ë 0 0û
=0 Hence proved.
Since, A2 - 3 A - 7 I = 0
Þ A -1[( A 2 ) - 3 A - 7 I ] = A -1 0
Þ A -1 A × A - 3 A -1 A - 7 A -1I = 0 [Q A -1 0 = 0]
-1
Þ IA - 3I - 7 A =0 [Q A -1 A = I ]
Þ A - 3I - 7 A -1 = 0 [Q A -1 I = A -1 ]
Þ -7 A -1 = - A + 3I
é -5 -3ù é 3 0ù é -2 -3ù
=ê ú+ ê ú= ê
ë 1 2 û ë 0 3û ë 1 5 úû
-1 é -2 -3ù
\ A -1 =
7 êë 1 5 úû
é4 ù é -4 8 4 ù
Q. 13 Find A, if ê1ú A = êê -1 2 1úú.
ê ú
êë3úû êë -3 6 3úû
é 4ù é -4 8 4ù
ê 1ú A = ê -1 2 1ú
Sol. We have,
ê ú ê ú
êë 3úû 3 ´1 êë -3 6 3úû 3 ´3
Let A = [x y z]
é 4ù é -4 8 4ù
\ ê 1ú [x y z] = ê -1 2 1ú
ê ú 1´3 ê ú
êë 3úû 3 ´1 êë -3 6 3úû 3 ´3
é 4x 4 y 4 zù é -4 8 4ù
Þ êx y zú= ê -1 2 1ú
ê ú ê ú
êë 3x 3 y 3 zúû êë -3 6 3úû
Þ 4x = -4 Þ x = -1, 4 y = 8
Þ y = 2 and 4 z = 4
Þ z=1
\ A = [-1 2 1]
é3 -4ù
é2 1 2ù
Q. 14 If A êê1 1 úú and B = ê 2 2 2
ú , then verify (BA) ¹ B A .
ë1 2 4û
êë2 0 úû
é 3 -4ù
é2 1 2 ù
Sol. We have, A = ê1 1 ú and B = ê ú
ê ú ë 1 2 4û 2 ´3
êë2 0 úû 3 ´2
é 3 -4ù
é2 1 2 ù ê1 1 ú
\ BA = ê ú
ë 1 2 4û 2 ´3 ê ú
êë2 0 úû 3 ´2
é 6 + 1 + 4 -8 + 1 + 0 ù é11 -7 ù
=ê ú=ê ú
ë 3 + 2 + 8 -4 + 2 + 0û ë13 -2 û
é11 -7 ù é11 -7 ù
and (BA) × (BA) = ê úê ú
ë13 -2 û ë13 -2 û
é121 - 91 -77 + 14ù é 30 -63 ù
Þ (BA)2 = ê ú=ê ú ...(i)
ë143 - 26 -91 + 4 û ë117 -87 û
é2 1 2 ù é2 1 2 ù
Also, B2 = B × B = ê ú ê ú
ë 1 2 4û 2 ´3 ë 1 2 4û 2 ´3
So, B2 is not possible, since the B is not a square matrix.
Hence, (BA) 2 ¹ B 2 A 2 .
é4 ´ 2 + 1 4+ 2 8+ 4 ù é 9 6 12 ù
= ê 4+ 3 2 + 6 4 + 12 ú = ê7 8 16 ú
ê ú ê ú
êë 2 + 2 1 + 4 2 + 8 úû êë 4 5 10 úû
é1 4 ù
é2 4 0 ù
Q. 17 Given, A = ê ú and B = ê2 8 ú . is ( AB)¢ = B¢ A¢ ?
ë3 9 6û ê ú
êë1 3úû
é 1 4ù
é2 4 0ù ê2 8ú
Sol. We have, A = ê and B =
ë3 9 6úû 2 ´3 ê ú
êë 1 3ûú 3 ´2
é2 + 8+ 0 8 + 32 + 0 ù é10 40 ù
\ AB = ê ú=ê ú
ë 3 + 18 + 6 12 + 72 + 18û ë27 102 û
é10 27 ù
and ( AB)¢ = ê ú …(i)
ë 40 102 û
é2 3ù
é 1 2 1ù ê4
Also, B¢ = ê ú and A ¢= 9ú
ë 4 8 3û 2 ´3 ê ú
êë 0 6ûú 3 ´2
é 2 + 8+ 0 3 + 18 + 6 ù é10 27 ù
\ B¢A ¢ = ê ú =ê ú ...(ii)
ë 8 + 32 + 0 12 + 72 + 18û ë 40 102 û
Thus, we see that, ( AB)¢ = B¢ A ¢ [using Eqs. (i) and (ii)]
é2ù é3ù é -8 ù
Q. 18 Solve for x and y, x ê ú + y ê ú +ê ú = 0.
ë1û ë5û ë -11û
é2 ù é 3ù é -8 ù
Sol. We have, xê ú + y ê ú + ê -11ú = 0
1
ë û ë 5û ë û
é2 x ù é 3 × yù é -8 ù
Þ ê x ú + ê 5 × yú + ê -11ú = 0
ë û ë û ë û
é2 x 3 y -8 ù é 0ù
Þ êx =
ë 5y -11úû êë 0úû
\ 2x + 3y - 8 = 0
Þ 4x + 6 y = 16 ...(i)
and x + 5 y - 11 = 0
Þ 4x + 20 y = 44 …(ii)
On subtracting Eq. (i) from Eq. (ii), we get
14y = 28 Þ y = 2
\ 2x + 3 ´2 - 8 = 0
Þ 2x = 2 Þ x = 1
\ x = 1and y = 2
é -1 0 -1ù é 1 ù
Q. 24 If [2 1 3] êê-1 1 0 úú êê 0 úú = A, then find the value of A.
êë 0 1 1 úû êë -1úû
é -1 0 -1ù é 1 ù
Sol. We have, [ 2 1 3 ]ê -1 1 0 ú ê 0 ú = A
ê úê ú
êë 0 1 1 úû êë -1úû
é -1 0 -1ù
\ [2 1 3 ] ê -1 1 0 ú = [-2 - 1 + 0 0 + 1 + 3 -2 + 0 + 3]
ê ú
êë 0 1 1 úû
= [-3 4 1]
é1ù
Now, [ - 3 4 1 ]ê 0 ú = A
ê ú
êë -1úû
é1ù
\ A = [ - 3 4 1 ]ê 0 ú
ê ú
êë -1úû
= [- 3 + 0 - 1] = [-4]
é5 3 4ù é -1 2 1ù
Q. 25 If A = [2 1], B = ê ú and C = ê , then verify that
ë8 7 6 û ë1 0 2úû
A(B + C) = (AB + AC).
Sol. We have to verify that, A (B + C) = A B + AC
é 5 3 4ù é -1 2 1ù
We have, A = [2 1], B = ê ú and C = ê ú
ë8 7 6û ë 1 0 2û
é 5 - 1 3 + 2 4 + 1ù
\ A (B + C ) = [2 1] ê ú
ë8 + 1 7 + 0 6 + 2 û
é 4 5 5ù
= [2 1] ê ú
ë 9 7 8û
= [8 + 9 10 + 7 10 + 8]
= [17 17 18] ...(i)
é 5 3 4ù
Also, AB = [2 1] ê ú
ë 8 7 6û
= [10 + 8 6 + 7 8 + 6] = [18 13 14]
é -1 2 1ù
and AC = [2 1] ê ú
ë 1 0 2û
= [-2 + 1 4 + 0 2 + 2 ] = [-1 4 4]
\ AB + AC = [18 13 14] + [-1 4 4]
= [17 17 18] ...(ii)
\ A (B + C ) = ( AB + AC ) [using Eqs. (i) and (ii)]
Hence proved.
é1 0 -1ù
Q. 26 If A = êê2 1 3 úú , then verify that A 2 + A = ( A + I ), where I is 3 ´ 3
êë0 1 1 úû
unit matrix.
é 1 0 -1ù
Sol. We have, A = ê2 1 3 ú
ê ú
êë 0 1 1 úû
\ A2 = A × A
é 1 0 -1ù é 1 0 -1ù é 1 -1 -2 ù
= ê2 1 3 ú ê2 1 3 ú = ê 4 4 4ú
ê úê ú ê ú
êë 0 1 1 úû êë 0 1 1 úû êë2 2 4 úû
é 1 -1 -2 ù é 1 0 -1ù
\ A 2 + A = ê 4 4 4 ú + ê2 1 3 ú
ê ú ê ú
êë2 2 4 úû êë 0 1 1 úû
é2 -1 -3ù
= ê6 5 7 ú ...(i)
ê ú
êë2 3 5 úû
é 1 0 -1ù é 1 0 0ù é2 0 -1ù
Now, A + I = ê2 1 3 ú + ê 0 1 0ú = ê2 2 3ú
ê ú ê ú ê ú
êë 0 1 1 úû êë 0 0 1úû êë 0 1 2 úû
é1 0 -1ù é2 0 -1ù é2 -1 -3ù
and A ( A + I ) = ê2 1 3 ú × ê2 2 3 ú = ê 6 5 7 ú ...(ii)
ê ú ê ú ê ú
êë 0 1 1 úû êë 0 1 2 úû êë2 3 5 úû
Thus, we see that A 2 + A = A( A + I ) [using Eqs. (i) and (ii)]
é 4 0ù
é0 - 1 2 ù ê ú
Q. 27 If A = ê ú and B = ê1 3ú, then verify that
ë 4 3 - 4û
êë2 6úû
(i) (A ¢)¢ = A
(ii) (AB)¢ = B ¢A ¢
(iii) (kA)¢ = (kA ¢).
é 4 0ù
é 0 -1 2 ù ê 1 3ú
Sol. We have, A = ê ú and B =
ë 4 3 -4û ê ú
êë2 6úû
(i) We have to verify that, A ¢ = A
é0 4ù
\ A¢= ê -1 3 ú
ê ú
êë 2 -4úû
é 0 -1 2 ù
and A¢ = ê ú= A Hence proved.
ë 4 3 -4û
(ii) We have to verify that, AB¢ = B¢ A¢
é3 9 ù
\ AB = ê
ë11 - 15úû
é 3 11 ù
Þ ( AB)¢ = ê ú
ë 9 -15û
é 0 4ù
é4 1 2ù ê é 3 11 ù
and B¢A ¢ = ê - 1 3ú = ê
ë0 3 6úû ê ú ë 9 -15úû
êë 2 -4úû
= ( AB)¢ Hence proved.
(iii) We have to verify that, (kA)¢ = (kA¢)
é 0 -k 2 k ù
Now, (kA) = ê ú
ë 4k 3k -4k û
é0 4k ù
and (kA)¢ = ê - k 3k ú
ê ú
êë2 k -4k úû
é0 4k ù
Also, kA ¢ = ê - k 3k ú
ê ú
êë2 k -4k úû
= (kA)¢ Hence proved.
é1 2ù é 1 2ù
Q. 28 If A = ê4 1ú and B = êê6 4úú , then verify that
ê ú
êë5 6úû êë 7 3úû
(i) (2A + B)¢ = 2AA + B¢.
(ii) (A - B)¢ = A¢ - B¢.
é1 2 ù é1 2 ù
Sol. We have, A = ê 4 1ú and B = ê 6 4ú
ê ú ê ú
êë 5 6úû êë7 3úû
é2 4 ù é1 2 ù é 3 6 ù
(i) \ (2 A + B) = ê 8 2 ú + ê 6 4ú = ê14 6 ú
ê ú ê ú ê ú
êë10 12 úû êë7 3úû êë17 15úû
é 3 14 17 ù
and (2 A + B)¢ = ê ú
ë 6 6 15 û
é 1 4 5ù é 1 6 7 ù
Also, 2 A ¢ + B¢ = 2 ê ú+ ê ú
ë2 1 6û ë2 4 3û
é 3 14 17 ù
=ê ú = (2 A + B)¢ Hence proved.
ë 6 6 15 û
é1 2 ù é1 2 ù é 0 0ù
(ii) ( A - B) = ê 4 1ú - ê 6 4ú = ê -2 -3ú
ê ú ê ú ê ú
êë 5 6úû êë7 3úû êë -2 3 úû
é 0 -2 -2 ù
and ( A - B)¢ = ê ú
ë 0 -3 3 û
é 1 4 5ù é 1 6 7 ù
Also, A ¢ - B¢ = ê ú-ê ú
ë2 1 6û ë2 4 3û
é 0 -2 -2 ù
=ê
ë 0 - 3 3úû
= ( A - B)¢ Hence proved.
Q. 29 Show that A ¢ A and A A¢ are both symmetric matrices for any matrix
A.
K Thinking Process
We know that, for a matrix A to be symmetric matrix, A¢ = A . Also by using the result
(AB)¢= BA¢, we can prove that A¢A and AA¢ are both symmetric matrices for any matrix
A.
Sol. Let P = A ¢A
\ P ¢ = ( AA¢)¢
= A¢( A ¢)¢ [Q ( AB¢)¢= B¢A ¢]
= A ¢A = P
So, A ¢A is symmetric matrix for any matrix A.
Similarly, let Q = A A¢
\ Q ¢ = ( AA ¢)¢ = ( A ¢)¢( A)¢
= A ( A ¢)¢ = Q
So, AA ¢ is symmetric matrix for any matrix A.
Q. 30 Let A and B be square matrices of the order 3 ´ 3. Is ( AB)2 = A 2 B 2 ? Give
reasons.
Sol. Since, A and B are square matrices of order 3 ´ 3.
\ AB2 = AB × AB
= ABAB
= AABB [Q AB = BA]
= A 2 B2
2 2 2
So, AB = A B is true when AB = BA.
Q. 31 Show that, if A and B are square matrices such that AB = BA, then
( A + B)2 = A 2 + 2 AB + B 2.
Sol. Since, A and B are square matrices such that AB = BA.
\ ( A + B)2 = ( A + B) × ( A + B)
= A 2 + AB + BA + B2
= A 2 + AB + AB + B2 [Q AB = BA]
= A 2 + 2 AB + B2 Hence proved.
é 1 2ù é 4 0ù é2 0 ù
Q. 32 If A=ê ú ,B =ê ú ,C =ê ú , a = 4, and b = -2, then show
ë -1 3û ë1 5û ë1 -2û
that
(i) A + (B + C) = (A + B) + C
(ii) A (BC) = (AB) C
(iii) (a + b)B = aB + bB
(iv) a (C - A) = aC - aA
(v) (A T ) T = A
(vi) (bA) T = b A T
(vii) (AB) T = B T A T
(viii) (A - B)C = AC - BC
(ix) (A - B) T = A T - B T
é 1 2ù é 4 0ù
Sol. We have, A=ê ú, B = ê 1 5ú
ë -1 3û ë û
é2 0 ù
C=ê ú and a = 4, b = -2
ë 1 -2 û
é 1 2ù é 6 0ù é7 2ù
(i) A + (B + C ) = ê ú+ ê2 3ú = ê 1
ë -1 3û ë û ë 6úû
é5 2ù é2 0 ù
and ( A + B) + C = ê +
ë0 8úû ê 1 -2 ú
ë û
é7 2 ù
=ê ú = A + (B + C ) Hence proved.
ë 1 6û
é 4 0ù é2 0 ù é 8 0 ù
(ii) (BC ) = ê úê ú= ê ú
ë 1 5û ë 1 -2 û ë7 -10û
é 1 2 ù é8 0 ù
and A (BC ) = ê úê ú
ë -1 3û ë7 -10û
é 8 + 14 0 - 20 ù é22 -20ù
=ê ú =ê ú
ë -8 + 21 0 - 30û ë13 -30û
é 1 2 ù é 4 0ù é 6 10ù
Also, ( AB) = ê ú× ê ú= ê ú
ë -1 3û ë 1 5û ë -1 15û
é6 10ù é2 0 ù
( AB) C = ê
ë -1 15úû êë 1 -2 úû
é22 -20ù
=ê = A (BC ) Hence proved.
ë13 -30úû
é 4 0ù
(iii) (a + b ) B = (4 - 2 ) ê ú [Q a = 4, b = -2]
ë 1 5û
é8 0 ù
=ê ú
ë2 10û
and aB+bB = 4B - 2B
é16 0 ù é 8 0 ù
=ê ú-ê ú
ë 4 20û ë2 10û
é8 0 ù
=ê ú
ë2 10û
= (a + b) B Hence proved.
é2 - 1 0 - 2 ù é -2 ù
1
(iv) (C - A) = ê ú = ê2 -5 ú
ë 1 + 1 - 2 - 3û ë û
é 4 -8 ù
and a(C - A) = ê ú [Q a = 4]
ë 8 -20û
é8 0 ù é 4 8 ù é 4 -8 ù
Also, aC - aA = ê ú-ê ú= ê 8 -20ú
ë 4 -8û ë -4 12 û ë û
= a (C - A) Hence proved.
T
é 1 2ù é 1 -1ù
(v) AT = ê ú =ê ú
ë -1 3û ë2 3 û
T
é 1 2ù
Now, ( AT )T = ê ú
ë -1 3û
=A Hence proved.
T
é -2 -4ù
(vi) (bA)T = ê ú [Q b = -2 ]
ë 2 -6û
é -2 2 ù
=ê ú
ë -4 -6û
é 1 -1ù
and AT = ê ú
ë2 3 û
é -2 2 ù
\ bAT = ê ú = (bA)
T
Hence proved.
ë -4 -6û
é 1 2 ù é 4 0ù é 4 + 2 0 + 10ù é 6 10ù
(vii) AB = ê úê ú =ê ú=ê ú
ë -1 3û ë 1 5û ë -4 + 3 0 + 15û ë -1 15û
é 6 -1ù
\ ( AB) T = ê ú
ë10 15û
é 4 1ù é 1 -1ù é 6 -1ù
Now, BT AT = ê úê ú= ê ú
ë 0 5û ë2 3 û ë10 15û
T
= ( AB) Hence proved.
é 1 - 4 2 - 0ù é -3 2 ù
(viii) ( A - B) = ê ú= ê ú
ë -1 - 1 3 - 5û ë -2 -2 û
é -3 2 ù é2 0 ù é -4 -4ù
( A - B) C = ê úê ú= ê ú ...(i)
ë -2 -2 û ë 1 -2 û ë -6 4 û
é 1 2 ù é2 0 ù é 4 -4ù
Now, AC = ê ú ê ú = ê 1 -6ú ...(ii)
ë -1 3û ë 1 -2 û ë û
é 4 0ù é2 0 ù é 8 0 ù
and BC = ê ú ê ú= ê ú ...(iii)
ë 1 5û ë 1 -2 û ë7 -10û
é 4 - 8 -4 - 0 ù
\ AC - BC = ê ú [using Eqs. (ii) and (iii)]
ë 1 - 7 -6 + 10û
é -4 -4ù
=ê ú
ë -6 4 û
= ( A - B)C [using Eq. (i)] Hence proved.
T
é 1 - 4 2 - 0ù
(ix) ( A - B)T = ê ú
ë -1 - 1 3 - 5û
T
é -3 2 ù é -3 -2 ù
=ê ú =ê ú
ë - 2 - 2 û ë 2 -2 û
é 1 -1ù é 4 1ù
AT - BT = ê ú-ê ú
ë2 3 û ë 0 5û
é -3 -2 ù T
=ê ú = ( A - B) Hence proved.
ë 2 -2 û
é0 1 -1ù
Q. 35 Verify that A = I, when A = êê4 -3 4 úú.
2
êë3 -3 4 úû
é 0 1 -1ù
Sol. We have, A = ê 4 -3 4 ú
ê ú
êë 3 -3 4 úû
é0 1 -1ù é 0 1 -1ù
\ A2 = ê4 -3 4 ú × ê 4 -3 4 ú [Q A 2 = A × A]
ê ú ê ú
êë 3 -3 4 úû êë 3 -3 4 úû
é1 0 0ù
= ê0 1 0ú = I Hence proved.
ê ú
êë 0 0 1úû
é1 5 ù é9 1ù
Q. 39 If A = ê ú and B = ê ú, then find a matrix C such that
ë7 12û ë7 8 û
3A + 5B + 2C is a null matrix.
é1 5 ù é 9 1ù
Sol. We have, A = ê ú and B = ê7 8ú
ë7 12 û ë û
é a bù
Let C=ê ú
ëC d û
\ 3A + 5B + 2C = 0
é 3 15 ù é 45 5 ù é2a 2bù é 0 0ù
Þ ê21 36ú + ê 35 40ú + ê2c 2dú = ê 0
ë û ë û ë û ë 0úû
é 48 + 2 a 20 + 2 b ù é 0 0ù
Þ ê 56 + 2c 76 + 2d ú = ê 0
ë û ë 0úû
Þ 2 a + 48 = 0 Þ a = - 24
Also, 20 + 2 b = 0 Þ b = - 10
56 + 2c = 0 Þ c = - 28
and 76 + 2d = 0 Þ d = - 38
é -24 -10ù
\ C=ê ú
ë -28 -38û
é 3 -5ù 2 3
Q. 40 If A = ê ú, then find A - 5 A - 14 I . Hence, obtain A .
ë - 4 2 û
Sol. é 3 -5ù
We have, A=ê ú …(i)
ë -4 2 û
é 3 -5ù é 3 -5ù
\ A2 = A × A = ê úê ú
ë -4 2 û ë -4 2 û
é 29 -25ù
=ê ú …(ii)
ë -20 24 û
é 29 -25ù é 15 -25ù é14 0 ù
\ A 2 - 5 A - 14I = ê ú-ê ú-ê ú
ë -20 24 û ë -20 10 û ë 0 14û
é 0 0ù
=ê ú
ë 0 0û
Now, A 2 - 5 A - 14 I = 0
2
Þ A × A - 5 A × A - 14 A I = 0
Þ A 3 - 5 A 2 - 14 A = 0 [Q A I = A]
3 2
Þ A = 5 A = 14 A
é 29 -25ù é 3 -5ù
= 5ê ú + 14 ê -4 2 ú [using Eqs. (i) and (ii)]
ë -20 24 û ë û
é 145 - 125ù é 42 - 70 ù
=ê ú+ ê ú
ë -100 120 û ë -56 28 û
é 187 -195ù
=ê ú
ë -156 148 û
é 2 -1ù é -1 -8 -10 ù
Q. 42 Find the matrix A such that ê 1 0 ú A = êê 1 -2 -5 úú.
ê ú
êë -3 4 úû êë 9 22 15 úû
é 2 -1ù é -1 -8 -10ù
ê 1 0ú A = ê 1 -2 -5 ú
Sol. We have,
ê ú ê ú
êë -3 4 úû 3 ´ 2 êë 9 22 15 úû 3 ´ 3
From the given equation, it is clear that order of A should be 2 ´ 3.
é a b cù
Let A=ê ú
ëd e f û
é 2 -1ù é -1 -8 -10ù
\ ê 1 0 ú é a b c ù = ê 1 -2 -5 ú
ê ú êëd e f úû ê ú
êë -3 4 úû êë 9 22 15 úû
é2 a - d 2b - e 2c - f ù é -1 - 8 - 10ù
Þ ê a + 0d b + 0×e c + 0× f ú = ê 1 - 2 -5 ú
ê ú ê ú
êë -3 a + 4d - 3b + 4e - 3c + 4f úû êë 9 22 15 úû
é 2a - d 2b - e 2c - f ù é - 1 - 8 - 10ù
Þ ê a b c ú= ê 1 -2 - 5ú
ê ú ê ú
êë - 3a + 4d - 3b + 4e - 3c + 4f úû êë 9 22 15 úû
By equality of matrices, we get
a = 1, b = - 2 , c = - 5
and 2a - d = - 1 Þ d = 2 a + 1 = 3;
Þ 2b - e = - 8 Þ e = 2(-2 ) + 8 = 4
2c - f = - 10 Þ f = 2c + 10 = 0
é 1 -2 -5ù
\ A=ê
ë3 4 0 úû
é1 2ù 2
Q. 43 If A = ê ú, then find A + 2A + 7I.
ë 4 1û
é1 2 ù
Sol. We have, A = ê ú
ë 4 1û
é1 2 ù é1 2 ù
\ A2 = ê ú ê ú [Q A 2 = A × A]
ë 4 1û ë 4 1û
é1 + 8 2 + 2 ù é 9 4ù
=ê ú=ê
ë4 + 4 8 + 1 û ë8 9úû
é 9 4ù é2 4ù é7 0ù é18 8 ù
\ A2 + 2 A + 7 I = ê ú+ ê ú+ ê =
ë 8 9û ë 8 2 û ë 0 7 úû êë16 18úû
é cos a sin a ù -1
Q. 44 If A = ê ú and A = A¢, then find the value of a.
ë - sin a cos a û
Sol. We have,
é cos a sin a ù écos a - sin aù
A=ê ú and A¢= êsin a
ë - sin a cos aû ë cos a úû
Also, A -1 = A ¢
Þ AA -1 = AA¢
é cos a sin a ù écos a - sin a ù
Þ I=ê ú ê sin a cos a ú
ë - sin a cos a û ë û
0ù écos 2 a + sin2 a
é1 0 ù
Þ ê0 =ê ú
ë1úû ê 0 2 2
sin a + cos a úû
ë
By using equality of matrices, we get
cos 2 a + sin2 a = 1
which is true for all real values of a.
é0 a 3 ù
Q. 45 If matrix êê2 b -1úú is a skew-symmetric matrix, then find the values
êëc 1 0 úû
of a, b and c.
K Thinking Process
We know that, a matrix A is skew-symmetric matrix, if A¢= - A, so by using this we can
get the values of a, b and c.
é0 a 3 ù
Sol. Let A= ê2 b -1ú
ê ú
êëc 1 0 úû
Since, A is skew-symmetric matrix.
\ A¢= - A
é0 2 c ù é0 a 3ù
Þ ê a b 1 = - ê2
ú b -1ú
ê ú ê ú
êë 3 -1 0úû êëc 1 0 úû
é0 2 c ù é 0 - a -3ù
Þ ê a b 1ú = ê -2 - b +1ú
ê ú ê ú
êë 3 -1 0úû êë - c -1 0 úû
By equality of matrices, we get
a = -2, c = -3 and b= - b Þ b=0
\ a = -2, b=0 and c= -3
écos x sin x ù
Q. 46 If P(x) = ê ú, then show that P (x ) × P ( y) = P (x + y)
ë - sin x cos x û
= P ( y) × P (x ).
Sol. We have,
écos x sin x ù
P(x ) = ê ú
ë - sin x cos x û
écos y sin y ù
\ P( y) = ê ú
ë - sin y cos yû
écos x sin x ù écos y sin y ù
Now, P(x ) × P( y) = ê ú ê ú
ë - sin x cos x û ë - sin y cos yû
écos x × cos y - sin x × sin y cos x × sin y + sin x × cos y ù
=ê
ë - sin x × cos y - cos x × sin y - sin x × sin y + cos x × cos yúû
écos (x + y) sin (x + y) ù
=ê ...(i)
ë - sin ( x + y) co s (x + y)úû
éQ cos (x + y) = cos x × cos y - sin x × sin y ù
êand sin (x + y) = sin x × cos y + cos x × sin yú
ë û
écos (x + y) sin (x + y)ù
and P (x + y) = ê ...(ii)
ë - sin (x + y) cos (x + y)úû
écos y sin y ù écos x sin x ù
Also, P( y) × P (x ) = ê ú ê - sin x cos x ú
ë - sin y cos yû ë û
écos y × cos x - sin y × sin x cos y × sin x + sin y × cos x ù
=ê
ë - sin y × cos x - sin x × cos y - sin y × sin x + cos y × cos x úû
écos (x + y) sin (x + y) ù
=ê ú ...(iii)
ë - sin (x + y) cos (x + y)û
Thus, we see from the Eqs. (i), (ii) and (iii) that,
P(x ) × P( y) = P(x + y) = P( y) × P(x ) Hence proved.
é-x -y zù é 0 -1 0 ù éQ R1 ® R1 - R 2 ù
ê ú
êx 3 y 0ú = ê 1 ê
Þ
ê ú
1 0ú A 1 ú
1 -1 1 ú êand R 3 ® R 3 ú
êë 0 0 zúû ê ë 3 û
êë 3 3 3 úû
-1 -2 -1
é ù
é - x - y 0ù ê 3 3 3ú
Þ ê x 3 y 0ú = ê 1 1 0 úA [Q R1 ® R1 - R 3 ]
ê ú ê ú
êë 0 0 zúû ê 1 -1 1 ú
ë3 3 3 û
é -1 -2 -1ù
ê3 3 3ú
é - x - y 0ù ê ú
ê 0 2 y 0ú = ê 2 1 -1ú
Þ A [Q R 2 ® R 2 + R1 ]
ê ú ê3 3 3ú
êë 0 0 zúû ê ú
ê1 -1 1 ú
ê 3 úû
ë3 3
é -1 -1ù
ê0 2 2ú
é - x 0 0ù ê ú
ê 0 2 y 0ú = ê 2 1 -1ú éQ R ® R + 1 R ù
Þ A
ê ú ê3 3 3ú êë 1 1
2 2 úû
êë 0 0 zúû ê ú
ê1 -1 1 ú
ê3 3 úû
ë 3
é 1 1ù -1
é ù
ê ú
0 2x 2x êQ R1 ® x R1, ú
é 1 0 0ù ê ú
ê ú
ê 0 1 0ú = 1 ê 1 -1 ú
Þ êR ® 1 R ú
ê ú ê 3y úA 2 2
6y 6y ú ê 2y ú
êë 0 0 1úû ê ê
ê1 1 ú
-1 1 ú êand R 3 ® R 3 ú
ê ú ë z û
ë 3z 3z 3z û
é 1ù
1
ê 2x ú
0 2x
ê ú é0 x xù
-1 ê1 1 -1 ú ê2 y y - yú
\ A =ê ú= ê ú
ê 3y6y 6y ú
êë z - z z úû
ê1 -1 1 ú
ê ú
ë 3z3z 3z û
1 1
Þ =x Þ =±
2x 2
1 1
Þ = y Þ y=±
6y 6
1 1
and = z Þ z=±
3z 3
Alternate Method
We have,
é0 2 y z ù é0 x xù
A = ê x y - zú and A¢= ê2 y y - yú
ê ú ê ú
êë x - y z úû êë z - z z úû
Also, A¢= A -1
Þ AA¢= AA -1 [Q AA -1 = I]
Þ AA¢ = I
é0 2 y z ù é 0 x x ù é 1 0 0ù
Þ ê x y - zú ê2 y y - yú = ê 0 1 0ú
ê úê ú ê ú
êë x - y z úû êë z - z z úû êë 0 0 1úû
é 4 y2 + z2 2 y2 - z2 -2 y2 + z2 ù é 1 0 0ù
ê 2 ú
Þ ê 2y - z
2 2 2
x + y + z 2
x 2 - y2 - z2 ú = ê 0 1 0ú
ê ú
ê -2 y + z2
2 2
x -y -z 2 2
x + y + z úû êë 0 0 1úû
2 2 2
ë
Þ 2 y2 - z2 = 0 Þ 2 y2 = z2
Þ 4 y2 + z2 = 1
Þ 2 × z2 + z2 = 1
1
z=±
3
2 z2 1
\ y = Þ y=±
2 6
Also, x 2 + y2 + z2 = 1
1 1
Þ x 2 = 1 - y2 - z2 = 1 - -
6 3
3 1
= 1- =
6 2
1
Þ x=±
2
1 1
\ x = ±, ,y = ±
2 6
1
and z=±
3
Q. 51 If possible, using elementary row transformations, find the inverse of
the following matrices.
é 2 -1 3ù é 2 3 - 3ù
(i) ê-5 3 1ú (ii) ê-1 -2 2 ú
ê ú ê ú
êë-3 2 3úû êë 1 1 -1úû
é2 0 -1ù
(iii) ê5 1 0 ú
ê ú
êë0 1 3 úû
Sol. For getting the inverse of the given matrix A by row elementary operations we may write the
given matrix as
A = IA
é 2 -1 3ù é 1 0 0ù
(i) Q ê -5 3 1ú = ê 0 1 0ú A
ê ú ê ú
êë -3 2 3úû êë 0 0 1úû
é 2 -1 3ù é1 0 0ù
Þ ê -3 2 4ú = ê 1 1 0ú A [Q R 2 ® R 2 + R1 ]
ê ú ê ú
êë -3 2 3úû êë 0 0 1úû
é 2 -1 3 ù é1 0 0ù
Þ ê -3 2 4 ú = ê 1 1 0ú A [Q R 3 ® R 3 - R 2 ]
ê ú ê ú
êë 0 0 -1úû êë -1 -1 1úû
é -1 1 7 ù é2 1 0ù
Þ ê -3 2 4 ú = ê 1 1 0ú A [Q R1 ® R1 + R 2 ]
ê ú ê ú
êë 0 0 -1úû êë -1 -1 1úû
é -1 1 7 ù é2 1 0ù
Þ ê 0 -1 -17 ú = ê -5 -2 0ú A [Q R 2 ® R 2 - 3R1 ]
ê ú ê ú
êë 0 0 -1 úû êë -1 -1 1úû
é - 1 0 - 10 ù é -3 -1 0ù
ê 0 -1 -17 ú = ê -5 -2 éQ R1 ® R1 + R 2 ù
Þ 0ú A êand R ® -1× R ú
ê ú ê ú ë 3 3û
êë 0 0 1 úû êë 1 1 -1úû
é -1 0 0ù é 7 9 -10 ù
ê 0 -1 0ú éQ R1 ® R1 + 10R 3 ù
Þ = ê12 15 -17 ú A êand R ® R + 17 R ú
ê ú ê ú ë 2 2 3û
êë 0 0 1úû êë 1 1 -1 úû
é 1 0 0ù é -7 -9 10 ù
ê 0 1 0ú éQ R1 ® -1R1 ù
Þ = ê -12 -15 17 ú A êand R ® -1R ú
ê ú ê ú ë 2 2û
êë 0 0 1úû êë 1 1 -1úû
é -7 -9 10 ù
So, the inverse of A is ê -12 -15 17 ú .
ê ú
êë 1 1 -1úû
é2 3 -3ù é10 0ù
(ii) \ ê -1 -2 2 ú = ê 0 1 0ú A
ê ú ê ú
êë 1 1 -1úû êë 0
0 1úû
é 0 1 -1ù é10 -2 ù
ê 0 -1 1 ú = ê 0 éQ R 2 ® R 2 + R 3 ù
Þ 1 1úA êand R ® R - 2 R ú
ê ú ê ú ë 1 1 3û
êë 1 1 -1úû êë 0
0 1 úû
é 0 1 -1ù é 1 0 -2 ù
Þ ê 0 0 0 ú = ê2 1 -2 ú A [Q R 2 ® R 2 + R1 ]
ê ú ê ú
êë 1 1 1 úû êë 00 1 úû
Since, second row of the matrix A on LHS is containing all zeroes, so we can
say that inverse of matrix A does not exist.
é2 0 -1ù é1 0 0ù
(iii) \ ê5 1 0 ú = ê0 1 0ú A
ê ú ê ú
êë 0 1 3 úû êë 0 0 1úû
é 2 0 - 1ù é1 0 0ù
Þ ê 3 1 1 ú = ê -1 1 0ú A [Q R 2 ® R 2 - R1 ]
ê ú ê ú
êë 0 1 3 úû êë 0 0 1úû
é2 0 -1ù é1 0 0ù
ê 1 1 2 ú = ê -2 éQ R 2 ® R 2 - R1 ù
Þ 1 0ú A êand R ® R + R ú
ê ú ê ú ë 3 3 1û
êë2 1 2 úû êë 1 0 1úû
é2 0 - 1ù é 1 0 0ù
ê ú ê ú éQ R 3 ® R 3 + R1 ù
Þ ê 0 1 5 ú = ê -5 1 0ú A ê 1 ú
ê 2ú ê2 ú êand R 2 ® R 2 - R1 ú
ê ú ê ú ë 2 û
ë 4 1 1 û ë2 0 1û
é2 0 -1ù é 1 0 0ù
ê 5ú ê -5 ú
Þ ê 0 1 = 1 0ú A [Q R 3 ® R 3 - 2 R1 ]
2ú ê2
êë 0 1 3 úû êë 0 0 1úû
é ù é ù
ê2 0 -1ú ê 1 0 0ú
ê 5ú ê -5 ú
Þ ê 0 1 = 1 0ú A [Q R 3 ® R 3 - R 2 ]
2ú ê2
ê 1ú ê 5 ú
ê0 0 ú ê -1 1ú
ë 2û ë2 û
é 1 0 -1ù é 1 0 0 ù
ê 2ú ê2 ú
ê éQ R ® 1 R ù
5 ú ê -5 ú
ê
Þ ê0 1 ú=ê 1 0ú A 1
2 1 ú
ê 0 0 1 ú ê 25
2 êand R ® 2 R ú
-2 2 ú ë 3 3û
ê ú ê ú
ë û ë û
é 1 0 0ù é 3 -1 1 ù éQ R ® R + 1 R ù
ê 0 1 0ú = ê -15 6 -5ú A ê 1 1
2 3 ú
Þ ê
ê ú ê ú 5 ú
êë 0 0 1úû êë 5 -2 2 úû êand R 2 ® R 2 - R 3 ú
ë 2 û
é 3 -1 1ù
Hence, ê -15 6 -5ú is the inverse of given matrix A.
ê ú
êë 5 -2 2 úû
é2 3 1ù
Q. 52 Express the matrix êê1 -1 2úú as the sum of a symmetric and a
êë4 1 2úû
skew-symmetric matrix.
K Thinking Process
We know that, any square matrix A can be expressed as the sum of a symmetric matrix
A + A¢ A - A¢
and skew-symmetric matrix, i.e., A = + , where A + A¢ and A - A¢ are a
2 2
symmetric matrix and a skew-symmetric matrix, respectively.
é2 3 1ù
Sol. We have, A = ê 1 -1 2 ú
ê ú
êë 4 1 2 úû
é2 1 4ù
\ A ¢ = ê 3 -1 1ú
ê ú
êë 1 2 2 úû
é2 2 5 ù
é 4 4 5ù ê 2ú
A + A¢ 1 ê ê 3ú
Now, = 4 -2 3ú = ê 2 -1 ú
2 2 ê ú
ê5 3 2 ú
êë 5 3 4úû
ê 2ú
ë2 2 û
é 0 1 -3 ù
é 0 2 -3ù ê 2 ú
A - A¢ 1 ê ú ê 1ú
and = -2 0 1 = ê -1 0 ú
2 2ê ú 2
êë 3 -1 0 úû ê 3 -1 ú
ê 0ú
ë2 2 û
é -3 ù
é2 2 5 ù ê 0 1
2 ú
ê 2ú ê ú
A + A¢ A - A¢ ê ú ê 1ú
\ + = ê 2 -1 3 ú + ê -1 0
2 2 ê5 3 2ú ê 2 ú
ú
ê 2 ú ê 3 -1 ú
ë2 2 û ê 0ú
ë2 2 û
which is the required expression.
Objective Type Questions
é0 0 4 ù
Q. 53 The matrix P = êê0 4 0 úú is a
êë4 0 0 úû
(a) square matrix (b) diagonal matrix
(c) unit matrix (d) None of these
Sol. (a) We know that, in a square matrix number of rows are equal to the number of columns,
é 0 0 4ù
so the matrix P = ê 0 4 0ú is a square matrix.
ë 4 0 0û
é2x + y 4x ù é 7 7 y - 13ù
Q. 55 ê5x - 7 4x ú = ê y x + 6 ú , then the value of x + y is
ë û ë û
(a) x = 3, y = 1 (b) x = 2, y = 3
(c) x = 2, y = 4 (d) x = 3, y = 3
Sol. (b) We have, 4x = x + 6 Þ x = 2
and 4x = 7 y - 13 Þ 8 = 7 y - 13
Þ 7 y = 21 Þ y = 3
\ x+ y=2+ 3= 5
é -1 æ x öù é æ x öù
sin (xp) tan -1 ç ÷ ú ê - cos -1 (xp) tan -1 ç ÷ ú
ê è p øú
Q. 56 If A = 1 ê è p ø ú and B = 1 ê ,
p êsin -1 æ x ö cot -1 (px)ú p ê -1 æ x ö -1 ú
ç ÷
êë èpø úû êsin çè p ÷ø - tan (px)ú
ë û
then A - B is equal to
1
(a) I (b) 0 (c) 2I (d) I
2
é 1 sin-1 xp 1
tan-1
x ù
êp p p ú
Sol. (d) We have, A = ê 1 x 1 ú
ê sin-1 cot -1 px ú
ëp p p û
é -1cos -1 xp 1
tan-1 ù
x
êp p p ú
and B= ê
1 x - 1 -1 ú
ê sin-1 tan px ú
ëp p p û
é1 1 æ -1 x x ù
-1 -1
ê p (sin xp + co s x p) ç tan - tan-1 ö÷ ú
pè p pø
\ A-B= ê ú
ê 1 æ sin-1 x - sin-1 x ö 1
cot -1 px + tan-1 px ú
êë p çè p pø
÷
p úû
é1 p éQ sin-1 x + cos -1 x = p ù
× 0 ù
êp 2 ú ê 2ú
=ê
1 p ú ê pú
ê0 × ú êand tan-1 x + cot -1 x = ú
ë p 2 û ë 2û
1 é1 0ù
= ê
2 ë 0 1úû
1
= I
2
é0 1ù 2
Q. 58 If A = ê ú, then A is equal to
ë 1 0 û
é0 1ù é1 0 ù é0 1ù é1 0ù
(a) ê ú (b) ê ú (c) ê ú (d) ê ú
ë1 0û ë1 0 û ë0 1û ë0 1û
é 0 1ù é 0 1ù é 1 0ù
Sol. (d) Q A2 = A × A = ê ú× ê ú =ê ú
ë 1 0û ë 1 0û ë 0 1û
é1 0 0 ù
Q. 60 The matrix êê0 2 0 úú is a
êë0 0 4 úû
(a) identity matrix (b) symmetric matrix
(c) skew-symmetric matrix (d) None of these
é 1 0 0ù
Sol. (b) Let A = ê 0 2 0ú
ê ú
êë 0 0 4úû
é 1 0 0ù
\ A¢= ê 0 2 0ú = A
ê ú
êë 0 0 4úû
So, the given matrix is a symmetric matrix.
[since, in a square matrix A, if A¢ =A, then A is called symmetric matrix]
é 0 -5 8 ù
Q. 61 The matrix ê 5 0 12úú is a
ê
êë -8 -12 0 úû
(a) diagonal matrix (b) symmetric matrix
(c) skew-symmetric matrix (d) scalar matrix
Sol. (c) We know that, in a square matrix, if bij = 0, when i ¹ j , then it is said to be a diagonal
matrix. Here, b12, b13, ... ¹ 0, so the given matrix is not a diagonal matrix.
é 0 -5 8 ù
Now, B= ê 5 0 12 ú
ê ú
êë -8 -12 0 úû
é 0 5 -8 ù é 0 -5 8 ù
\ B¢ = ê -5 0 -12 ú = - ê 5 0 12 ú = - B
ê ú ê ú
êë 8 12 0 úû êë -8 -12 0 úû
So, the given matrix is a skew-symmetric matrix, since we know that in a square matrix
B, if B¢ = - B, then it is called skew-symmetric matrix.
= 2 A [I + I 2 + I + I 2 - A 2 + I 2 ] - 7 A [Q A 2 = AI ]
= 2 A [5I - I ] - 7 A
= 8 AI - 7 AI [Q A = AI ]
= AI = A
é1 - 3ù é1 - 1ù é 3 1 ù
Sol. (d) Given that, ê ú=ê úê ú
ë2 4 û ë 0 1û ë2 4û
é1 - 5ù é1 - 1ù é 3 - 5ù
On using C 2 ® C 2 - 2C1, ê ú=ê úê ú
ë2 0 û ë 0 1û ë2 0 û
é -5 - 7ù é1 2ù é2 0 ù é 4 2ù é 1 2 ù é2 0 ù
(c) ê = (d) ê ú=ê
ë 3 3 úû êë1 - 7úû ê1 1 ú
ë û
ú ê ú
ë -5 - 7 û ë -3 - 3û ë1 1 û
é 4 2 ù é 1 2 ù é2 0ù
Sol. (a) We have, ê ú=ê úê ú
ë 3 3û ë 0 3û ë 1 1û
Using elementary row operation R1 ® R1 - 3R 2 ,
é -5 - 7 ù é1 - 7 ù é2 0ù
ê 3 3 ú = ê 0 3 ú ê1 1 ú
ë û ë ûë û
Since, on using elementary row operation on X = AB, we apply these operation
simultaneously on X and on the first matrix A of the product AB on RHS.
Fillers
Q. 68 ……… matrix is both symmetric and skew-symmetric matrix.
Sol. Null matrix is both symmetric and skew-symmetric matrix.
Q. 71 The product of any matrix by the scalar ......... is the null matrix.
Sol. The product of any matrix by the scalar 0 is the null matrix. i.e., 0 × A = 0.
[where, A is any matrix]
True/False
Q. 82 A matrix denotes a number.
Sol. False
A matrix is an ordered rectangular array of numbers or functions.
Q. 84 Two matrices are equal, if they have same number of rows and same
number of columns.
Sol. False
If two matrices have same number of rows and same number of columns, then they are said
to be square matrix and if two square matrices have same elements in both the matrices,
only then they are called equal.
Q. 93 If A and B are two square matrices of the same order, then AB = BA.
Sol. False
For two square matrices of same order it is not always true that AB = BA.
Q. 94 If each of the three matrices of the same order are symmetric, then
their sum is a symmetric matrix.
Sol. True
Let A, B and C are three matrices of same order
\ A¢ = A, B¢= B and C ¢= C
\ ( A + B + C )¢ = A¢ + B¢ + C ¢
= ( A + B + C)
Q. 95 If A and B are any two matrices of the same order, then ( AB)¢ = A ¢B ¢.
Sol. False
Q ( AB)¢ = B¢ A¢
a+x y z
Q. 2 x a + y z
x y a+z
a+ x y z a -a 0
é Q R1 ® R1 - R 2 ù
Sol. We have, x a+ y z = 0 a -a êand R ® R - R ú
ë 2 2 3û
x y a+ z x y a+ z
a 0 0
= 0 a -a [Q C 2 ® C 2 + C1 ]
x x + y a+ z
= a (a2 + az + ax + ay)
= a2 (a + z + x + y)
0 xy 2 xz 2
Q. 3 x2 y 0 yz 2
x2 z zy 2 0
0 xy2 xz2 0 x x
2
Sol. We have, x y 0 yz2 = x 2 y2 z2 y 0 y
x 2 z zy2 0 z z 0
[taking x 2 , y2 and z2 common from C1, C 2 and C 3 , respectively]
0 0 x
= x 2 y2 z2 y - y y [Q C 2 ® C 2 - C 3 ]
z z 0
= x 2 y2 z2 [x ( yz + yz)]
= x 2 y2 z2 × 2 xyz = 2 x 3 y3 z3
3x -x + y -x + z
Q. 4 x - y 3y z-y
x-z y -z 3z
3x -x + y -x + z
Sol. We have, x- y 3y z- y
x - z y- z 3z
Applying, C1 ® C1 + C 2 + C 3 ,
x + y + z -x + y -x + z
= x + y+ z 3y z- y
x + y+ z y- z 3z
1 -x + y -x + z
= (x + y + z) 1 3y z- y
1 y- z 3z
[taking (x + y + z) common from column C1]
1 -x + y -x + z
= (x + y + z) 0 2 y + x x - y
0 x - z 2z + x
[Q R 2 ® R 2 - R1 and R 3 ® R 3 - R1 ]
Now, expanding along first column, we get
(x + y + z) × 1 [(2 y + x ) (2 z + x ) - (x - y) (x - z)]
= (x + y + z) (4 yz + 2 yx + 2 xz + x 2 - x 2 + xz + yx - yz )
= (x + y + z) (3 yz + 3 yx + 3xz)
= 3 (x + y + z)( yz + yx + xz)
x +4 x x
Q. 5 x x + 4 x
x x x +4
x+ 4 x x 2x + 4 2x + 4 2x
Sol. We have, x x+ 4 x = x x+ 4 x [Q R1 ® R1 + R 2 ]
x x x+ 4 x x x+ 4
2x 2x 2x 4 4 0
= x x+ 4 x + x x+ 4 x
x x x+ 4 x x x+ 4
[here, given determinant is expressed in sum of two determinants]
1 1 1 1 1 0
= 2x x x + 4 x + 4 x x+ 4 x
x x x+ 4 x x x+ 4
[taking 2x common from first row of first determinant and 4 from first row of second
determinant]
Applying C1 ® C1 - C 3 and C 2 ® C 2 - C 3 in first and applying C1 ® C1 - C 2 in second, we
get
0 0 1 0 1 0
= 2x 0 4 x + 4 -4 x+ 4 x
-4 -4 x+ 4 0 x x+ 4
Expanding both the along first column, we get
2 x [- 4 (- 4)] + 4 [4 (x + 4 - 0)]
= 2 x ´ 16 + 16 (x + 4)
= 32 x + 16x + 64
= 16 (3x + 4)
a -b -c 2a 2a
Q. 6 2b b -c -a 2b
2c 2c c -a -b
Sol. Wehave, a - b - c 2a 2a
2b b-c - a 2b
2c 2c c-a-b
a+ b+c a+ b+c a+ b+c
= 2b b-c - a 2b [Q R1 ® R1 + R 2 + R 3 ]
2c 2c c-a-b
1 1 1
= (a + b + c ) 2 b b - c - a 2b
2c 2c c-a-b
[taking (a + b + c )common from the first row]
0 0 1
= (a + b + c ) 0 - (a + b + c ) 2b
(a + b + c ) (a + b + c ) ( c - a - b)
[Q C1 ® C1 - C 3 and C 2 ® C 2 - C 3 ]
Expanding along R1,
= (a + b + c ) [1{0 + (a + b + c 2 }]
= (a + b + c ) [(a + b + c )2 ]
= (a + b + c )3
y 2z2 yz y +z
Q. 7 z 2 x 2 zx z + x =0
x2 y 2 xy x+y
y +z z y
Q. 8 z z+x x = 4 xyz
y x x+y
K Thinking Process
First in LHS use C 1® C 1 + C2 + C3 and then by using C 1® C 1 - C2 and R1® R1 - R3 , we
can get two zeroes in column 1 and then by simplification we will get the desired result.
Sol. We have to prove,
y+ z z y
z z+ x x = 4 x yz
y x x+ y
y+ z z y
\ LHS = z z+ x x
y x x+ y
y+ z+ z+ y z y
= z+ z+ x + x z+ x x [Q C1 ® C1 + C 2 + C 3 ]
y+ x + x + y x x+ y
( y + z) z y
= 2 (z + x) z + x x [taking 2 common from C1]
(x + y) x x+ y
y z y
=2 0 z+ x x [Q C1 ® C1 - C 2 ]
y x x+ y
0 z-x -x
=2 0 z+ x x [Q R1 ® R1 - R 3 ]
y x x+ y
= 2 [ y(x z - x 2 + x z + x 2 )]
= 4x yz = RHS Hence proved.
a 2 + 2a 2a + 1 1
Q. 9 2a + 1 a + 2 1 = (a - 1) 3
3 3 1
K Thinking Process
Here, by using R1® R1 - R2 and R2 ® R2 - R3 in LHS, we can easily get the desired result.
Sol. We have to prove,
a2 + 2 a 2 a + 1 1
= 2 a + 1 a + 2 1 = (a - 1)3
3 3 1
a2 + 2 a 2 a + 1 1
\ LHS = 2 a + 1 a + 2 1
3 3 1
a2 + 2 a - 2 a - 1 2 a + 1 - a - 2 0
= 2a + 1 - 3 a+2-3 0
3 3 1
[Q R1 ® R1 - R 2 and R 2 ® R 2 - R 3 ]
(a - 1) (a + 1) (a - 1) 0 (a + 1) 1 0
= 2 (a - 1) (a - 1) 0 = (a - 1)2 2 1 0
3 3 1 3 3 1
[taking (a - 1) common from R1 and R 2 each]
= (a - 1)2 [1 (a + 1) - 2 ] = (a - 1)3
= RHS Hence proved.
1 cos C cos B
Q. 10 If A + B + C = 0, then prove that cos C 1 cos A = 0.
cos B cos A 1
K Thinking Process
We have, given A + B + C = 0, so on solving the determinant by expansion, we can use
cos (A + B) = cos (- C) and similarly after simplification this expansion we will get the
desired result.
1 cos C cos B
Sol. We have to prove, cos C 1 cos A = 0
cos B cos A 1
1 cos C cos B
\ LHS = cos C 1 cos A
cos B cos A 1
= 1 (1 - cos 2 A) - cos C (cos C - cos A × cos B) + cos B (cos C × cos A - cos B)
= sin2 A - cos 2 C + cos A × cos B × cos C + cos A × cos B × cos C - cos 2 B
= sin2 A - cos 2 B + 2 cos A × cos B × cos C - cos 2 C
= - cos ( A + B) × cos ( A - B) + 2 cos A × cos B × cos C - cos 2 C
[Q cos 2 B - sin2 A = cos ( A + B) × cos ( A - B)]
= - cos (- C ) × cos ( A - B) + cos C (2 cos A × cos B - cos C ) [Q cos (- q) = cos q]
= - cos C (cos A × cos B + sin A × sin B - 2 cos A × cos B + cos C )
= cos C (cos A × cos B - sin A × sin B - cos C )
= cos C [cos ( A + B) - cos C ]
= cos C (cos C - cos C ) = 0 = RHS Hence proved.
é 1 1 sin 3 q ù
ê
Q. 12 Find the value of q satisfying ê - 4 3 cos 2 q úú = 0
êë 7 - 7 - 2 úû
1 1 sin 3 q
Sol. We have, -4 3 cos 2 q = 0
7 -7 -2
0 1 sin 3 q
Þ -7 3 cos 2 q = 0 [Q C1 ® C1 - C 2 ]
14 - 7 -2
0 1 sin 3 q
Þ 7 -1 3 cos 2 q = 0 [taking 7 common from C1]
2 -7 -2
Þ 7 [0 - 1 ( 2 - 2 cos 2 q) + sin 3 q (7 - 6)] = 0 [expanding along R1]
Þ 7 [- 2 (1 - cos 2 q) + sin 3 q] = 0
Þ - 14 + 14 cos 2 q + 7 sin 3 q = 0
Þ 14 cos 2 q + 7 sin 3 q = 14
Þ 14 (1 - 2 sin2 q) + 7 (3 sin q - 4 sin3 q) = 14
Þ - 28 sin2 q + 14 + 21sin q - 28 sin3 q = 14
Þ - 28 sin2 q - 28 sin3 q + 21sin q = 0
Þ 28 sin3 q + 28 sin2 q - 21sin q = 0
Þ 4 sin3 q + 4 sin2 q - 3 sin q = 0
Þ sin q (4 sin2 q + 4 sin q - 3) = 0
Þ Either sin q = 0,
Þ q = np or 4 sin2 q + 4 sin q - 3 = 0
-4± 16 + 48 - 4 ± 64
\ sin q = =
8 8
- 4 ± 8 4 - 12
= = ,
8 8 8
1 -3
sin q = ,
2 2
1 p
If sin q = = sin , then
2 6
p
q = n p + (- 1)n
6
-3
Hence, sin q = [not possible because - 1 £ sin q £ 1]
2
é4 - x 4 + x 4 + x ù
Q. 13 If êê4 + x 4 - x 4 + x úú = 0, then find the value of x.
êë4 + x 4 + x 4 - x úû
4-x 4+ x 4+ x
Sol. Given, 4+ x 4-x 4+ x =0
4+ x 4+ x 4-x
12 + x 12 + x 12 + x
Þ 4+ x 4-x 4+ x =0 [Q R1 ® R1 + R 2 + R 3 ]
4+ x 4+ x 4-x
1 1 1
Þ (12 + x ) 4 + x 4-x 4+ x =0 [taking (12 + x ) common from R1]
4+ x 4+ x 4-x
0 0 1
Þ (12 + x ) 0 8 4+ x =0 [Q C1 ® C1 - C 3 and C 2 ® C 2 + C 3 ]
2x 8 4-x
Þ (12 + x ) [1× (- 16x )] = 0
Þ (12 + x ) (- 16x ) = 0
\ x = - 12, 0
K Thinking Process
We know that, nth term of a GP has value arn - 1, where a = first term and r = common
ratio. So, by using this result, we can prove the given determinant as independent of r.
Sol. We know that, ar +1 = AR (r + 1) - 1
= AR r
where r = r th term of a GP, A = First term of a GP and R = Common ratio of GP
ar + 1 ar + 5 ar + 9
We have, ar + 7 ar + 11 ar + 15
ar + 11 ar + 17 ar + 21
AR r AR r + 4 AR r + 8
r + 6
= AR AR r + 10 AR r + 14
+ 10
AR r AR r + 16 AR r + 20
1 AR 4 AR 8
r + 6 r + 10
r
= AR × AR × AR 1 AR 4 AR 8
1 AR 6 AR10
+ 6 + 10
[taking AR r , AR r and AR r common from R1, R 2 and R 3 , respectively]
= 0 [since, R1 and R 2 are identicals]
Q. 15 Show that the points (a + 5, a - 4), (a - 2, a + 3) and (a, a) do not lie on
a straight line for any value of a.
K Thinking Process
We know that, if three points lie in a straight line, then area formed by these points will
be equal to zero. So, by showing area formed by these points other than zero, we can
prove the result.
Sol. Given, the points are (a + 5, a - 4), (a - 2, a + 3) and (a, a).
a+ 5 a-4 1
1
\ D= a-2 a+ 3 1
2
a a 1
5 -4 0
1
=
-2 3 0 [Q R1 ® R1 - R 3 and R 2 ® R 2 - R 3 ]
2
a a 1
1
= [1 (15 - 8)]
2
7
Þ = ¹0
2
Hence, given points form a triangle i.e., points do not lie in a straight line.
\ A11 = - 1, A12 = 1, A13 = 1, A21 = 1, A22 = - 1, A23 = 1, A31 = 1, A32 = 1 and A33 = - 1
T
-1 1 1 -1 1 1
\ adj A = 1 - 1 1 = 1 -1 1
1 1 -1 1 1 -1
and | A| = - 1 (- 1) + 1× 1 = 2
é- 1 1 1ù
adj A 1 ê
\ A- 1 = = 1 -1 1ú ...(i)
| A| 2 ê ú
êë 1 1 - 1úû
é 0 1 1ù é 0 1 1ù é2 1 1ù
and A = ê 1 0 1ú × ê 1 0 1ú = ê 1 2 1ú
2
...(ii)
ê ú ê ú ê ú
êë 1 1 0úû êë 1 1 0úû êë 1 1 2 úû
ì2 1 1 3 0 0ü -1 1 1
A2 - 3 I 1 ï ï 1
\ = í 1 2 1 - 0 3 0ý= 1 -1 1
2 2ï 2
î 1 1 2 0 0 3 ïþ 1 1 -1
-1
= A [using Eq. (i)]
Hence proved.
T
55 -5 5 0 10
\ adj A = 0 7 7 = 5 7 -11
10 - 11 4 -5 7 4
5 0 10
adj A 1
Now, A- 1 = = 5 7 - 11
| A| 35
-5 7 4
For X = A - 1B,
éx ù é 5 0 10 ù é 3ù
ê y ú = 1 ê 5 7 - 11ú ê 6ú
ê ú 35 ê úê ú
êë z úû êë - 5 7 4 úû êë2 úû
é 15 + 20 ù é 35ù é 1ù
1 ê 1 ê ú
= 15 + 42 - 22 ú = 35 = ê 1ú
35 ê ú 35 ê ú ê ú
êë - 15 + 42 + 8úû êë 35úû êë 1úû
\ x = 1, y = 1 and z = 1
-42 2 1 -1 0
Q. 20 If A = - 4 2 - 4 and B = 2 3 4 , then find BA and use this
2 -1 5 0 1 2
to solve the system of equations y + 2z = 7, x - y = 3 and
2x + 3 y + 4 z = 17.
2 2 -4 1 -1 0
Sol. We have, A = -4 2 -4 and B = 2 3 4
2 -1 5 0 1 2
1 -1 0 2 2 -4 6 0 0
\ BA = 2 3 4 -4 2 -4 = 0 6 0 = 6 I
0 1 2 2 -1 5 0 0 6
2 2 -4
A 1 1
\ B-1 = = A= -4 2 - 4 ...(i)
6 6 6
2 -1 5
Also, x - y = 3, 2 x + 3 y + 4 z = 17 and y + 2 z = 7
é 1 -1 0ù é x ù é 3 ù
Þ ê 2 3 4ú ê y ú = ê 17 ú
ê úê ú ê ú
êë 0 1 2 úû êë z úû êë 7 úû
-1
é x ù é 1 -1 0ù é 3 ù
\ ê y ú = ê 2 3 4ú ê 17 ú
ê ú ê ú ê ú
êë z úû êë 0 1 2 úû êë 7 úû
é 2 2 -4 ù é 3 ù
1
= ê -4 2 -4 ú ê 17 ú [using Eq. (i)]
6ê úê ú
êë 2 -1 5 úû êë 7 úû
é 6 + 34 - 28 ù é 12 ù é 2ù
1 1
= ê -12 + 34 - 28ú = ê -6ú = ê -1ú
6ê ú 6ê ú ê ú
êë 6 - 17 + 35 úû êë 24 úû êë 4 úû
\ x = 2, y = -1 and z = 4
a b c
Q. 21 If a + b + c ¹ 0 and b c a = 0 , then prove that a = b = c.
c a b
a b c
Sol. Let A= b c a
c a b
a+ b+c a+ b+c a+ b+c
= b c a [Q R1 ® R1 + R 2 + R 3 ]
c a b
1 1 1
= (a + b + c ) b c a
c a b
0 0 1
= (a + b + c ) b - a c - a a [Q C1 ® C1 - C 3 and C 2 ® C 2 - C 3 ]
c-b a-b b
Expanding along R1,
= (a + b + c ) [1 (b - a) (a - b ) - (c - a) (c - b ) ]
= (a + b + c ) (ba - b 2 - a2 + ab - c 2 + cb + ac - ab )
-1
= (a + b + c ) ´ (-2 ) (- a2 - b 2 - c 2 + ab + bc + ca)
2
-1
= (a + b + c )[a2 + b 2 + c 2 - 2 ab - 2 bc - 2c a + a2 + b 2 + c 2 ]
2
1
= - (a + b + c ) [a2 + b 2 - 2 ab + b 2 + c 2 - 2 bc + c 2 + a2 - 2 ac ]
2
-1
= (a + b + c ) [(a - b )2 + (b - c )2 + (c - a)2 ]
2
Also, A=0
-1
= (a + b + c ) [(a - b )2 + (b - c )2 + (c - a)2 ] = 0
2
(a - b )2 + (b - c )2 + (c - a)2 = 0 [Q a + b + c ¹ 0, given ]
Þ a- b= b-c =c - a= 0
a= b=c Hence proved.
bc - a 2 ca - b 2 ab - c 2
Q. 22 Prove that ca - b 2 ab - c 2 bc - a 2 is divisible by (a + b + c ) and
ab - c 2 bc - a 2 ca - b 2
find the quotient.
bc - a2 ca - b 2 ab - c 2
Sol. Let D = ca - b 2 ab - c 2 bc - a2
ab - c 2 bc - a2 ca - b 2
bc - a2 - ca + b 2 ca - b 2 - ab + c 2 ab - c 2
2 2 2 2
= ca - b - ab + c ab - c - bc + a bc - a2
ab - c 2 - bc + a2 bc - a2 - ca + b 2 ca - b 2
[Q C1 ® C1 - C 2 and C 2 ® C 2 - C 3 ]
(b - a) (a + b + c ) (c - b ) (a + b + c ) ab - c 2
= (c - b ) (a + b + c ) (a - c ) (a + b + c ) bc - a2
(a - c ) (a + b + c ) (b - a) (a + b + c ) ca - b 2
b - a c - b ab - c 2
= (a + b + c )2 c - b a - c bc - a2
a - c b - a ca - b 2
[taking (a + b + c ) common from C1 and C 2 each]
0 0 ab + bc + ca - (a2 + b 2 + c 2 )
2
= (a + b + c ) c - b a - c bc - a2
a-c b- a ca - b 2
[Q R1 ® R1 + R 2 + R 3 ]
Now, expanding along R1,
= (a + b + c )2 [ab + bc + ca - (a2 + b 2 + c 2 )](c - b ) (b - a) - (a - c )2 ]
= (a + b + c )2 (ab + bc + ca - a2 - b 2 - c 2 )
(cb - ac - b 2 + ab - a2 - c 2 + 2 ac )
2 2 2 2
= (a + b + c ) (a + b + c - ab - bc - ca)
(a2 + b 2 + c 2 - ac - ab - bc )
1
= (a + b + c ) [(a + b + c ) (a2 + b 2 + c 2 - ab - bc - ca)]
2
[(a - b )2 + (b - c )2 + (c - a)2 ]
1
= (a + b + c ) (a3 + b 3 + c 3 - 3 abc ) [(a - b )2 + (b - c )2 + (c - a)2 ]
2
Hence, given determinant is divisible by (a + b + c ) and quotient is
(a3 + b 3 + c 3 - 3 abc ) [(a - b )2 + (b - c )2 + (c - a)2 ].
xa yb zc a b c
Q. 23 If x + y + z = 0, then prove that yc za xb = xyz c a b .
zb xc ya b c a
K Thinking Process
We have, given x + y + z = 0 Þ x3 + y3 + z3 = 3 xyz. So, by using this in solving the given
determinant from both the sides, we can equate the obtained result from both the sides
to desired result.
Sol. Since, x + y + z = 0 , also we have to prove
x a yb zc a b c
yc za x b = xyz c a b
zb x c ya b c a
xa yb zc
\ LHS = yc za xb
zb xc ya
= x a ( za × ya - x b × x c ) - yb ( yc × ya - x b × zb ) + zc ( yc × xc - za × zb )
= x a (a2 yz - x 2 bc ) - yb ( y2 ac - b 2 xz) + zc (c 2 xy - z2 ab )
= x yza3 - x 3 abc - y3 abc + b 3 x yz + c 3 x yz - z3 abc
= x yz (a3 + b 3 + c 3 ) - abc (x 3 + y3 + z3 )
= x yz (a3 + b 3 + c 3 ) - abc (3 x yz)
[Q x + y + z = 0 Þ x 3 + y3 + z3 - 3xyz]
= x yz (a3 + b 3 + c 3 - 3 abc ) ...(i)
a b c a+ b+c b c
Now, RHS = x yz c a b = x yz a + b + c a b [Q C1 ® C1 + C 2 + C 3 ]
b c a a+ b+c c a
1 b c
= x yz (a + b + c ) 1 a b [taking (a + b + c ) common from C1]
1 c a
0 b-c c - a
= x yz (a + b + c ) 0 a - c b - a
1 c a
[Q R1 ® R1 - R 3 and R 2 ® R 2 - R 3 ]
Expanding along C1,
= x yz (a + b + c ) [1 (b - c ) (b - a) - (a - c ) (c - a)]
= x yz (a + b + c ) (b 2 - ab - bc + ac + a2 + c 2 - 2 ac )
= x yz (a + b + c ) (a2 + b 2 + c 2 - ab - bc - ca)
= x yz (a3 + b 3 + c 3 - 3 abc ) ...(ii)
From Eqs. (i) and (ii),
LHS = RHS
xa yb zc a b c
Þ yc za x b = x yz c a b Hence proved.
zb x c ya b c a
Objective Type Questions
2x 5 6 -2
Q. 24 If = , then the value of x is
8 x 7 3
(a) 3 (b) ± 3 (c) ± 6 (d) 6
2x 5 6 -2
Sol. (c) Q =
8 x 7 3
2
Þ 2 x - 40 = 18 + 14
Þ 2 x 2 = 32 + 40
72
Þ x2 = = 36
2
\ x=± 6
a -b b +c a
Q. 25 The value of b - a c + a b is
c -a a +b c
(a) a3 + b3 + c3 (b) 3bc
(c) a3 + b3 + c3 - 3abc (d) None of these
Sol. (d) We have,
a-b b+c a a+ c b+ c+ a a
b- a c + a b = b+ c c+ a+ b b [Q C1 ® C1 + C 2 and C 2 ® C 2 + C 3 ]
c-a a+ b c c+ b a+ b+c c
a+c 1 a
= (a + b + c ) b + c 1 b [taking (a + b + c ) common from C 2 ]
c+ b 1 c
a- b 0 a-c
= (a + b + c ) 0 0 b-c [Q R 2 ® R 2 - R 3 and R1 ® R1 - R 3 ]
c+ b 1 c
= (a + b + c ) [- (b - c ) × (a - b )] [expanding along R 2 ]
= (a + b + c ) (c - b ) (a - b )
Q. 26 If the area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is
9 sq units. Then, the value of k will be
(a) 9 (b) 3 (c) -9 (d) 6
Sol. (b) We know that, area of a triangle with vertices (x1, y1 ), (x 2 , y2 ) and (x 3 , y3 ) is given by
x1 y1 1
1
D= x 2 y2 1
2
x 3 y3 1
-3 0 1
1
\ D= 3 0 1
2
0 k 1
Expanding along R1,
1
9= [-3 (- k ) - 0 + 1 (3 k )]
2
Þ 18 = 3 k + 3 k = 6 k
18
\ k= =3
6
Q. 27 The determinant
b 2 - ab b - c bc - ac
ab - a 2 a - b b 2 - ab equals to
bc - ac c - a ab - a 2
(a) abc ( b - c)( c - a)( a - b) (b) ( b - c)( c - a)( a - b)
(c) ( a + b + c)( b - c)( c - a)( a - b) (d) None of these
Sol. (d) We have,
b 2 - ab b - c bc - ac b ( b - a) b - c c ( b - a)
ab - a2 a - b b 2 - ab = a (b - a) a - b b (b - a)
bc - ac c - a ab - a2 c ( b - a) c - a a ( b - a)
b b-c c
= (b - a)2 a a - b b
c c-a a
[on taking (b - a) common from C1 and C 3 each]
b-c b-c c
= (b - a)2 a - b a - b b [Q C1 ® C1 - C 3 ]
c-a c-a a
=0
[since, two columns C1 and C 2 are identical, so the value of determinant is zero]
é sin t ù
= -1+ 1 êëQ t lim = 1 and cos 0 = 1ú
®0 t û
=0
2 l -3
Q. 33 If A = 0 2 5 , then A -1 exists, if
1 1 3
(a) l = 2 (b) l ¹ 2
(c) l ¹ - 2 (d) None of these
Sol. (d) We have,
2 l -3
A= 0 2 5
1 1 3
Expanding along R1,
| A| = 2 (6 - 5) - l (-5) - 3 (-2 ) = 2 + 5l + 6
We know that, A -1 exists, if A is non-singular matrix i.e., A ¹ 0.
\ 2 + 5l + 6 ¹ 0
Þ 5l ¹ - 8
-8
\ l¹
5
-1 -8
So, A exists if and only if l ¹ .
5
Q. 34 If A and B are invertible matrices, then which of the following is not
correct?
(a) adj A = | A|× A-1 (b) det ( A) -1 = [det ( A) ]-1
(c) ( AB ) -1 = B-1 A-1 (d) ( A + B ) -1 = B-1 + A-1
Sol. (d) Since, A and B are invertible matrices. So, we can say that
( AB)-1 = B-1 A -1 ...(i)
1
Also, A -1 = (adj A)
| A|
Þ adj A = | A| × A -1 ...(ii)
Also, det ( A)-1 = [det ( A)]-1
1
Þ det ( A)-1 =
[det ( A)]
Þ det ( A) × det ( A)-1 = 1 ...(iii)
which is true.
1
Again, ( A + B)-1 = adj ( A + B )
( A + B)
Þ ( A + B )-1 ¹ B-1 + A -1 ...(iv)
So, only option (d) is incorrect.
1+x 1 1
Q. 35 If x, y and z are all different from zero and 1 1+ y 1 = 0,
1 1 1+z
then the value of x -1 + y -1 + z -1 is
(a) xyz (b) x -1y -1z -1 (c) - x - y - z (d) -1
1+ x 1 1
Sol. (d) We have, 1 1+ y 1 =0
1 1 1+ z
Applying C1 ® C1 - C 3 and C 2 ® C 2 - C 3 ,
x 0 1
Þ 0 y 1 =0
-z -z 1+ z
Expanding along R1,
x [ y (1 + z) + z] - 0 + 1 ( yz) = 0
Þ x ( y + yz + z) + yz = 0
Þ x y + x yz + x z + yz = 0
xy x yz xz yz
Þ + + + = 0 [on dividing (xyz) from both sides]
x yz x yz x yz x yz
1 1 1
Þ + + + 1= 0
x y z
1 1 1
Þ + + = -1
x y z
\ x -1 + y-1 + z-1 = - 1
x x+y x + 2y
Q. 36 The value of x + 2y x x + y is
x+y x + 2y x
2
(a) 9x ( x + y) (b) 9y 2 ( x + y)
(c) 3y 2 ( x + y) (d) 7x 2 ( x + y)
x x+ y x + 2y
Sol. (b) We have, x + 2y x x+ y
x+ y x + 2y x
3 (x + y) x + y y
= 3 (x + y) x y [Q C1 ® C1 + C 2 + C 3 and C 3 ® C 3 - C 2 ]
3 (x + y) x + 2 y -2 y
1 (x + y) y
= 3 (x + y) 1 x y [taking 3 (x + y) common from first column]
1 (x + 2 y) -2 y
0 y 0
= 3 (x + y) 1 x y [Q R1 ® R1 - R 2 ]
1 (x + 2 y) -2 y
Expanding along R1,
= 3 (x + y) [- y (-2 y - y)]
= 3 y2 × 3 (x + y) = 9 y2 (x + y)
Sol. We have,
(2 x + 2 - x )2 (2 x - 2 - x )2 1
(3x + 3- x )2 (3x - 3- x )2 1
(4x + 4- x )2 (4x - 4- x )2 1
(2 × 2 x ) (2 × 2 - x ) (2 x - 2 - x )2 1
= (2 × 3x ) (2 × 3- x ) (3x - 3- x )2 1 [Q (a + b )2 - (a - b )2 = 4 ab ]
(2 × 4x ) (2 × 4- x ) (4x - 4- x )2 1 [Q C1 ® C1 - C 2 ]
4 (2 x - 2 - x )2 1
= 4 (3x - 3- x )2 1 = 0 [since, C1 and C 3 are proportional to each other]
4 (4x - 4- x )2 1
2
0 cos q sin q
Q. 41 If cos2 q = 0 , then cos q sin q 0 is equal to ......... .
sin q 0 cos q
x 3 7
Q. 45 If x = - 9 is a root of 2 x 2 = 0, then other two roots are ......... .
7 6 x
x 3 7
Sol. Since, 2 x 2 =0
7 6 x
Expanding along R1,
x (x 2 - 12 ) - 3 (2 x - 14) + 7 (12 - 7 x ) = 0
Þ x 3 - 12 x - 6x + 42 + 84 - 49x = 0
Þ x 3 - 67 x + 126 = 0 ...(i)
Here, 126 ´ 1 = 9 ´ 2 ´ 7
For x = 2, 2 3 - 67 ´ 2 + 126 = 134 - 134 = 0
Hence, x = 2 is a root.
For x = 7, 7 3 - 67 ´ 7 + 126 = 469 - 469 = 0
Hence, x = 7 is also a root.
0 xyz x-z
Q. 46 y -x 0 y -z is equal to ......... .
z-x z-y 0
(1 + x) 17 (1 + x) 19 (1 + x)23
Q. 47 If f (x) = (1 + x)23 (1 + x)29 (1 + x) 34
(1 + x) 41 (1 + x) 43 (1 + x) 47
Sol. Since,
1 (1 + x )2 (1 + x )6
17 23 41
f(x ) = (1 + x ) (1 + x ) (1 + x ) 1 (1 + x )6 (1 + x )11 = 0
1 (1 + x )2 (1 + x )6
[since, R1 and R 3 are identical]
\ A=0
True/False
Q. 48 ( A 3 ) -1 = ( A -1 ) 3 , where A is a square matrix and A ¹ 0 .
Sol. True
Since, ( A n )-1 = ( A -1 )n , where n Î N.
1 -1
Q. 49 (aA) -1 = A , where a is any real number and A is a square matrix.
a
Sol. False
Since, we know that, if A is a non-singular square matrix, then for any scalar a (non-zero), aA
is invertible such that
æ1 ö æ 1ö
(aA) ç A -1 ÷ = ç a × ÷ ( A × A -1 )
èa ø è aø
=I
æ 1 -1 ö 1
i.e., (aA) is inverse of ç A ÷ or (aA) = A -1, where a is any non-zero scalar.
-1
èa ø a
In the above statement a is any real number. So, we can conclude that above statement is
false.
Q. 52 If the value of a third order determinant is 12, then the value of the
determinant formed by replacing each element by its cofactor will be
144.
Sol. True
Let A is the determinant.
\ | A| = 12
Also, we know that, if A is a square matrix of order n, then|adj A| = | A|n - 1
For n = 3,|adj A| = | A|3 - 1 = | A| 2
= (12 )2 = 144
x +1 x +2 x +a
Q. 53 x + 2 x + 3 x + b = 0, where a, b and c are in AP.
x +3 x +4 x +c
Sol. True
Since, a, b and c are in AP, then 2b = a + c
x+1 x+2 x+ a
\ x+2 x+ 3 x+ b =0
x+ 3 x+ 4 x+c
2x + 4 2x + 6 2x + a + c
Þ x+2 x+ 3 x+ b =0 [Q R1 ® R1 + R 3 ]
x+ 3 x+ 4 x+c
2 (x + 2 ) 2 (x + 3) 2 (x + b )
Þ x+2 x+ 3 x+ b =0 [Q 2b = a + c]
x+ 3 x+ 4 x+c
Þ 0=0 [since, R1 and R 2 are in proportional to each other]
Hence, statement is true.
1 1 1
1
Q. 58 The maximum value of 1 1 + sin q 1 is .
2
1 1 1 + cos q
Sol. True
1 1 1
Since, 0 sin q 0 [Q R 2 ® R 2 - R1 and R 3 ® R 3 - R1]
0 0 cos q
On expanding along third row, we get the value of the determinant
1 1
= cos q × sin q = sin 2 q =
2 2
[when q is 45° which gives maximum value]
5
Continuity and
Differentiability
Short Answer Type Questions
Q. 1 Examine the continuity of the function f (x) = x 3 + 2x 2 - 1 at x = 1.
K Thinking Process
We know that, function f will be continuous at x = a, if lim f (x) = lim f (x) = f (a) .
x®a- x ® a+
and f(1) = 1 + 2 - 1 = 2
So, f(x ) is continuous at x = 1.
Note Every polynomial function is continuous at any real point.
ì3x + 5, if x ³ 2
Q. 2 f (x) = í 2 at x = 2.
îx , if x < 2
ì3x + 5, if x ³ 2
Sol. We have, f( x ) = í 2 at x = 2.
îx , if x < 2
At x = 2, LHL = lim (x )2
x ® 2-
ì 2x 2 - 3x - 2
ï , if x ¹ 2
Q. 4 f (x) = í x -2 at x = 2.
ï 5, if x = 2
î
ì2 x 2 - 3x - 2
ï , if x ¹ 2
Sol. We have, f(x ) = í x -2 at x = 2.
ï5, if x = 2
î
2 x 2 - 3x - 2
At x = 2, LHL = lim
x ®2 - x -2
2(2 - h)2 - 3 (2 - h) - 2
= lim
h®0 (2 - h) - 2
8 + 2 h2 - 8 h - 6 + 3 h - 2
= lim
h®0 -h
2 h2 - 5 h h ( 2 h - 5)
= lim = lim =5
h®0 -h h®0 -h
2 x 2 - 3x - 2
RHL = lim
x ® 2+ x -2
2 ( 2 + h)2 - 3 ( 2 + h) - 2
= lim
h®0 (2 + h) - 2
8 + 2 h2 + 8 h - 6 - 3 h - 2
= lim
h®0 h
2 h2 + 5 h h( 2 h + 5)
= lim = lim =5
h®0 h h®0 h
and f(2 ) = 5
\ LHL = RHL = f ( 2 )
So, f(x ) is continuous at x = 2.
ì | x - 4|
ï , if x ¹ 4
Q. 5 f (x) = í 2 (x - 4) at x = 4.
ï 0, if x = 4
î
ì|x - 4| if
ï , x¹4
Sol. We have, f(x ) = í2(x - 4) at x = 4.
ï 0, if x = 4
î
|x - 4|
At x = 4, LHL = lim
x ® 4- 2(x - 4)
|4 - h - 4| |0 - h|
= lim = lim
h ® 0 2[( 4 - h) - 4] h ® 0 ( 8 - 2 h - 8)
h -1
= lim = and f(4) = 0 ¹LHL
h ® 0 -2 h 2
So, f(x ) is discontinuous at x = 4.
ì| x | cos 1 , if x ¹ 0
ï
Q. 6 f (x) = í x at x = 0.
ïî 0, if x = 0
ì 1
ï|x| cos , if x ¹ 0
Sol. We have, f( x ) = í x at x = 0
ïî0, if x = 0
1 1
At x = 0, LHL = lim |x| cos = lim |0 - h| cos
x ® 0- x h®0 0-h
-1
= lim h cos æç ö÷
h®0 è hø
= 0 ´[an oscillating number between -1 and 1 ] = 0
1
RHL = lim |x | cos
+ x
x ®0
1
= lim |0 + h| cos
h®0 (0 + h)
1
= lim h cos
h®0 h
= 0 ´ [an oscillating number between -1 and 1] = 0
and f(0) = 0
Since, LHL = RHL = f(0)
So, f(x ) is continuous at x = 0.
ì| x - a| sin 1 , if x ¹ 0
ï
Q. 7 f (x) = í x -a at x = a.
ï 0, if x = a
î
ì 1
ï|x - a| sin , if x ¹ 0
Sol. We have, f( x ) = í x-a at x = a
ï 0, if x = a
î
1
At x = a, LHL = lim |x - a| sin
x ® a- x-a
æ 1 ö
= lim |a - h - a| sin çç ÷÷
h®0
èa - h - aø
æ1ö
= lim - h sin çç ÷÷ [Q sin (- q) = - sin q]
h®0
è hø
= 0 ´ [an oscillating number between -1 and 1 ] = 0
æ 1 ö
RHL = lim |x - a| sin çç ÷÷
èx - aø
+
x ®a
æ 1 ö 1
= lim |a + h - a| sin çç ÷÷ = lim h sin
h®0
è a + h - a ø h®0 h
= 0 ´ [an oscillating number between -1 and 1 ] = 0
and f ( a) = 0
\ LHL = RHL = f(a)
So, f(x ) is continuous at x = a.
ì e 1/ x
ï , if x ¹ 0
Q. 8 f (x) = í 1 + e 1/ x at x = 0.
ï 0, if x = 0
î
ì e1/ x
ï , if x ¹ 0
Sol. We have, f(x ) = í1 + e1/ x at x = 0
ï0, if x = 0
î
e1/ x e1/ 0 - h
At x = 0, LHL = lim = lim
x ®0 -
1+ e 1/ x h®0 1 + e1/ 0 - h
e -1/ h 1
= lim -1/ h
= lim
h®0 1+ e e (1 + e -1/ h )
h®0 1/ h
1 1 1
= lim = ¥ = [Q e ¥ = ¥ ]
h®0 e1/ h +1 e +1 ¥ +1
1
= =0
1
0
e1/ x
RHL = lim
x ®0 +
1 + e1/ x
e1/ 0 + h
e1/ h
= lim = lim
h®0 1 + e1/ 0 + h h®0 1 + e1/ h
1 1
= lim =
h®0 e -1/ h + 1 e -¥ + 1
1
= =1 [Q e - ¥ = 0]
0+1
Hence, LHL ¹ RHL at x = 0.
So, f(x ) is discontinuous at x = 0.
ì x2
ïï , if 0 £ x £ 1
Q. 9 f (x) = í 2 at x = 1.
ï2x 2 - 3x + 3 , if 1 < x £ 2
ïî 2
ì x2
ïï , if 0 £ x £ 1
Sol. We have, f( x ) = í 2 at x = 1
ï 2 x 2 - 3x + 3 , if 1 < x £ 2
ïî 2
x2 (1 - h)2
At x = 1, HL = lim = lim
- 2 ® 0 2
x ®1 h
1 + h2 - 2 h 1
= lim =
h®0 2 2
æ 2
RHL = lim ç 2 x - 3x +
3 ö
÷
x ® 1+ è 2 ø
Q. 10 f (x) = | x | + | x - 1| at x = 1.
Sol. We have, f(x ) = |x| + |x - 1| at x = 1
At x = 1, LHL = lim [|x| + |x - 1|]
x ® 1-
= lim [15 - 3h - 8] = 7
h®0
ì 2 x + 2 - 16
ï , if x¹ 2
Q. 12 f ( x ) = í 4 x - 16 at x = 2.
ïî k, if x=2
ì2 x + 2 - 16
ï , if x ¹ 2
Sol. We have, f(x ) = í 4x - 16 at x = 2
ïî k, if x = 2
Since, f(x ) is continuous at x = 2.
\ LHL = RHL = f(2 )
2x × 22 - 24 4 × (2 x - 4)
At x = 2, lim 2
= lim
x ®2 x
4 -4 x ®2 (2 x )2 - (4)2
4 × (2 x - 4)
= lim [Q a2 - b 2 = (a + b )(a - b )]
x ®2 (2 - 4) (2 x + 4)
x
4 4 1
= lim x = =
x ®2 2 + 4 8 2
But f(2 ) = k
1
\ k=
2
ì 1 + kx - 1 - kx
ï , if - 1 £ x < 0
Q.13 f (x) = í x at x = 0.
2x + 1 if 0 £ x £ 1
ï ,
î x-1
ì 1 + kx - 1 - kx
ï , if - 1 £ x < 0
Sol. We have, f(x ) = í x at x = 0.
2x + 1 if 0 £ x £ 1
ï ,
î x-1
1 + kx - 1 - kx
\ LHL = lim
- x
x ®0
æ 1 + kx - 1 - kx ö æ 1 + kx + 1 - kx ö
= lim çç ÷×ç
÷ ç 1 + kx +
÷
x ®0 - è x ø è 1 - kx ÷ø
1 + kx - 1 + kx
= lim
x ®0 - x [ 1 + kx + 1 - kx ]
2 kx
= lim
x ®0 - x 1 + kx + 1 - kx
2k
= lim
h ®0 1 + k ( 0 - h) + 1 - k ( 0 - h)
2k 2k
= lim = =k
h ®0 1 - kh + 1 + kh 2
2 ´0+ 1
and f(0) = = -1
0-1
Þ k = -1 [Q LHL = RHL = f(0)]
ì 1 - cos kx
ïï x sin x , if x ¹ 0
Q. 14 f (x) = í at x = 0.
ï 1, if x = 0
ïî 2
ì1 - cos kx
ïï x sin x , if ¹ 0
x
Sol. We have, f( x ) = í at x = 0
ï 1, if x = 0
ïî2
1 - cos kx 1 - cos k (0 - h)
At x = 0, LHL = lim = lim
x ®0 - x sin x h ®0 ( 0 - h) sin ( 0 - h)
1 - cos (- kh)
= lim
h ®0 - h sin (- h)
1 - cos kh
= lim [Q cos (- q) = cos q, sin(- q) = - sin q]
h ®0 h sin h
kh
1 - 1 + 2 sin2
= lim 2 éQ cos q = 1 - 2 sin2 q ù
h ®0 h sin h êë 2 úû
kh
2 sin2
= lim 2
h ®0 h sin h
kh kh
2 sin sin 2
= lim 2 . 2 . 1 . k h/ 4
h ®0 kh kh sin h h
2 2 h
2 k2 k2 éQ lim sin h = 1ù
= =
4 2 êë h ®0 h úû
2
1 k 1
Also, f(0) = Þ = Þ k = ±1 p
2 2 2
ì x
, if x ¹ 0
ï
Q. 15 Prove that the function f defined by f (x) = í| x | + 2x 2
ï k, if x = 0
î
remains discontinuous at x = 0, regardless the choice of k.
ì x
ï , if x ¹ 0
Sol. We have, f(x ) = í |x| + 2 x 2
ï k, if x = 0
î
x (0 - h)
At x = 0, LHL = lim 2
= lim
x ®0 - | x| + 2 x h ®0 | 0 - h| + 2( 0 - h)2
-h -h
= lim = lim = -1
h ®0 h + 2 h2 h ®0 h (1 + 2 h)
x 0+ h
RHL = lim 2
= lim
x ®0 + | x| + 2 x h ®0 |0 + h| + 2( 0 + h)2
h h
= lim = lim =1
h ® 0 h + 2 h2 h ® 0 h (1 + 2 h)
and f(0) = k
Since, LHL ¹ RHL for any value of k.
Hence, f(x ) is discontinuous at x = 0 regardless the choice of k.
= - 1+ a
x-4
RHL = lim + b
x ®4 + | x - 4|
4+ h-4 h
= lim + b = lim + b = 1 + b
h ®0 |4 + h - 4| h ®0 h
f(4) = a + b Þ -1 + a = 1 + b = a + b
Þ -1 + a = a + b and 1 + b = a + b
\ b = - 1 and a = 1
1
Q. 17 If the function f (x) =
, then find the points of discontinuity of
x +2
the composite function y = f { f (x)}.
Sol. 1
We have, f( x ) =
x+2
\ y = f{f(x )}
æ 1 ö 1
= f çç ÷÷ =
è x +2 ø 1
+2
x +2
1 (x + 2 )
= × (x + 2 ) =
1 + 2x + 4 (2 x + 5)
So, the function y will not be continuous at those points, where it is not defined as it is a
rational function.
x +2
Therefore, y = is not defined, when 2 x + 5 = 0
(2 x + 5)
-5
\ x=
2
-5
Hence, y is discontinuous at x = .
2
1
Q. 18 Find all points of discontinuity of the function f (t) = 2
, where
t + t -2
1
t= .
x -1
1 1
Sol. We have, f (t ) = and t =
t2 + t - 2 x -1
1
\ f( t ) =
æ 1 ö æ 1 ö 2
ç ÷ ç ÷
ç x 2 + 1 - 2 x ÷ + ç x -1 ÷ - 1
è ø è ø
1
=
æ 1 + x - 1 + [-2(x - 1)2 ] ö
ç ÷
ç (x 2 + 1 - 2 x ) ÷
è ø
x 2 + 1 - 2x
=
x - 2 x 2 - 2 + 4x
x 2 + 1 - 2x
=
- 2 x 2 + 5x - 2
(x - 1)2
=
- ( 2 x 2 - 5x + 2 )
(x - 1)2
=
( 2 x - 1) (2 - x )
So, f( t ) is discontinuous at 2 x - 1 = 0 Þ x = 1/ 2
and 2-x = 0 Þ x = 2.
Q. 19 Show that the function f (x) = |sin x + cos x | is continuous at x = p.
Sol. We have, f(x ) = |sin x + cos x| at x = p
Let g (x ) = sin x + cos x
and h(x ) = |x |
\ hog (x ) = h[g (x )]
= h (sin x + cos x )
= |sin x + cos x |
Since, g (x ) = sin x + cos x is a continuous function as it is forming with addition of two
continuous functions sin x and cos x.
Also, h(x ) = |x | is also a continuous function. Since, we know that composite functions of
two continuous functions is also a continuous function.
Hence, f(x ) = |sin x + cos x| is a continuous function everywhere.
So, f(x ) is continuous at x = p.
= lim + h sin æç ö÷
1
[Q sin (- q) = - sin q ]
h ®0 è hø
= 0 ´[an oscillating number between -1and1] = 0
1
x 2 sin - 0
f(x ) - f(0) x
Rf ¢(0) = lim = lim
x ®0 + x-0 x ®0 + x-0
æ 1 ö
(0 + h)2 sin çç ÷
è 0 + h ÷ø h2 sin (1 / h)
= lim = lim
h ®0 0+ h h ®0 h
= lim h sin (1 / h)
h ®0
Q Lf ¢(0) = Rf ¢(0)
So, f(x ) is differentiable at x = 0.
ì1 + x, if x £ 2
Q. 22 f (x) = í at x = 2.
î5 - x, if x > 2
ì1 + x, if x £ 2
Sol. We have, f(x ) = í at x = 2.
î5 - x, if x > 2
For differentiability at x = 2,
f(x ) - f(2 ) (1 + x ) - (1 + 2 )
Lf ¢(2 ) = lim = lim
x ®2 - x -2 x ®2 - x -2
(1 + 2 - h) - 3 -h
= lim = lim =1
h ®0 2 - h-2 h ®0 - h
f(x ) - f(2 ) (5 - x ) - 3
Rf ¢(2 ) = lim = lim
x ®2 + x -2 x ®2 + x -2
5 - (2 + h) - 3
= lim
h ®0 2 + h-2
5-2 - h- 3 -h
= lim = lim
h ®0 h h ®0 + h
= -1
Q Lf ¢(2 ) ¹ Rf ¢(2 )
So, f(x ) is not differentiable at x = 2.
Q. 23 Show that f (x) = | x - 5| is continuous but not differentiable at x = 5.
Sol. We have, f(x ) = |x - 5|
ì- (x - 5), if x < 5
\ f( x ) = í
îx - 5, if x ³ 5
For continuity at x = 5,
LHL = lim (- x + 5)
x ®5 -
= lim [- (5 - h) + 5] = lim h = 0
h ®0 h ®0
RHL = lim (x - 5)
x ®5 +
= lim (5 + h - 5) = lim h = 0
h ®0 h ®0
\ f(5) = 5 - 5 = 0
Þ LHL = RHL = f(5)
Hence, f(x ) is continuous at x = 5.
f(x ) - f(5)
Now, Lf ¢(5) = lim
x ®5 - x-5
-x + 5 - 0
= lim = -1
x ®5 - x-5
f(x ) - f(5)
Rf ¢(5) = lim
x ®5 + x-5
x -5-0
= lim =1
x ®5 + x- 5
\ Lf ¢(5) ¹ Rf ¢(5)
So, f(x ) = |x - 5| is not differentiable at x = 5.
2
Sol. Let y = 2cos x
2
\ log y = log 2cos x
= cos 2 x × log 2
On differentiating w.r.t. x, we get
d dy d
log y. = log 2 × cos 2 x
dy dx dx
1 dy d
Þ × = log 2 (cos x )2
y dx dx
1 dy d
Þ × = log 2 × [2 cos x ] × cos x
y dx dx
= log 2 × 2 cos x × (- sin x )
= log 2 × [ - (sin 2 x )]
dy
\ = - y × log 2 (sin 2 x )
dx
2
= - 2cos x
× log 2 (sin2 x )
x
Q. 26 8 8
x
8x 8x
Sol. Let y= 8
Þ log y = log
x x8
d dy d
Þ log y × = [log 8x - log x 8 ]
dy dx dx
1 dy d
Þ × = [x × log 8 - 8 × log x ]
y dx dx
On differentiating w.r.t. x, we get
1 dy 1
× = log 8 × 1 - 8 ×
y dx x
1 dy 8
Þ × = log 8 -
y dx x
8x
= y æç log 8 - ö÷ = 8 æç log 8 - ö÷
dy 8 8
\
dx è xø x è xø
Q. 27 log (x + x2 + a )
Sol. Let y = log (x + x 2 + a)
dy d
\ = log (x + x 2 + a)
dx dx
1 d
= . [x + x 2 + a ]
(x + x 2 + a) dx
1 é1 + 1 (x 2 + a)-1/ 2 × 2 x ù
=
ê ûú
(x + x 2 + a) ë 2
1 æ x ö
= × ç1 + ÷
(x + x 2 + a ) çè x 2 + a ÷ø
( x2 + a + x) 1
= =
2 2 2
(x + x + a) ( x + a) ( x + a)
Q. 28 log [log (log x 5 )]
Sol. Let y = log [log (log x 5 )]
dy d
\ = [log (log log x 5 )]
dx dx
1 d
= 5
× (log × log x 5 )
log log x dx
1 æ 1 ö d
= ×ç ÷. log x 5
log log x 5 çè log x 5 ÷ø dx
1 1 d 5
= × × (5 log x ) =
log log x 5 log x 5 dx x × log (log x 5 ) × log (x 5 )
Q. 29 sin x + cos2 x
Sol. Let y = sin x + (cos x )2
dy d d
\ = sin(x 1/ 2 ) + [cos (x 1/ 2 )]2
dx dx dx
d 1/ 2 d
= cos x 1/ 2 × x + 2 cos (x 1/ 2 ) [cos (x 1/ 2 )]
dx dx
= cos (x 1/ 2 ) x -1/ 2 + 2 × cos (x 1/ 2 ) × é - sin (x 1/ 2 ) .
1 d 1/ 2 ù
x
2 ëê dx ûú
1 1/ 2 1/ 2 1
= cos x × [- 2 cos (x )] × sin x ×
2 x 2 x
1
= [cos ( x ) - sin (2 x )]
2 x
Q. 30 sin n (ax 2 + bx + c )
Sol. Let y = sin (ax 2 + bx + c )
n
dy d
\ = [sin (ax 2 + bx + c )]n
dx dx
d
= n × [sin (ax 2 + bx + c )]n -1 × sin (ax 2 + bx + c )
dx
d
= n × sinn -1 (ax 2 + bx + c ) × cos (ax 2 + bx + c ) . (ax 2 + bx + c )
dx
= n × sinn - 1 (ax 2 + bx + c ) × cos (ax 2 + bx + c ) × (2 ax + b )
= n × (2 ax + b ) × sinn - 1 (ax 2 + bx + c ) × cos (ax 2 + bx + c )
Q. 31 cos(tan x + 1)
Sol. Let y = cos (tan x + 1)
dy d d
\ = cos (tan x + 1) = - sin (tan x + 1) × (tan x + 1)
dx dx dx
= - sin (tan x + 1) × sec 2 x + 1 ×
d
(x + 1)1/ 2 éQ d (tan x ) = sec 2 x ù
dx êë dx úû
2 1 -1/ 2 d
= - sin (tan x + 1) × (sec x + 1) × (x + 1) × (x + 1)
2 dx
-1
= × sin (tan x + 1) × sec 2 ( x + 1)
2 x+1
Q. 32 sin x 2 + sin 2 x + sin 2 (x 2 )
Sol. Let y = sin x 2 + sin2 x + sin2 (x 2 )
dy d d d
\ = sin (x 2 ) + (sin x )2 + (sin x 2 )2
dx dx dx dx
d d d
= cos (x 2 ) (x 2 ) + 2 sin x × sin x + 2 sin x 2 × sin x 2
dx dx dx
d 2
= cos x 2 2 x + 2 × sin x × cos x + 2 sin x 2 cos x 2 × x
dx
= 2 x cos (x )2 + 2 × sin x × cos x + 2 sin x 2 × cos x 2 × 2 x
= 2 x cos (x )2 + sin 2 x + sin 2 (x )2 × 2 x
= 2 x cos (x 2 ) + 2 x × sin 2 (x 2 ) + sin 2 x
1
Q. 33 sin -1
x+1
1
Sol. Let y = sin-1
x+1
dy d 1
\ = sin-1
dx dx x+1
1 d 1 é d 1 ù
= × êQ (sin-1 x ) = ú
æ 1 ö
2 dx (x + 1)1/ 2 ë dx 1- x 2 û
1- ç ÷
è x + 1ø
1 d
= × × (x + 1)-1/ 2
x + 1 - 1 dx
x+1
1
x + 1 -1 - -1 d
= × (x + 1) 2 × (x + 1)
x 2 dx
(x + 1)1/ 2 æ 1 ö -1 æ 1 ö
= × ç - ÷ (x + 1)-3 / 2 = ×ç ÷
x 1/ 2 è 2ø 2 x çè x + 1 ÷ø
Q. 34 (sin x) cos x
Sol. Let y = (sin x )cos x
Þ log y = log(sin x )cos x = cos x log sin x
d dy d
\ log y × = (cos x × logsin x )
dy dx dx
1 dy d d
Þ × = cos x × log sin x + log sin x × cos x
y dx dx dx
1 d
= cos x × × sin x + log sin x × (- sin x )
sin x dx
é cos x ù
= cot x × cos x - log (sin x ) × sin x êQ cot x = sin x ú
ë û
dy é cos 2 x ù
\ = yê - sin x × log (sin x )ú
dx ë sin x û
é cos 2
x ù
= sin x cos x ê - sin x × log (sin x )ú
ë sin x û
Q. 35 sin m x × cos n x
Sol. Let y = sinm x × cos n x
dy d
\ = [(sin x )m × (cos x )n ]
dx dx
d d
= (sin x )m × (cos x )n + (cos x )n × (sin x )m
dx dx
d d
= (sin x )m × n (cos x )n -1 × cos x + (cos x )n m (sin x )m -1 × sinx
dx dx
m n -1 n m -1
= (sin x ) × n(cos x ) (- sin x ) + (cos x ) × m (sin x ) cos x
= - n sinm x × cos n -1 x × (sin x ) + m cos n x × sinm -1 x × cos x
1 1
= - n × sinm x × sin x × cos n x × + m × sinm x. × cos n x × cos x
cos x sin x
= - n × sinm x × cos n x × tan x + m sinm x × cos n x × cot x
= sinm x × cos n x [- n tan x + m cot x ]
Q. 36 (x + 1)2 (x + 2) 3 (x + 3) 4
Sol. Let y = (x + 1)2 (x + 2 )3 (x + 3)4
\ log y = log {(x + 1)2 × (x + 2 )3 (x + 3)4 }
= log (x + 1)2 + log(x + 2 )3 + log (x + 3)4
d dy d d d
and log y × = [2 log (x + 1) ] + [3log (x + 2 )] + [4 log (x + 3)]
dy dx dx dx dx
1 dy 2 d 1 d
× = × (x + 1) + 3 × × (x + 2 )
y dx (x + 1) dx (x + 2 ) dx
1 d éQ d (log x ) = 1 ù
+ 4× × (x + 3)
(x + 3) dx êë dx x úû
é 2 3 4 ù
=ê + +
ë x + 1 x + 2 x + 3 úû
dy é 2 3 4 ù
\ = yê + + ú
dx ë (x + 1) (x + 2 ) (x + 3)û
é 2 3 4 ù
= (x + 1)2 × (x + 2 )3 × (x + 3)4 ê + + ú
ë (x + 1) (x + 2 ) (x + 3)û
= (x + 1)2 × (x + 2 )3 × (x + 3)4
é 2 (x + 2 ) (x + 3) + 3 (x + 1) (x + 3) + 4(x + 1) (x + 2 )ù
ê (x + 1) (x + 2 ) (x + 3) ú
ë û
2 3 4
(x + 1) (x + 2 ) (x + 3)
=
(x + 1) (x + 2 ) (x + 3)
[2 (x 2 + 5x + 6) + 3 (x 2 + 4x + 3) + 4 (x 2 + 3x + 2 )]
= (x + 1) (x + 2 )2 (x + 3)3
[2 x 2 + 10x + 12 + 3x 2 + 12 x + 9 + 4x 2 + 12 x + 8]
= (x + 1) (x + 2 )2 (x + 3)3 [9x 2 + 34x + 29]
sin x + cos x ö p p
Q. 37 cos -1 æç ÷, - < x <
è 2 ø 4 4
æ sin x + cos x ö
Sol. Let y = cos -1 ç ÷
è 2 ø
dy d æ sin x + cos xö
\ = cos -1 ç ÷
dx dx è 2 ø
-1 d æ sin x + cos x ö
= . ç ÷
2 dx è 2 ø
æ sin x + cos x ö
1- ç ÷
è 2 ø
é d 1 ù
êQ (cos x ) = - ú
ë dx 1- x 2 û
-1 1
= × (cos x - sin x )
2 2
(sin x + cos x + 2 sin x × cos x ) 2
4-
2
- 1× 2 1
= × (cos x - sin x )
1 - sin2 x 2
[ Q 1 - sin 2 x = (cos x - sin x )2 = cos 2 x + sin2 x - 2 sin x cos x ]
-1 (cos x - sin x )
= = -1
(cos x - sin x )
1 - cos x p p
Q. 38 tan -1 , - < x<
1 + cos x 4 4
1 - cos x
Sol. Let y = tan-1
1 + cos x
dy d 1 - cos x
\ = tan-1
dx dx 1 + cos x
d é 1 - cos x ù1
/2
1 é d -1 1 ù
= × êëQ dx (tan x ) = 1 + x 2 úû
æ 1 - cos x ö
2 dx êë 1 + cos x úû
1+ ç ÷
è 1 + cos x ø
-1/ 2
1 1 é 1 - cos x ù d æ 1 - cos x ö
= . . çç ÷÷
1 - cos x 2 êë 1 + cos x úû dx è 1 + cos x ø
1+
1 + cos x
-1/ 2
1 1 é (1 - cos x ) (1 - cos x ) ù
= . ×
1 + cos x + 1 - cos x 2 êë (1 + cos x ) (1 - cos x ) úû
1 + cos x
(1 + cos x ) × sin x + (1 - cos x ) × sin x
×
(1 + cos x )2
-1/ 2
(1 + cos x ) 1 é (1 - cos x )2 ù é sin x (1 + cos x + 1 - cos x )ù
= × ê 2 ú ê ú
2 2 ë (1 - cos x )û ë (1 + cos x )2 û
-1/ 2
(1 + cos x ) 1 é (1 - cos x )2 ù é sin x (1 + cos x + 1 - cos x )ù
= × ê 2 ú ê ú
2 2 ë (1 - cos x )û ë (1 + cos x )2 û
-1/ 2
(1 + cos x ) 1 é (1 - cos x )2 ù 2 sin x
= × ê ú ×
2 2 ë sin x û (1 + cos x )2
(1 + cos x ) 1 sin x 2 sin x
= × × ×
2 2 (1 - cos x ) (1 + cos x )2
2 sin2 x 1 sin2 x
= = ×
4 (1 + cos x ) (1 - cos x ) 2 (1 - cos 2 x )
1 sin2 x 1
=× =
2 sin2 x 2
Alternate Method
æ 1 - cos x ö
Let y = tan-1 çç ÷÷
è 1 + cos x ø
æ x ö
ç 1 - 1 + 2 sin2 ÷
= tan -1 ç 2 ÷ éQ cos x = 1 - 2 sin2 x = 2 cos 2 x - 1ù
ç 1 + 2 cos 2 x - 1 ÷ ëê 2 2 úû
ç 2 ÷
è ø
-1 æ xö x
= tan ç tan ÷ =
è 2ø 2
On differentiating w.r.t. x, we get
dy 1
=
dx 2
-p p
Q. 39 tan -1 (sec x + tan x), < x<
2 2
Sol. Let y = tan-1 (sec x + tan x )
dy d
\ = tan-1 (sec x + tan x )
dx dx
1 d é d -1 1 ù
= . (sec x + tan x ) êëQ dx (tan x ) = 1 + x 2 úû
1 + (sec x + tan x )2 dx
1
= × [sec x × tan x + sec 2 x ]
1 + sec 2 x + tan2 x + 2 sec x × tan x
1
= × sec x × (sec x + tan x )
(sec 2 x + sec 2 x + 2 sec x × tan x )
1 1
= × sec x (sec x + tan x ) =
2 sec x (tan x + sec x ) 2
æ a cos x - b sin x ö -p p a
Q. 40 tan -1 çç ÷÷, < x < and tan x > - 1.
è b cos x + a sin x ø 2 2 b
æ a cos x - b sin x ö
Sol. Let y = tan-1 çç ÷
è b cos x + a sin x ÷ø
é a cos x b sin x ù é a - tan x ù
-
ê
-1 b cos x b cos x ú -1 ê b ú
= tan ê ú = tan ê ú
ê b cos x +
a sin x ú a
ê 1 + tan x ú
ëê b cos x b cos x úû ë b û
a é æ x - y öù
= tan-1 - tan-1 tan x -1 -1
êQ tan x - tan y = tan
-1
çç ÷÷ ú
b ë è 1 + xy ø û
a
= tan-1-x
b
dy d æ -1 a ö d
\ = ç tan ÷- (x )
dx dx è b ø dx
é d æaö ù
= 0-1 êëQ dx çè b ÷ø = 0úû
= -1
æ 1ö
Q. 41 sec -1 çç ÷, 0 < x < 1
3 ÷
è 4 x - 3x ø 2
æ 1 ö
Sol. Let y = sec -1 çç 3 ÷
÷ ...(i)
è 4x - 3 x ø
On putting x = cos q in Eq. (i), we get
1
y = sec -1
4cos 3 q - 3 cos q
1
= sec -1
cos 3 q
= sec -1 (sec 3 q) = 3 q
= 3 cos -1 x [Q q = cos -1 x ]
dy d
\ = (3 cos -1 x )
dx dx
-1
= 3×
1 - x2
æ 3a 2 x - x 3 ö -1 x 1
Q. 42 tan -1 çç 3 2 ÷
÷, < <
è a - 3ax ø 3 a 3
æ 3 a2 x - x 3 ö
Sol. Let y = tan-1 çç 3 2
÷
÷
è a - 3ax ø
x
Put x = a tan q Þ q = tan-1
a
-1 é 3 tan q - tan q ù é 3 tan q - tan3 q ù
3
\ y = tan ê 2 ú êQ tan 3 q = ú
ë 1 - 3 tan q û ë 1 - 3 tan2 q û
= tan-1 (tan 3 q) = 3 q
= 3 tan-1
x éQ q = tan-1 x ù
a êë a úû
é ù
ê 1 ú d
× æç ÷ö
dy d -1 x x
\ = 3× tan = 3× ê ú×
dx dx a ê x2 ú dx è a ø
êë + a2
1
úû
a2 1 3a
= 3× × =
a + x2
2
a a2 + x 2
é 1 + x2 + 1 - x2 ù
Q. 43 tan -1 ê ú , - 1 < x < 1, x ¹ 0
êë 1 + x 2 - 1 - x 2 úû
é 1 + x2 + 1 - x2 ù
Sol. Let y = tan-1 ê ú
êë 1 + x 2 - 1 - x 2 úû
Put x 2 = cos 2 q
æ 1 + cos 2 q + 1 - cos 2 q ö
\ y = tan-1 çç ÷
è 1 + cos 2 q - 1 - cos 2 q ÷ø
æ 1 + 2 cos 2 q - 1 + 1 - 1 + 2 sin2 q ö÷
= tan-1 ç
ç 1 + 2 cos 2 q -1 - 1 - 1 + 2 sin2 q ÷ø
è
æ 2 cos q + 2 sin q ö é 2 (cos q + sin q)ù
= tan-1 çç ÷ = tan-1 ê ú
è 2 cos q - 2 sin q ÷ø ë 2 (cos q - sin q) û
æ cos q + sin q ö
ç ÷
æ cos q + sin q ö cos q
= tan-1 çç ÷÷ = tan-1 ç ÷
è cos q - sin q ø ç cos q - sin q ÷
ç cos q ÷
è ø
-1 æ 1 + tan q ö
= tan çç ÷÷
è 1 - tan q ø
p é tan a + tan b ù
= tan-1 tan æç + q ö÷ êQ tan (a + b ) = 1 - tan a × tan b ú
è4 ø ë û
p p 1 éQ 2 q = cos -1 x 2 Þ q = 1 cos -1 x 2 ù
= + q = + cos -1 x 2
4 4 2 ëê 2 ûú
dy d æpö d æ1 -1 2 ö
\ = ç ÷+ ç cos x ÷
dx dx è 4 ø dx è 2 ø
1 -1 d 2 1 -2 x -x
= 0+ × × x = × =
2 1- x 4 dx 2 1- x 4
1 - x4
dy
Find of each of the functions expressed in parametric form.
dx
Q. 44 x = t + 1 , y =t -
1
t t
1 1
Sol. Q x =t + and y = t -
t t
dx d æ 1ö dy d æ 1ö
\ = çt + ÷ and = çt - ÷
dt dt è tø dt dt è tø
dx dy
Þ = 1 + ( - 1 ) t -2 and = 1 - (-1)t -2
dt dt
dx 1 dy 1
Þ = 1- 2 and = 1+ 2
dt t dt t
dx t 2 - 1 dy t 2 + 1
Þ = and =
dt t2 dt t2
dy dy / dt t 2 + 1/ t 2 2
t +1
\ = = = 2
dx dx / dt t 2 - 1/ t 2 t -1
y = e -q æç q - ö÷
Q. 45 x = e q æç q + 1 ö÷, 1
è qø è qø
x = e q æç q + ö÷ and y = e -q æç q - ö÷
1 1
Sol. Q
è q ø è qø
dx d é q æ 1 öù
\ = e × ç q + ÷ú
dq dq êë è q øû
q d æ 1ö æ 1ö d q
=e × çq + ÷ + çq + ÷ × e
dq è qø è q ø dq
æ 1 ö
= e q ç 1 - 2 ÷ + æç q + ö÷ e q
1
è q ø è qø
æ 1 1ö
= e q ç1 - 2 + q + ÷
è q qø
æ q2 - 1 + q3 + q ö
= e q çç ÷
÷ ...(i)
è q2 ø
dy d é - q æ 1 öù
and = e × ç q - ÷ú
dq dq êë è q øû
= e -q ×
d æ 1 ö d e -q æ q - 1 ö
çq - ÷ + ç ÷
dq è q ø dq è qø
æ 1 ö
= e - q ç 1 + 2 ÷ + æç q - ö÷ e - q ×
1 d
(- q)
è q ø è qø dq
é q2 + 1 q2 - 1ù -q é q + 1 - q + q ù
2 3
= e -q ê 2 - ú=e ê ú ...(ii)
ë q q û ë q 2
û
-q æ q2 + 1 - q3 + q ö
e çç ÷
÷
dy dy / dq è q2 ø
\ = =
dx dx / dq q æ q2 - 1 + q3 + q ö
e çç ÷
÷
è q2 ø
-2 q æç
- q3 + q2 + q + 1 ö
÷
=e ç q3 + q2 + q - 1 ÷
è ø
1 - çç 2
÷
÷
è1 + t ø
dx 2(1 - t 2 ) (1 + t 2 ) 2
Þ = × = ...(iii)
dt (1 + t 2 )2 (1 - t 2 ) 1 + t 2
d dy d æ 2t ö
Also, tan y × = ç ÷
dy dt dt ç1 - t 2 ÷
è ø
2 d d
(1 - t ) × (2t ) - 2t × (1 - t 2 )
dy dt dt
sec 2 y =
dt (1 - t 2 )2
dy 2 - 2t 2 + 4t 2 1
= ×
dt (1 - t 2 )2 sec 2 y
2(1 + t 2 ) 1 2(1 + t 2 ) 1
= 2 2
× 2
= ×
(1 - t ) (1 + tan y) (1 - t 2 )2 4t 2
1+
(1 - t 2 )2
2 2 2
2(1 + t ) (1 - t ) 2
= × = ...(iv)
(1 - t 2 )2 (1 + t 2 )2 1 + t 2
dy dy / dt 2 /1+t2
\ = = =1 [from Eqs. (iii) and (iv)]
dx dx / dt 2 / 1 + t 2
1 + log t 3 + 2 log t
Q. 48 x = 2
,y=
t t
1 + log t 3 + 2 log t
Sol. Q x= and y =
t2 t
d d 2
t 2. (1 + log t ) - (1 + log t ). t
dx dt dt
\ =
dt ( t 2 )2
1
t2 × - (1 + log t ) × 2t
t t - (1 + log t ) × 2t
= 4
=
t t4
t - 1 - 2 log t
= 4 [1 - 2 (1 + log t ) = ... (i)
t t3
d d
t. (3 + 2 log t ) - (3 + 2 log t ). t
dy dt dt
and = 2
dt t
1
t × 2 × - (3 + 2 log t ) × 1
= t
t2
2 - 3 - 2 log t - 1 - 2 log t
= = ...(ii)
t2 t2
dy dy / dt - 1 - 2 log t / t 2
\ = = =t
dx dx / dt - 1 - 2 log t / t 3
dy y log x
Q. 49 If x = e cos2 t and y = e sin 2t , then prove that =- .
dx x log y
Sol. Q x = ecos 2 t and y = e sin 2 t
dx d cos 2 t d
\ = e = ecos 2 t . cos 2 t
dt dt dt
d
= ecos 2 t × (- sin 2 t ) × (2 t )
dt
dx
= - 2 ecos 2 t × sin 2 t ...(i)
dt
dy d sin 2 t d
and = e = e sin 2 t × sin 2 t
dt dt dt
d
= esin 2 t cos 2 t × 2 t
dt
= 2e sin 2 t × cos 2t ...(ii)
dy dy / dt 2esin 2 t × cos 2 t
\ = =
dx dx / dt -2ecos 2 t × sin 2 t
esin 2 t × cos 2 t
= ...(iii)
ecos 2 t × sin 2 t
We know that, log x = cos 2 t × log e = cos 2 t ...(iv)
and log y = sin2 t × log e = sin2 t ...(v)
dy - y log x
\ =
dx x log y
[using Eqs. (iv) and (v) in Eq. (iii) and x = ecos 2 t , y = esin 2 t ]
Hence proved.
= a ésin2 t × sin 2 t ù
dx d d
\ (1 + cos 2 t ) + (1 + cos 2 t ) ×
dt êë dt dt úû
= a ésin2 t × (- sin 2 t ) × 2 t + (1 + cos 2 t ) × cos 2 t × 2t ù
d d
ëê dt dt úû
= - 2 a sin2 2 t + 2 a cos 2 t (1 + cos 2 t )
dx
Þ = - 2 a [sin2 2 t - cos 2 t (1 + cos 2 t )] ...(i)
dt
= b écos 2 t × cos 2 t ù
dy d d
and (1 - cos 2 t ) + (1 - cos 2 t ) ×
dt êë dt dt úû
é d
= b cos 2 t × (sin 2 t ) 2 t + (1 - cos 2 t ) (- sin 2 t ) ×
d
2t ù
ëê dt dt ûú
= b [2 sin 2t × cos 2t + 2 (1 - cos 2t ) (- sin 2t )]
= 2 b [sin 2t × cos 2t - (1 - cos 2t ) sin 2t ] …(ii)
dy dy / dt -2 b [- sin 2t × cos 2t + (1 - cos 2t ) sin 2t ]
\ = =
dx dx / dt -2 a [sin2 2t - cos 2t (1 + cos 2t )]
é p p p pù
- sin cos + æç 1 - cos ö÷ sin ú
æ dy ö b êë 2 2 è 2ø 2û
Þ ç ÷ =
è dx øt = p/ 4 a é 2 p p æ p öù
êësin 2 - cos 2 çè 1 + cos 2 ÷ø úû
b (0 + 1) éQ sin p = 1 and cos p = 0ù
= ×
a (1 - 0) êë 2 2 úû
b
= Hence proved.
a
dy p
Q. 51 If x = 3 sin t - sin 3 t, y = 3 cos t - cos 3t, then find at t = .
dx 3
Sol. Q x = 3 sin t - sin 3t and y = 3 cos t - cos 3t
dx d d
\ = 3× sin t - sin 3t
dt dt dt
d
= 3 cos t - cos 3t × 3t = 3 cos t - 3 cos 3t ...(i)
dt
dy d d
and = 3× cos t - cos 3 t
dt dt dt
d
= - 3 sin t + sin 3 t × 3t
dt
dy
= 3 sin 3 t - 3 t sin t ...(ii)
dt
dy dy / dt 3 (sin 3 t - sin t )
\ = =
dx dx / dt 3 (cos t - cos 3 t )
3p p
sin - sin
æ dy ö 3 3 0 - 3 /2
Now, ç ÷ = =
è dx øt = p/ 3 æ cos p - cos 3 p ö 1
- (-1)
ç ÷
è 3 3ø 2
- 3/2 - 3 -1
= = =
3/2 3 3
x
Q. 52 Differentiate w.r.t. sin x.
sin x
x
Sol. Let u= and v = sin x
sin x
d d
sin x × x - x× sin x
du dx dx
\ = 2
dx (sin x )
sin x - x cos x
= ...(i)
sin2 x
dv d
and = sin x = cos x ...(ii)
dx dx
du du / dx sin x - x cos x / sin2 x
\ = =
dv dv / dx cos x
sin x - x cos x
sin x - x cos x cos x
= =
sin2 x cos x sin2 x cos x
cos x
[dividing by cos x in both numerator and denominator]
tan x - x
=
sin2 x
1 + x2 - 1
Q. 53 Differentiate tan -1 w.r.t. tan -1 x, when x ¹ 0.
x
1 + x2 -1
Sol. Let u = tan-1 and v = tan-1 x
x
\ x = tan q
1 + tan2 q - 1
Þ u = tan-1
tan q
-1 (sec q - 1) cos q
= tan
sin q
æ 1 - cos q ö
= tan-1 çç ÷÷
è sin q ø
é 1 - 1 + 2 sin2 q/ 2 ù
= tan-1 ê ú [Q cos q = 1 - 2 sin2 q]
ë 2 sin q / 2 × cos q/ 2 û
q
= tan-1 é tan ù
êë 2 úû
q 1
= = tan-1 x
2 2
du 1 d 1 1
\ = tan-1 x = × ...(i)
dx 2 dx 2 1 + x2
dv d 1
and = tan-1 x = ...(ii)
dx dx 1 + x2
du du / dx
\ =
dv dv / dx
1 / 2 (1 + x 2 ) (1 + x 2 ) 1
= 2
= 2
=
1 / (1 + x ) 2(1 + x ) 2
dy
Find when x and y are connected by the relation given.
dx
x
Q. 54 sin (xy) + = x2 - y
y
x
Sol. We have, sin (xy) + = x2 - y
y
On differentiating both sides w.r.t. x, we get
d d æx ö d 2 d
(sin xy) + ç ÷= x - y
dx dx è y ø dx dx
d d
y x - x× y
d dx = 2 x - dy
Þ cos xy × (xy) + dx 2
dx y dx
dy
y-x
cos xy × é x × × xù +
d d dx = 2 x - dy
Þ y + y×
ëê dx dx ûú y2 dx
dy y x dy dy
Þ x cos xy × + ycos xy + 2 - 2 = 2x -
dx y y dx dx
dy é x ù y
Þ x cos xy - 2 + 1ú = 2 x - y cos x y - 2
dx êë y û y
dy é 2 x y - y2 cos x y - 1ù é y2 ù
\ =ê úê 2 2ú
dx ë y û ë x y cos x y - x + y û
(2 x y - y2 cos x y - 1) y
=
(x y2 cos x y - x + y2 )
Q. 55 sec (x + y) = xy
Sol. We have, sec (x + y) = x y
On differentiating both sides w.r.t. x, we get
d d
sec (x + y ) = (xy)
dx dx
d d d
Þ sec (x + y) × tan (x + y) × (x + y) = x × y + y× x
dx dx dx
sec (x + y) × tan (x + y) × æç 1 +
dy ö dy
Þ ÷=x + y
è dx ø dx
dy dy
Þ sec (x + y) tan (x + y) + sec (x + y) × tan (x + y) . =x + y
dx dx
dy
Þ [sec (x + y) × tan (x + y) - x ] = y - sec (x + y) × tan (x + y)
dx
dy y - sec(x + y) × tan (x + y)
\ =
dx sec (x + y) × tan (x + y) - x
Q. 56 tan -1 (x 2 + y2) = a
Sol. We have, tan-1 (x 2 + y2 ) = a
On differentiating both sides w.r.t. x, we get
d d
tan-1 (x 2 + y2 ) = ( a)
dx dx
1 d
Þ × ( x 2 + y2 ) = 0
1 + (x 2 + y2 )2 dx
d 2 dy
Þ 2x + y × =0
dy dx
dy
Þ 2y× = - 2x
dx
dy -2 x - x
\ = =
dx 2y y
Q. 57 (x 2 + y 2 )2 = xy
Sol. We have, (x 2 + y2 )2 = xy
On differentiating both sides w.r.t. x, we get
d d
(x 2 + y2 )2 = (xy)
dx dx
d d d
Þ 2 (x 2 + y 2 ) × (x 2 + y 2 ) = x × y + y× x
dx dx dx
2(x 2 + y2 ) × æç 2 x + 2 y
dy ö dy
Þ ÷=x + y
è dx ø dx
dy dy dy
Þ 2x 2 × 2x + 2x 2 × 2 y + 2 y2 × 2 x + 2 y2 × 2 y =x + y
dx dx dx
dy
Þ [4x 2 y + 4 y3 - x ] = y - 4x 3 - 4xy2
dx
dy ( y - 4x 3 - 4xy2 )
\ =
dx (4x 2 y + 4 y3 - x )
dy dx
Q. 58 If ax 2 + 2hxy + by 2 + 2gx + 2 fy + c = 0, then show that . = 1.
dx dy
Sol. We have, ax 2 + 2 hxy + by2 + 2 gx + 2 fy + c = 0 ...(i)
On differentiating both sides w.r.t. x, we get
d d d d d d
(ax 2 ) + (2 hxy) + (by2 ) + (2 gx ) + (2 fy) + (c) = 0
dx dx dx dx dx dx
2 ax + 2 h æç x × + y × 1ö÷ + b × 2 y
dy dy dy
Þ + 2g + 2f + 0=0
è dx ø dx dx
dy
Þ [2 hx + 2 by + 2 f ] = - 2 ax - 2 hy - 2 g
dx
dy - 2 (ax + hy + g )
Þ =
dx 2 (hx + by + f )
- (ax + hy + g )
= ...(ii)
(hx + by + f )
Now, differentiating Eq. (i) w.r.t. y, we get
d d d d d d
(ax 2 ) + (2 hxy) + (by2 ) + (2 gx ) + (2 fy) + (c) = 0
dy dy dy dy dy dy
dx æ d d ö dx
Þ a × 2x × + 2h × ç x × y+ y× x ÷ + b × 2 y + 2g × + 2f + 0 = 0
dy è dy dy ø dy
dx
Þ [2 ax + 2 hy + 2 g ] = - 2 hx - 2 by - 2 f
dy
dx - 2 (hx + by + f ) - (hx + by + f )
Þ = = ... (iii)
dy 2 (ax + hy + g ) (ax + hy + g )
dy dx - (ax + hy + g ) - (hx + by + f )
\ × = × [using Eqs. (ii) and (iii)]
dx dy (hx + by + f ) (ax + hy + g )
= 1= RHS Hence proved.
x-y
Q. 59 If x = e x / y , then prove that dy = .
dx x log x
Sol. We have, x = ex/ y
d d x/ y
\ x= e
dx dx
d
Þ 1 = ex/ y . (x / y)
dx
é y × 1 - x × dy / dx ù
Þ 1 = ex/ y × ê ú
ë y2 û
2 x/ y dy x/ y
Þ y = y×e - x× ×e
dx
dy x / y
Þ x× ×e = ye x / y - y2
dx
dy y (e x / y - y)
\ =
dx x ×ex/ y
(e x / y - y) é x/ y xù
= êQ x = e Þ log x = ú
x ë yû
ex/ y ×
y
x- y
= Hence proved.
x × log x
2
dy (1 + log y)
Q. 60 If y x = e y - x , then prove that = .
dx log y
Sol. We have, y x = ey - x
Þ log y x = log e y - x
Þ x log y = y - x × loge = ( y - x ) [Q loge = 1]
(y - x)
Þ log y = ...(i)
x
Now, differentiating w.r.t. x, we get
d dy d (y - x)
log y × =
dy dx dx x
d d
x× ( y - x ) - ( y - x )× ×x
1 dy dx dx
Þ × =
y dx x2
x æç - 1ö÷ - ( y - x )
dy
1 dy
= è ø
dx
Þ
y dx x2
x 2 dy dy
Þ × =x -x - y+ x
y dx dx
dy æ x 2 ö
Þ ç - x ÷÷ = - y
ç
dx è y ø
dy - y2 - y2
\ = 2 =
dx x - xy x(x - y)
y2 x y2 1
= × = 2 ×
x( y - x ) x x (y - x)
x
(1 + log y)2 é y-x
log y = - 1 Þ 1 + log y = ù
y y
= Q log y =
log y êë x x x úû
Hence proved.
dy 1 - y2
Q. 63 If 1 - x 2 + 1 - y 2 = a(x - y), then prove that = .
dx 1 - x2
Sol. We have,
1 - x2 + 1 - y2 = a(x - y)
On putting x = sin a and y = sin b, we get
1 - sin2 a + 1 - sin2 b = a(sin a - sin b )
Þ cos a + cos b = a(sin a - sin b )
a+b a -b a+b a -bö
Þ 2 cos .cos = aæç 2 cos .sin ÷
2 2 è 2 2 ø
a -b a -b
Þ cos = asin
2 2
a -b
Þ cot =a
2
a -b
Þ = cot -1 a
2
Þ a - b = 2 cot -1 a
Þ sin-1 x - sin-1 y = 2 cot -1 a [Qx = sin a and y = sin b]
On differentiating both sides w.r.t. x, we get
1 1 dy
- =0
2 2 dx
1- x 1- y
dy 1 - y2 1 - y2
\ = = Hence proved.
dx 1- x 2 1 - x2
2
Q. 64 If y = tan -1 x, then find d y
in terms of y alone.
dx 2
Sol. We have, y = tan-1 x [on differentiating w.r.t. x]
dy 1
\ = [again differentiating w.r.t. x]
dx 1 + x 2
d2y d
Now, = (1 + x 2 )-1
dx 2 dx
d
= - 1 (1 + x 2 )-2 . (1 + x 2 )
dx
1
=- × 2x
(1 + x 2 )2
- 2 tan y
= [Q y = tan-1 x Þ tan y = x ]
(1 + tan2 y)2
- 2 tan y
=
(sec 2 y)2
sin y
= -2 × cos 2 y × cos 2 y
cos y
= - sin 2 y × cos 2 y [Q sin 2 x = 2 sin x cos x ]
Verify the Rolle's theorem for each of the functions in following questions.
Q. 68 f (x) = x (x + 3) e - x /2 in [ - 3, 0]
Sol. We have, f(x ) = x (x + 3) e - x / 2
(i) f(x ) is a continuous function. [since, it is a combination of polynomial functions x(x + 3)
and an exponential function e - x / 2 which are continuous functions]
So, f(x ) = x (x + 3) e - x / 2 is continuous in [- 3, 0 ].
d - x/ 2 d
(ii) \ f ¢(x ) = (x 2 + 3x ) × e + e -x / 2 × (x 2 + 3x )
dx dx
= (x 2 + 3x ) × e - x / 2 × æç - ö÷ + e - x / 2 × (2 x + 3)
1
è 2ø
= e - x / 2 é2 x + 3 - × (x 2 + 3x )ù
1
êë 2 úû
é 4x + 6 - x 2 - 3x ù
= e -x / 2 ê ú
ë 2 û
-x / 2 1 2
=e × [- x + x + 6]
2
- 1 -x / 2 2
= e [x - x - 6]
2
- 1 -x / 2 2
= e [x - 3x + 2 x - 6]
2
- 1 -x / 2
= e [(x + 2 ) (x - 3)], which exists in (- 3, 0).
2
Hence, f(x ) is differentiable in (- 3, 0).
(iii) \ f(- 3) = - 3 (- 3 + 3)e -3 / 2 = 0
and f(0) = 0(0 + 3) e -0 / 2 = 0
Þ f(- 3) = f (0)
Since, conditions of Rolle’s theorem are satisfied.
Hence, there exists a real number c such that f ¢(c ) = 0
1
Þ - e - c / 2 (c + 2 ) (c - 3) = 0
2
Þ c = - 2, 3, where - 2 Î (- 3, 0)
Therefore, Rolle’s theorem has been verified.
Q. 69 f (x) = 4 - x 2 in [ - 2, 2]
Sol. We have, f(x ) = 4 - x 2 = (4 - x 2 )1/ 2
\ LHD ¹ RHD
So, f(x ) is not differentiable at x = 1.
Hence, polle’s theorem is not applicable on the interval [0, 2].
Q. 71 Find the points on the curve y = (cos x - 1) in [0, 2p], where the
tangent is parallel to X-axis.
K Thinking Process
We know that, if f be a real valued function defined in the closed interval [a , b] such that
it follows all the three conditions of Rolle’s theorem, then f ¢(c) = 0 shows that the
tangent to the curve at x = c has a slope 0, i.e., it is parallel to the X-axis. So, by getting
the value of c¢ we can get the required point.
Sol. The equation of the curve is y = cos x - 1.
Now, we have to find a point on the curve in [0, 2p ],
where the tangent is parallel to X-axis i.e., the tangent to the curve at x = c has a slope o,
where c Î] 0, 2p[.
Let us apply Rolle’s theorem to get the point.
(i) y = cos x - 1is a continuous function in [0, 2p ].
[since it is a combination of cosine function and a constant function]
(ii) y¢ = - sin x , which exists in (0, 2p).
Hence, y is differentiable in (0, 2p).
(iii) y (0) = cos 0 - 1 = 0 and y (2 p ) = cos 2 p - 1 = 0,
\ y (0) = y (2 p)
Since, conditions of Rolle’s theorem are satisfied.
Hence, there exists a real number c such that
f ¢(c ) = 0
Þ - sinc = 0
Þ c = p or 0, where p Î(0, 2 p)
Þ x=p
\ y = cos p - 1 = - 2
Hence, the required point on the curve, where the tangent drawn is parallel to the X-axis is
(p, - 2 ).
Sol. 1
We have, f(x ) = in [1, 4]
4x - 1
(i) f(x ) is continuous in [1, 4].
1
Also, at x = , f(x ) is discontinuous.
4
Hence, f(x ) is continuous in [1, 4].
4
(ii) f ¢(x ) = - , which exists in (1, 4).
(4x - 1)2
Since, conditions of mean value theorem are satisfied.
Hence, there exists a real number c Î] 1, 4 [ such that
f (4) - f (1)
f ¢(c ) =
4-1
1 1 1 1
- -
-4 16 - 1 4 - 1 15 3
Þ = =
(4c - 1)2 4-1 3
-4 1- 5 - 4
Þ = =
(4 c - 1)2 45 45
Þ (4c - 1)2 = 45
Þ 4c - 1 = ± 3 5
3 5+1
Þ c= Î (1, 4) [neglecting (- ve) value]
4
Hence, mean value theorem has been verified.
Q. 74 f (x) = x 3 - 2x 2 - x + 3 in [0, 1]
Sol. We have, f(x ) = x 3 - 2 x 2 - x + 3 in [0, 1]
(i) Since, f(x ) is a polynomial function.
Hence, f(x ) is continuous in [0, 1].
(ii) f ¢(x ) = 3x 2 - 4x - 1, which exists in (0,1).
Hence, f(x ) is differentiable in (0,1).
Since, conditions of mean value theorem are satisfied.
Therefore, by mean value theorem $ c Î (01, , ) such that
f(1) - f(0)
f ¢(c ) =
1- 0
[1 - 2 - 1 + 3] - [0 + 3]
Þ 3c 2 - 4c - 1 =
1- 0
2 -2
Þ 3c - 4c - 1 =
1
Þ 3c 2 - 4c + 1 = 0
Þ 3c 2 - 3c - c + 1 = 0
Þ 3c (c - 1) - 1(c - 1) = 0
Þ (3c - 1) (c - 1) = 0
1
Þ c = 1 / 3 , 1, where Î(0, 1)
3
Hence, the mean value theorem has been verified.
Q. 76 f (x) = 25 - x 2 in [1, 5]
Sol. We have, f(x ) = 25 - x 2 in [1, 5]
(i) Since, f(x ) = (25 - x 2 )1/ 2 , where 25 - x 2 ³ 0
Þ x 2 £ ± 5 Þ -5 £ x £ 5
Hence, f(x ) is continuous in [1, 5].
1 -x
(ii) f ¢(x ) = (25 - x 2 )-1/ 2 × - 2 x = , which exists in (1, 5).
2 25 - x 2
Hence, f ¢(x ) is differentiable in (1, 5).
Since, conditions of mean value theorem are satisfied.
By mean value theorem $ c Î (1, 5) such that
f(5) - f(1) -c 0 - 24
f ¢(c ) = Þ =
5-1 25 - c 2 4
c2 24
Þ =
25 - c 2 16
Þ 16 c 2 = 600 - 24 c 2
600
Þ c2 = = 15
40
\ c = ± 15
Also, c = 15 Î (1, 5)
Hence, the mean value theorem has been verified.
Q. 78 Using mean value theorem, prove that there is a point on the curve
y = 2x 2 - 5x + 3 between the points A(1, 0) and B(2, 1), where
tangent is parallel to the chord AB. Also, find that point.
Sol. We have, y = 2 x 2 - 5x + 3, which is continuous in [1, 2] as it is a polynomial function.
Also, y¢ = 4x - 5, which exists in (1, 2).
By mean value theorem, $ c Î (1, 2) at which drawn tangent is parallel to the chord AB,
where A and B are (1, 0) and (2,1), respectively.
f(2 ) - f(1)
\ f ¢(c ) =
2 -1
(8 - 10 + 3) - (2 - 5 + 3)
Þ 4c - 5 =
1
Þ 4c - 5 = 1
6 3
\ c = = Î (1 , 2 )
4 2
3 3 2
y = 2 æç ö÷ - 5 æç ö÷ + 3
3
For x = ,
2 è2 ø è2 ø
9 15 9 - 15 + 6
=2 ´ - + 3= =0
4 2 2
Hence, æç , 0 ö÷ is the point on the curve y = 2 x 2 - 5x + 3 between the points A (1, 0) and
3
è2 ø
B (2, 1), where tangent is parallel to the chord AB.
+ y × mx m - 1 = (m + n) (x + y)m + n -1 æç 1 +
dy n dy ö
Þ x m × nyn - 1 ÷
dx è dx ø
dy m n
Þ [x × ny -1 - (m + n) × (x + y)m + n - 1 ] = (m + n) (x + y)m + n - 1 - yn mx m-1
dx
n
dy n -1 y -1 × y × mx m
Þ [nx m y - (m + n)(x + y)m + n -1 ] = (m + n) × (x + y)m + n -1 -
dx x
(m + n) (x + y)m + n y n -1× y × mx m
-
dy (x + y) x
\ =
dx n x m yn m+ n 1
- (m + n) (x + y)
y (x + y)
x (m + n) (x + y)m + n - (x + y) × y × n - 1 y × mx m
(x + y) × x
= n
(x + y) n x m y - y (m + n) (x + y)m + n
(x + y) × y
x (m + n) × x m × yn - m (x + y) yn x m
(x + y) × x n
= [Q (x + y)m + n
= xm × y ]
(x + y) nx m × yn - y (m + n) × x m × y n
(x + y) × y
x m y n [mx + nx - mx - my]× (x + y) y
=
x m y n [nx + ny - my - ny]× (x + y) × x
y
= …(ii)
x
Hence proved.
dy y
(ii) Further, differentiating Eq. (ii) i.e., = on both the sides w.r.t. x, we get
dx x
dy
x× - y× 1
d2y dx
=
dx 2 x2
y
x× - y
= x éQ dy = y ù
x2 ëê dx x ûú
=0 Hence proved.
Q. 81 If x = sin t and y = sin pt, then prove that
2
d y dy
(1 - x 2 ) 2 - x + p 2 y = 0.
dx dx
Sol. We have, x = sin t and y = sin pt
dx dy
\ = cos t and = cos pt×p
dt dt
dy dy / dt p × cos pt
Þ = = …(i)
dx dx / dt cos t
Again, differentiating both sides w.r.t. x, we get
d dt d dt
cos t × ( p × cos pt ) - pcos pt × cos t ×
d2y dt dx dt dx
=
dx 2 cos 2 t
dt
[cos t × p × (- sin pt ) × p - p cos pt × (- sin t )]
= dx
cos 2 t
1
[- p2 sin pt × cos t + p sin t × cos pt ] ×
cos t
=
cos 2 t
d2y - p2 sin pt × cos t + p cos pt × sin t
Þ = ...(ii)
dx 2 cos 3 t
Since, we have to prove
d2y dy
(1 - x 2 ) -x + p2 y = 0
dx 2 dx
[- p2 sin pt × cos t + pcos pt × sin t ]
\ LHS = (1 - sin2 t )
cos 3 t
pcos pt
- sin t × + p2 sin pt
cos t
1 é(1 - sin t ) (- p sin pt × cos t + pcos pt × sin t )ù
2 2
= 3 ê ú
cos t êë - p cos pt × sin t × cos 2 t + p2 sin pt × cos 3 t úû
dy x2 + 1
Q. 82 Find the value of , if y = x tan x + .
dx 2
x2 + 1
Sol. We have, y = x tan x + ...(i)
2
x2 + 1
Taking u = x tan x and v = ,
2
log u = tan x log x ...(ii)
x2 + 1
and v2 = ...(iii)
2
On, differentiating Eq. (ii) w.r.t. x, we get
1 du 1
× = tan x × + log x × sec 2 x
u dx x
=u é
tan x
+ log x × sec 2 x ù
du
Þ
dx ëê x ûú
tan x é tan x
=x + log x × sec 2 x ù …(iv)
êë x úû
Also, differentiating Eq. (iii) w.r.t. x, we get
dv 1 dv 1
2 v× = (2 x )Þ = × (2 x )
dx 2 d x 4v
dv 1 x× 2
Þ = × 2x =
dx 2
x +1 2 x2 + 1
4×
2
dv x
Þ = ...(v)
dx 2 ( x 2 + 1)
Now, y=u + v
d y du d v
\ = +
dx dx dx
= x tan x é
tan x
+ log x × sec 2 x ù +
x
ëê x ûú 2(x 2 + 1)
2 ç + h ö÷ - 1 sin æç + h ö÷ - 0
æ 1 1
è2 ø è2 ø
= lim
h®0 h
æ 1 + 2h ö
|2 h|× sin ç ÷
= lim è 2 ø = 2 × sin 1
h®0 h 2
f æç - h ö÷ - f æç ö÷
1 1
L f ¢æç ö÷ = lim è
1 2 ø è2 ø
and
è2 ø h ® 0 -h
-1
2 æç - h ö÷
1
- sin æç - h ö÷ - 0
1
è2 ø è2 ø
= lim
h®0 -h
|0 - 2 h|- sin æç - h ö÷
1
= lim è 2 ø = - 2 sin æ 1 ö
ç ÷
h®0 -h è2 ø
Q æ 1ö æ 1ö
Rf ¢ç ÷ ¹ Lf ¢ç ÷
è2 ø è2 ø
1
So, f(x ) is not differentiable at x = .
2
Q. 86 The function f (x) = cot x is discontinuous on the set
(a) { x = np : n Î Z } (b) { x = 2np : n Î Z }
p np
(c) ìí x = (2n + 1) ; n Î Z üý (d) ìíx = ; n Î Z üý
î 2 þ î 2 þ
Sol. (a) We know that, f(x ) = cot x is continuous in R - {n p : n Î Z}.
cos x
Since, f(x ) = cot x = [since, sin x = 0 at n p , n Î Z ]
sin x
Hence, f(x ) = cot x is discontinuous on the set {x = np : n Î Z}.
1
Q. 88 If f (x) = x 2 sin , where x ¹ 0, then the value of the function f at
x
x = 0, so that the function is continuous at x = 0, is
(a) 0 (b) - 1
(c) 1 (d) None of these
Q f(x ) = x 2 sin æç ö÷, where x ¹ 0
1
Sol. (a)
èx ø
Hence, value of the function f at x = 0, so that it is continuous at x = 0 is 0.
émx + 1, p
if x £
ê 2 is continuous at x = p , then
Q. 89 If f (x) = ê
p 2
êsin x + n, if x >
ë 2
np
(a) m = 1, n = 0 (b) m = +1
2
mp p
(c) n = (d) m = n =
2 2
ìmx + 1, p
if x £
ï 2 p
Sol. (c) We have, f(x ) = í p
is continuous at x =
ï(sin x + n), if x > 2
î 2
é p ù mp
\ LHL = lim (mx + 1) = lim ê m æç - h ö÷ + 1ú = +1
x®
p- h®0 ë è 2 ø û 2
2
é p ù
and RHL = lim (sin x + n) = lim êsin æç + h ö÷ + nú
x®
p+ h®0 ë è 2 ø û
2
= lim cos h + n = 1 + n
h®0
æ 1 - x2 ö
Q. 91 If y = log çç ÷, then dy is equal to
2 ÷
è1 + x ø dx
4 x3 - 4x 1 - 4 x3
(a) (b) (c) (d)
1- x4 1- x4 4 - x4 1- x4
æ 1 - x2 ö
Sol. (b) We have, y = log çç ÷
2 ÷
è1 + x ø
dy 1 d æ 1 - x2 ö
\ = . ç ÷
dx 1 - x 2 dx çè 1 + x 2 ÷ø
1 + x2
(1 + x 2 ) (1 + x 2 ) × (-2 x ) - (1 - x 2 ) × 2 x
= ×
(1 - x 2 ) (1 + x 2 )2
-2 x[1 + x 2 + 1 - x 2 ] - 4x
= =
(1 - x 2 ) × (1 + x 2 ) 1 - x4
dy
Q. 92 If y = sin x + y, then is equal to
dx
cos x cos x sin x sin x
(a) (b) (c) (d)
2y - 1 1 - 2y 1 - 2y 2y - 1
-2
=
1 - x2
du -1
and =
dx 1 - x2
2
dx du / dx - 2 / 1 - x
\ = = =2
dv dv / dx -1 / 1 - x 2
2
Q. 94 If x = t 2 and y = t 3 , then d y
is equal to
dx 2
3 3 3 3
(a) (b) (c) (d)
2 4t 2t 2t
1
Q. 96 For the function f (x) = x + , x Î [1, 3], the value of c for mean value
x
theorem is
(a) 1 (b) 3
(c) 2 (d) None of these
f ( b ) – f ( a)
Sol. (b) Q f ¢ (c ) =
b– a
é 3 + 1 ù – é1 + 1ù
ê éQ f ¢ (x ) = 1 – 1 ù
1 3 ûú êë 1úû
Þ 1– 2 = ë ê x2 ú
c 3–1 ê ú
ëand b = 3, a = 1û
10
–2
c2 – 1
Þ 2
= 3
c 2
c2 - 1 4 2
Þ = =
c2 3 ´2 3
Þ 3(c 2 - 1) = 2c 2
Þ 3 c2 - 2c2 = 3
Þ c2 = 3 Þ c = ± 3
Q c = 3 Î(1, 3)
Fillers
Q. 97 An example of a function which is continuous everywhere but fails to
be differentiable exactly at two points is ......... .
Sol. | x | + | x – 1| is continuous everywhere but fails to be differentiable exactly at two points
x = 0 and x = 1.
So, there can be more such examples of functions.
p
Q. 99 If f (x) = |cos x |, then f ¢ æç ö÷ is equal to ......... .
è4ø
p
Sol. If f(x ) = |cos x |, then f¢ æç ö÷
è 4ø
p
Q 0< x < , cos x > 0.
2
f (x ) = + cos x
\ f ¢ (x ) = (– sin x )
p p –1 é p 1 ù
Þ f¢ æç ö÷ = – sin = êëQ sin 4 = 2 úû
è ø
4 4 2
p
Q. 100 If f (x) = |cos x – sin x |, then f ¢ æç ö÷ is equal to ......... .
è3ø
Sol. Q f(x ) = |cos x – sin x|,
p 3+1
\ f¢ æç ö÷ =
è 3ø 2
p p
We know that, < x < , sin x > cos x
4 2
\cos x – sin x £ 0 i .e., f(x ) = – (cos x – sin x )
f ¢(x ) = - [– sin x – cos x ]
p æ - 3 1ö æ 3+ 1ö
\ f¢æç ö÷ = – çç – ÷÷ = çç ÷÷
è 3ø è 2 2ø è 2 ø
at æç , ö÷ is ......... .
dy 1 1
Q. 101 For the curve x+ y = 1,
dx è4 4ø
at æç , ö÷ is - 1.
dy 1 1
Sol. For the curve x + y = 1,
dx è 4 4ø
We have, x + y =1
1 1 dy
Þ + =0
2 x 2 y dx
dy y
Þ =–
dx x
1
–
\ æ dy ö = 2 = –1
ç ÷æ 1 1
è dx ø ç ,
1ö
÷
è4 4ø
2
True/False
Q. 102 Rolle’s theorem is applicable for the function f (x) = | x – 1| in [ 0, 2 ].
Sol. False
Hence, f(x ) = x – 1 in [0, 2 ]is not differentiable at x = 1 Î (0, 2 ).
Sol. We have, rate of decrease of the volume of spherical ball of salt at any instant is µ surface.
Let the radius of the spherical ball of the salt be r.
4
\ Volume of the ball (V ) = pr 3
3
and surface area (S) = 4pr 2
dV d æ4 3ö 2
Q µS Þ ç pr ÷ µ 4pr
dt dt è 3 ø
4 dr dr 4pr 2
Þ p × 3 r2. µ 4pr 2 Þ µ
3 dt dt 4pr 2
dr
Þ = k × 1 [where, k is the proportionality constant]
dt
dr
Þ =k
dt
Hence, the radius of ball is decreasing at a constant rate.
Sol. Let two men start from the point C with velocity v each at the same C
time.
Also, ÐBCA = 45°
°
45
Since, A and B are moving with same velocity v, so they will cover
same distance in same time.
Therefore, DABC is an isosceles triangle with AC = BC.
90°
Now, draw CD ^ AB. A B
Let at any instant t, the distance between them is AB.
Let AC = BC = x and AB = y
In DACD and DDCB,
ÐCAD = Ð CBD [Q AC = BC]
ÐCDA = Ð CDB = 90°
\ ÐACD = ÐDCB
1
or Ð ACD = ´ Ð ACB
2
1
Þ ÐACD = ´ 45°
2
p
Þ ÐACD =
8
p AD
\ sin =
8 AC
p y/2
Þ sin = [Q AD = y / 2]
8 x
y p
Þ = x sin
2 8
p
Þ y = 2 x × sin
8
Now, differentiating both sides w.r.t. t, we get
dy p dx
= 2 × sin ×
dt 8 dt
p éQ v = dx ù
= 2 × sin . v
8 ëê dt ûú
2- 2 é p 2- 2ù
= 2v × êQ sin = ú
2 êë 8 2 úû
= 2 - 2 v unit/s
which is the rate at which A and B are being separated.
Q. 5 Find an angle q, where 0 < q < p , which increases twice as fast as its sine.
2
Sol. Let q increases twice as fast as its sine.
Þ q = 2 sin q
Now, on differentiating both sides w.r.t. t, we get
dq dq
= 2 × cos q × Þ 1 = 2 cos q
dt dt
1 p
Þ = cos q Þ cos q = cos
2 3
p
\ q=
3
p
So, the required angle is .
3
2
Q. 8 A man, 2 m tall, walks at the rate of 1 m/s towards a street light
1 3
which is 5 m above the ground. At what rate is the tip of his shadow
3
moving
1 and at what rate is the length of the shadow changing when he
is 3 m from the base of the light?
3
Sol. Let AB be the street light post and CD be the height of man i.e., CD = 2 m.
A
D
5 13 m
2m
B E
x C y
dx - 5
Let BC = x m, CE = y m and = m/s
dt 3
From DABE and DDCE, we see that
DABE ~ DDCE [by AAA similarity]
16
AB BE x+ y
\ = Þ 3 =
DC CE 2 y
16 x + y
Þ =
6 y
Þ 16 y = 6x + 6 y Þ 10 y = 6x
3
Þ y= x
5
On differentiating both sides w.r.t. t, we get
dy 3 dx 3 æ 2 ö
= × = × ç -1 ÷
dt 5 dt 5 è 3 ø
[since, man is moving towards the light post]
3 æ -5ö
= ×ç ÷ = - 1m/s
5 è 3 ø
Let z=x + y
Now, differentiating both sides w.r.t. t, we get
5
= - æç + 1ö÷
dz dx dy
= +
dt dt dt è3 ø
8 2
= - = - 2 m/s
3 3
2
Hence, the tip of shadow is moving at the rate of 2 m/s towards the light source and
3
length of the shadow is decreasing at the rate of 1 m/s.
Q. 9 A swimming pool is to be drained for cleaning. If L represents the
number of litres of water in the pool t seconds after the pool has been
plugged off to drain and L = 200 (10 - t)2 . How fast is the water running
out at the end of 5 s and what is the average rate at which the water
flows out during the first 5 s?
Sol. Let L represents the number of litres of water in the pool t seconds after the pool has been
plugged off to drain, then
L = 200 (10 - t )2
dL
\ Rate at which the water is running out = -
dt
dL
= - 200 × 2 (10 - t ) × (-1)
dt
= 400 (10 - t )
Rate at which the water is running out at the end of 5 s
= 400 (10 - 5)
= 2000 L/s = Final rate
initial rate = - æç ö÷
dL
Since, = 4000 L/s
è dt øt = 0
Initial rate + Final rate
\ Average rate during 5 s =
2
4000 + 2000
=
2
= 3000 L/s
Sol. Since, x and y are the sides of two squares such that y = x - x 2 .
\ Area of the first square ( A1) = x 2
and area of the second square ( A2 ) = y2 = (x - x 2 )2
dA2
(x - x 2 )2 = 2 (x - x 2 ) æç
d dx dx ö
\ = - 2x × ÷
dt dt è dt dt ø
dx
= (1 - 2 x ) 2 (x - x 2 )
dt
dA1 d 2 dx
and = x = 2x ×
dt dt dt
dx
dA2 dA2 / dt × (1 - 2 x ) (2 x - 2 x 2 )
\ = = dt
dA1 dA1 / dt dx
2x ×
dt
(1 - 2 x ) 2 x (1 - x )
=
2x
= (1 - 2 x ) (1 - x )
= 1 - x - 2x + 2x 2
= 2 x 2 - 3x + 1
æ dy ö - k1/ 3
and ç ÷æ 1 = = - 2 k - 1/ 3 [say m2 ]
è dx ø ç k 2 / 3, k1 / 3 ö÷ 1 k 2 / 3
è2 ø
2
Since, the curves intersect orthogonally.
i.e., m1 × m2 = - 1
1
Þ × (- 2 k - 1/ 3 ) = - 1
k1/ 3
Þ - 2 k- 2/ 3 = - 1
2
Þ =1
k2/ 3
Þ k2/ 3 = 2
\ k2 = 8
which is the required condition.
x y
Q. 19 Show that the line + = 1, touches the curve y = b × e -x/ a at the
a b
point, where the curve intersects the axis of Y.
Sol. x y
We have the equation of line given by + = 1 ,which touches the curve y = b × e - x / a at
a b
the point, where the curve intersects the axis of Y i.e., x = 0.
\ y = b × e -0/ a = b [Q e 0 = 1]
So, the point of intersection of the curve with Y-axis is (0,b).
Now, slope of the given line at (0, b) is given by
1 1 dy
×1 + × =0
a b dx
dy -1
Þ = ×b
dx a
dy 1 -b
Þ = - ×b = = m1 [say]
dx a a
Also, the slope of the curve at (0, b ) is
dy -1
= b × e -x / a ×
dx a
dy - b - x / a
= e
dx a
æ dy ö - b -0 - b
ç ÷ = e = = m2 [say]
è dx ø( 0, b) a a
-b
Since, m1 = m2 =
a
Hence, the line touches the curve at the point, where the curve intersects the axis of Y.
Q. 20 Show that f (x) = 2x + cot -1 x + log( 1 + x 2 - x) is increasing in R.
K Thinking Process
If f ¢(x) ³ 0, then we can say that f(x) is increasing function. Use this condition to show
the desired result.
Þ cos x - sin x ³ 0
é æ p öù
êëQ ( 2 + sin2 x ) ³ 0 in çè 0, 4 ÷ø úû
Þ cos x ³ sin x
p
which is true, if x Î æç 0, ö÷.
è 4ø
p
Hence, f(x ) is an increasing function in æç 0, ö÷.
è 4ø
p
Q. 24 Prove that f (x) = sin x + 3 cos x has maximum value at x = .
6
Sol. We have, f(x ) = sin x + 3 cos x
\ f ¢(x ) = cos x + 3 (- sin x )
= cos x - 3 sin x
For f ¢(x ) = 0, cos x = 3sin x
1 p
Þ tan x = = tan
3 6
p
Þ x=
6
Again, differentiating f ¢(x ), we get
f ¢¢(x ) = - sin x - 3 cos x
p p p
At x = , f ¢¢(x ) = - sin - 3 cos
6 6 6
1 3
= - - 3×
2 2
1 3
= - - = -2<0
2 2
p p
Hence, at x = , f(x ) has maximum value at is the point of local maxima.
6 6
h y
q
A x B
x
\ cos q =
h
Þ x = hcos q
Þ h + hcos q = k [using Eq. (i)]
Þ h (1+ cos q) = k
k
Þ h= …(ii)
(1 + cos q)
1
Also, area of DABC = ( AB × BC )
2
1
A = ×x × y
2
1 éQ sin q = y ù
= hcos q × hsin q
2 ëê h úû
1
= h2 sin q × cos q
2
2 h2
= sin q × cos q
4
1
= h2 sin 2 q ...(iii)
4
k
Since, h=
1 + cos q
2
1æ k ö
\ A= ç ÷ × sin 2 q
4 çè 1 + cos q ÷ø
k2 sin 2 q
Þ A= × ...(iv)
4 (1 + cos q)2
dA k 2 é (1 + cos q)2 × cos 2 q × 2 - sin2 q × 2(1 + cos q) × (0 - sin q)ù
\ = ê ú
dq 4 ë (1 + cos q)4 û
k 2 ì2(1 + cos q)[(1 + cos q) × cos 2 q + sin 2 q (sin q)ü
= í ý
4î (1 + cos q)4 þ
k2 2 2
= × [(1 + cos q) × cos 2 q + 2 sin q × cos q]
4 (1 + cos q)3
k2
= [(1 + cos q)(1 - 2 sin2 q) + 2 sin2 q × cos q]
2(1 + cos q)3
k2
= [1 + cos q - 2 sin2 q - 2 sin2 q × cos q + 2 sin2 q × cos q]
2(1 + cos q)3
k2
= [(1 + cos q) - 2 sin2 q]
2(1 + cos q)3
k2
= [1 + cos q - 2 + 2 cos 2 q]
2(1 + cos q)3
k2
= (2 cos 2 q + cos q - 1) ...(v)
2(1 + cos q)3
dA
For = 0,
dq
k2
(2 cos 2 q + cos q - 1) = 0
2 (1 + cos q)3
Þ 2 cos 2 q + cos q - 1 = 0
2
Þ 2 cos q + 2 cos q - cos q - 1 = 0
Þ 2 cos q (cos q + 1) - 1 (cos q + 1) = 0
Þ (2 cos q - 1)(cos q + 1) = 0
1
Þ cos q =
or cos q = - 1
2
p
Þ q= [possible]
3
or q = 2np ± p [not possible]
p
\ q=
3
Again, differentiating w.r.t. q in Eq. (v), we get
d æ dA ö d é k2 ù
ç ÷= ê (2 cos 2 q + cos q - 1)ú
dq è dq ø dq ë 2(1 + cos q)3
û
d2A d é k 2 (2 cos q - 1)(1 + cos q)ù d é k 2 (2 cos q - 1)ù
\ = ú= ê ×
dq dq êë
2
2(1 + cos q)3 û dq ë 2 (1 + cos q) û
2ú
Q. 26 Find the points of local maxima, local minima and the points of
inflection of the function f (x) = x 5 - 5x 4 + 5x 3 - 1. Also, find the
corresponding local maximum and local minimum values.
Sol. Given that, f(x ) = x 5 - 5x 4 + 5x 3 - 1
On differentiating w.r.t. x, we get
f ¢(x ) = 5x 4 - 20x 3 + 15x 2
For maxima or minima, f ¢(x ) = 0
Þ 5x 4 - 20x 3 + 15x 2 = 0
Þ 5x 2 (x 2 - 4x + 3) = 0
Þ 5x (x 2 - 3x - x + 3) = 0
2
Alternate Method
x2 y2
We know that, if a line y = mx + c touches ellipse 2
+ = 1, then
a b2
the required condition is c 2 = a2 m2 + b 2
Here, given equation of the line is
x cos a + y sin a = p
p - x cos a
Þ y=
sin a
p
= - x cot a +
sin a
p
Þ c=
sin a
and m = - cot a
2
æ p ö
\ çç ÷÷ = a2 (- cot a) 2 + b 2
è sin a ø
p2 cos 2 a
Þ 2
= a2 + b2
sin a sin2 a
Þ p2 = a2 cos 2 a + b 2 sin2 a Hence proved.
Q. 29 If an open box with square base is to be made of a given quantity of
card board of area c 2, then show that the maximum volume of the box
c3
is cu units.
6 3
K Thinking Process
dV dV
First, let the sides of box in x and y then find in terms c and x. Also, for = 0 get
dx dx
d 2V
the value of x and if < 0 at the value of x, then by putting that value of x in the
dx2
equation of V, get the desired result.
Sol. Let the length of side of the square base of open box be x units and its height be y units.
\ Area of the metal used = x 2 + 4xy
Þ x 2 + 4xy = c 2 [given]
c2 - x 2
Þ y= ...(i)
4x
Now, volume of the box (V ) = x 2 y
æ c2 - x 2 ö
Þ V = x 2 × çç ÷
÷
è 4x ø y
1
= x (c 2 - x 2 ) x
4 x
1
= (c 2 x - x 3 )
4
On differentiating both sides w.r.t. x, we get
dV 1 2
= (c - 3x 2 ) ... (ii)
dx 4
dV
Now, = 0 Þ c 2 = 3x 2
dx
c2
Þ x2 =
3
c
Þ x= [using positive sign]
3
Again, differentiating Eq. (ii) w.r.t. x, we get
d 2V 1 -3
= (- 6x ) = x<0
dx 2 4 2
æ d 2v ö
= - × æç
3 c ö
\ ç 2÷ ÷<0
ç dx ÷ 2 è 3ø
è ø at x = c
3
c
Thus, we see that volume (V) is maximum at x = .
3
1æ c c3 ö
\ Maximum volume of the box, (V ) = çç c 2 . - ÷
3 3 3 ÷ø
c
x= 4è
3
1 (3c 3 - c 3 ) 1 2 c 3
= × = ×
4 3 3 4 3 3
c3
= cu units
6 3
Q. 30 Find the dimensions of the rectangle of perimeter 36 cm which will
sweep out a volume as large as possible, when revolved about one of
its sides. Also, find the maximum volume.
Sol. Let breadth and length of the rectangle be x and y, respectively.
x
Q Perimeter of the rectangle = 36 cm
Þ 2 x + 2 y = 36
Þ x + y = 18
Þ y = 18 - x ... (i)
Let the rectangle is being revolved about its length y.
Then, volume (V) of resultant cylinder = p x 2 × y
Þ V = px 2 × (18 - x ) [Q V = pr 2 h] [using Eq. (i)]
= 18px 2 - px 3 = p [18x 2 - x 3 ]
On differentiating both sides w.r.t. x, we get
dV
= p (36x - 3x 2 )
dx
dV
Now, =0
dx
Þ 36x = 3x 2
Þ 3x 2 - 36x = 0
Þ 3 (x 2 - 12 x ) = 0
Þ 3x (x - 12 ) = 0
Þ x = 0, x = 12
\ x = 12 [Q, x ¹ 0]
Again, differentiating w.r.t. x, we get
d 2V
= p (36 - 6x )
dx 2
æ d 2V ö
Þ ç 2÷ = p(36 - 6 ´ 12 ) = - 36p < 0
ç dx ÷
è ø x = 12
At x = 12, volume of the resultant cylinder is the maximum.
So, the dimensions of rectangle are 12 cm and 6 cm, respectively. [using Eq. (i)]
\ Maximum volume of resultant cylinder,
(V )x = 12 = p [18 × (12 )2 - (12 )3 ]
= p [12 2 (18 - 12 )]
= p ´ 144 ´ 6
= 864 p cm3
Q. 31 I the sum of the surface areas of cube and a sphere is constant, what is
the ratio of an edge of the cube to the diameter of the sphere, when
the sum of their volumes is minimum?
Sol. Let length of one edge of cube be x units and radius of sphere be r units.
\ Surface area of cube = 6x 2
and surface area of sphere = 4pr 2
Also, 6x 2 + 4pr 2 = k [constant, given]
Þ 6x 2 = k - 4pr 2
k - 4pr 2
Þ x2 =
6
1/ 2
é k - 4pr 2 ù
Þ x=ê ú ... (i)
ë 6 û
Now, volume of cube = x 3
4
and volume of sphere = pr 3
3
Let sum of volume of the cube and volume of the sphere be given by
3/ 2
4 3 é k - 4pr 2 ù 4 3
S = x3 + pr = ê ú + pr
3 ë 6 û 3
On differentiating both sides w.r.t. r, we get
1/ 2
dS 3 é k - 4pr 2 ù - 8pr ö 12 2
= ê ú × æç ÷+ pr
dr 2 ë 6 û è 6 ø 3
1/ 2
é k - 4pr 2 ù 2
= - 2 pr ê ú + 4pr ... (ii)
ë 6 û
éì k - 4pr 2 ü1/ 2 ù
= - 2 pr êí ý - 2 rú
êëî 6 þ úû
dS
Now, =0
dr
1/ 2
æ k - 4pr 2 ö
Þ r = 0 or 2 r = çç ÷
÷
è 6 ø
2 k - 4pr 2
Þ 4r = Þ 24r = k - 4pr 2
2
6
Þ 24r 2 + 4pr 2 = k Þ r 2 [24 + 4p ] = k
k 1 k
\ r = 0 or r= =
24 + 4p 2 6+ p
We know that, r¹0
1 k
\ r=
2 6+ p
Again, differentiating w.r.t. r in Eq. (ii), we get
d 2S é ìæ k - 4pr 2 ö
1/ 2
üïù
ê - 2 pr ïíç
d
2
= ç
÷
÷ + 4pr 2 ýú
dr dr ê ïîè 6 ø ïþúû
ë
é 1 æ k - 4pr 2 ö - 1/ 2 - 8pr 2 1/ 2 ù
= -2 p ê r × çç ÷ × æ ö + æç k - 4pr ö÷ × 1ú + 4p × 2 r
÷ ç ÷ ç ÷
êë 2 è 6 ø è 6 ø è 6 ø úû
é ù
ê ú
1 æ - 8pr ö k - 4pr 2
= - 2 p êr × ×ç ÷ + ú + 8pr
ê k - 4pr 2 è 6 ø 6 ú
ê 2 ú
ë 6 û
é æ 4p r 2
ö ù
ê - 8pr + 12 çç k - ÷ú
2
ê è 6 ÷ø ú
= - 2p + 8pr
ê k - 4pr 2 ú
ê 12 ú
êë 6 úû
é ù é ù
ê ú ê ú
- 48pr 2 + 72 k - 48pr 2 - 96pr 2 + 72 k
= -2 p ê ú + 8pr = - 2 p ê ú + 8pr > 0
ê k - 4pr 2 ú ê k - 4pr 2 ú
ê 72 ú ê 72 ú
ë 6 û ë 6 û
1 k
For r = , then the sum of their volume is minimum.
2 6+ p
é k - 4p × 1 k ù1/ 2
1 k ê 4 (6 + p) ú
For r = , x=ê ú
2 6+ p ê 6 ú
êë úû
1/ 2 1/ 2
é (6 + p) k - pk ù é k ù
=ê ú = ê 6 + p ú = 2r
ë 6 ( 6 + p) û ë û
Since, the sum of their volume is minimum when x = 2 r.
Hence, the ratio of an edge of cube to the diameter of the sphere is 1:1.
1 é - 2x 2 ù
= ê + (4r 2 - x 2 )1/ 2 ú
2 ê 2 4r 2 - x 2 úû
ë
1 é - x2 ù
ê= + 4r 2 - x 2 ú
2 ê 4r 2 - x 2 úû
ë
1 é - x + 4r - x ù 1 é - 2 x 2 + 4r 2 ù
2 2 2
= ê ú= ê ú
2 ê 4r 2 - x 2 úû 2 êë 4r 2 - x 2 úû
ë
dA é (- x 2 + 2 r 2 )ù
Þ =ê ú B
dx ê 4r 2 - x 2 ú
ë û
dA
Now, =0
dx
2 2
Þ - x + 2r = 0 C
1
Þ r2 = x 2
2
1
Þ r= x A x C
2
\ x=r 2
Again, differentiating both sides w.r.t. x, we get
1
4r 2 - x 2 × (- 2 x ) + (2 r 2 - x 2 ) × (4r 2 - x 2 )- 1/ 2 (- 2 x )
d2A 2
=
dx 2 ( 4r 2 - x 2 )2
é 1 ù
- 2 x ê 4r 2 - x 2 + (2 r 2 - x 2 ) × ú
2 2
êë 2 4r - x úû
=
( 4r 2 - x 2 )2
2
- 4x × çæ 4r 2 - x 2 ÷ö + (2 r 2 - x 2 ) (- 2 x )
= è ø
2 × (4r 2 - x 2 )3 / 2
- 4x (4r 2 - x 2 ) + (2 r 2 - x 2 )× (- 2 x )
=
2 × (4r 2 - x 2 )3 / 2
- 16xr 2 + 4x 3 + (2 r 2 - x 2 ) (- 2 x )
=
2 × (4r 2 - x 2 )3 / 2
æd2A ö - 16 × r 2 × r 2 + 4 × (r 2 )3 + [2 r 2 - (r 2 )2 ] × (- 2 × r 2 )
ç 2÷ = [Q x = r 2 ]
ç dx ÷ 2 × (4r 2 - 2 r 2 )3 / 2
è øx = r 2
- 16 2 × r 3 + 8 2 r 3 8 2 r 2 [r - 2 r ]
= 2 3/ 2
=
2 (2 r ) 4r 3
- 8 2 r3
= = - 2 2< 0
4r 3
For x = r 2, the area of triangle is maximum.
For x = r 2, y= 4r 2 - (r 2 )2 = 2 r 2 = r 2
Since, x=r 2=y
Hence, the triangle is isosceles.
Q. 33 A metal box with a square base and vertical sides is to contain
1024 cm 3 . If the material for the top and bottom costs ` 5per cm 2 and
the material for the sides costs ` 2.50 per cm 2 . Then, find the least
cost of the box.
Sol. Since, volume of the box = 1024 cm3
Let length of the side of square base be x cm and height of the box be y cm.
y
x
x
2
\ Volume of the box (V ) = x × y = 1024
1024
Since, x 2 y = 1024 Þ y =
x2
Let C denotes the cost of the box.
\ C = 2 x 2 ´ 5 + 4xy ´ 2.50
= 10x 2 + 10xy = 10x (x + y)
1024 ö
= 10x æç x + ÷
è x2 ø
10x
= 2 (x 3 + 1024)
x
10240
Þ C = 10x 2 + ... (i)
x
On differentiating both sides w.r.t. x, we get
dC
= 20x + 10240 (- x )- 2
dx
10240
= 20x - ...(ii)
x2
dC
Now, =0
dx
10240
Þ 20x =
x2
3
Þ 20x = 10240
Þ x 3 = 512 = 83 Þ x=8
Again, differentiating Eq. (ii) w.r.t. x, we get
d 2C 1
2
= 20 - 10240 (- 2 ) × 3
dx x
20480
= 20 + > 0
x3
æd C ö
2
20480
\ ç 2÷ = 20 + = 60 > 0
ç dx ÷ 512
è øx = 8
For x = 8, cost is minimum and the corresponding least cost of the box,
10240
C(8) = 10 × 82 +
8
= 640 + 1280 = 1920
\ Least cost = ` 1920
Q. 34 The sum of surface areas of a rectangular parallelopiped with sides x,
x
2x and and a sphere is given to be constant. Prove that the sum of
3
their volumes is minimum, if x is equal to three times the radius of the
sphere. Also, find the minimum value of the sum of their volumes.
Sol. We have given that, the sum of the surface areas of a rectangular parallelopiped with sides
x
x, 2x and and a sphere is constant.
3
Let S be the sum of both the surface area.
S = 2 æç x × 2 x + 2 x × + × x ö÷ + 4pr 2 = k
x x
\
è 3 3 ø
é 2 2x 2 x2 ù 2
k = 2 ê2 x + + ú + 4pr
ë 3 3 û
= 2 [3x 2 ] + 4pr 2 = 6x 2 + 4pr 2
Þ 4pr 2 = k - 6x 2
k - 6x 2
Þ r2 =
4p
k - 6x 2
Þ r= ... (i)
4p
Let V denotes the volume of both the parallelopiped and the sphere.
x 4 2 4
Then, V = 2 x × x × + pr 3 = x 3 + pr 3
3 3 3 3
3/ 2
2 3 4 æ k - 6x 2 ö
=x + p çç ÷
3 3 è 4p ÷ø
2 4 1
= x 3 + p × 3 / 2 (k - 6x 2 )3 / 2
3 3 8p
2 1
= x3 + (k - 6x 2 )3 / 2 ...(ii)
3 6 p
On differentiating both sides w.r.t. x, we get
dV 2 1 3
= × 3x 2 + × (k - 6x 2 )1/ 2 × (- 12 x )
dx 3 6 p 2
12 x
= 2x 2 - k - 6x 2
4 p
3x
= 2x 2 - (k - 6x 2 )1/ 2 ...(iii)
p
dV
Q =0
dx
3x
Þ 2x 2 = (k - 6x 2 )1/ 2
p
9x 2
Þ 4x 4 = (k - 6x 2 )
p
Þ 4px 4 = 9 k x 2 - 54x 4
Þ 4px 4 + 54x 4 = 9 k x 2
Þ x 4 [4p + 54] = 9 × k × x 2
9k
Þ x2 =
4p + 54
k
Þ x = 3× ...(iv)
4p + 54
Again, differentiating Eq. (iii) w.r.t. x, we get
d 2V 3 é x × 1 (k - 6x 2 )- 1/ 2 × (- 12 x ) + (k - 6x 2 )1/ 2 × 1ù
= 4x -
dx 2 p ëê 2 ûú
3
= 4x - [- 6x 2 × (k - 6x 2 )- 1/ 2 + (k - 6x 2 )1/ 2 ]
p
3 é - 6x 2 + k - 6x 2 ù
= 4x - ê ú
p ê k - 6x 2 úû
ë
3 é k - 12 x ù
2
= 4x - ê ú
p ê k - 6x 2 ú
ë û
é k ù
æ d 2V ö ê k - 12 × 9 × ú
k 3 4p + 54
Now, çç 2 ÷÷ = 4× 3 - ê ú
è dx ø x = 3 × k 4p + 54 p ê 6× 9× k ú
4 p + 54 ê k - ú
ë 4p + 54 û
é 108k ù
ê k- ú
k 3 4p + 54
= 12 - ê ú
4p + 54 p ê 54 k ú
ê k -
ë 4p + 54 úû
k 3 é 4 kp + 54 k - 108 k / 4p + 54 ù
= 12 - ê ú
4p + 54 p ë 4 kp + 54 k - 54 k / 4p + 54 û
k 3 é 4 kp - 54k ù
= 12 - ê ú
4p + 54 p ë 4 kp 4p + 54 û
k 6 é k (2 p - 27 ) ù
= 12 - ê ú
4p + 54 p ê k 16p 2 + 216p ú
ë û
é d 2V ù
êsince, (2 p - 27) < 0 Þ 2
> 0; k > 0ú
ë dx û
k
For x = 3 , the sum of volumes is minimum.
4p + 54
k k - 6x 2
For x = 3 , then r= [using Eq. (i)]
4p + 54 4p
1 9k
= k - 6×
2 p 4p + 54
1 4kp + 54 k - 54 k
= ×
2 p 4p + 54
1 4kp k 1
= = = x
2 p 4p + 54 4p + 54 3
Þ x = 3r Hence proved.
\ Minimum sum of volume,
3
2 3 4 3 2 3 4 æ1 ö
Væ ö
= x + pr = x + p × ç x ÷
ç x = 3×
k
÷ 3 3 3 3 è3 ø
ç 4 p + 54 ÷ø
è
2 3 4 x3 2 3 æ 2p ö
= x + p× = x ç1 + ÷
3 3 27 3 è 27 ø
Objective Type Questions
Q. 35 If the sides of an equilateral triangle are increasing at the rate of 2
cm/s then the rate at which the area increases, when side is 10 cm, is
(a) 10 cm2 / s (b) 3 cm2 / s
2 10
(c) 10 3 cm / s (d) cm2 / s
3
Sol. (c) Let the side of an equilateral triangle be x cm.
3 2
\ Area of equilateral triangle, A = x …(i)
4
dx
Also, = 2cm/s
dt
On differentiating Eq. (i) w.r.t. t, we get
dA 3 dx
= × 2x ×
dt 4 dt
3 é Q x = 10 and dx = 2 ù
= × 2 × 10 × 2
4 êë dt úû
= 10 3 cm2 /s
Sol. (b) Let the angle between floor and the ladder be q.
Let AB = x cm and BC = y cm
x y A
\ sin q = and cos q =
500 500
Þ x = 500 sin q and y = 500 cos q
dx
Also, = 10 cm/s
cm
dt x
0
50
dq
Þ 500 × cos q × = 10 cm/s
dt
dq 10 1
Þ = = q
dt 500cos q 50 cos q C B
y
For y = 2 m = 200 cm,
dq 1 10
= =
dt y y
50 ×
500
10 1
= = rad/s
200 20
Q. 37 The curve y = x 1/ 5 has at (0, 0)
(a) a vertical tangent (parallel to Y-axis)
(b) a horizontal tangent (parallel to X-axis)
(c) an oblique tangent
(d) no tangent
and æ dy ö = 3 × 1 = 3 = m2
ç ÷
è dx ø( 1, 1)
Since, the curves cut orthogonally at (1, 1).
\ m1 × m2 = - 1
Þ æ -2 ö × 3 = - 1
ç ÷
è a ø
\ a=6
3x 2 - 3 é x × 2 y + y2 × 1ù + 0 = 0
dy
Þ
êë dx úû
3 éx 2 + y × 2 x ù - 3 y2
dy dy
and -0=0
êë dx úû dx
dy
Þ 3x × 2 y + 3 y2 = 3x 2
dx
dy dy
and 3 y2 = 3x 2 + 6xy
dx dx
dy 3x 2 - 3 y2
Þ =
dx 6xy
dy 6xy
and =
dx 3 y2 - 3x 2
2 2
Þ æ dy ö = 3(x - y )
ç ÷
è dx ø 6xy
æ dy ö = -6xy
and ç ÷
è dx ø 3(x 2 - y2 )
( x 2 - y2 )
Þ m1 =
2 xy
-2 xy
and m2 =
x 2 - y2
x 2 - y2 - (2 xy)
\ m1m2 = × 2 = -1
2 xy x - y2
p
Hence, both the curves are intersecting at right angle i.e., making with each other.
2
Since, æ p , p ö Î æ p , 3p ö
ç ÷ ç ÷
è2 ø è2 2 ø
p
Hence, f(x ) is decreasing in æç , p ö÷.
è 2 ø
Q. 50 Which of the following functions is decreasing on æç 0, p ö÷?
è 2ø
(a) sin 2x (b) tan x (c) cos x (d) cos 3x
p
Sol. (c) In the interval æç 0, ö÷, f(x ) = cos x
è 2ø
Þ f ¢(x ) = - sin x
p
which gives f ¢(x ) < 0 in æç 0, ö÷
è 2ø
p
Hence, f(x ) = cos x is decreasing in æç 0, ö÷.
è 2ø
x
Q. 59 The maximum value of æç 1 ö÷ is
èxø
1 1/ e
(a) e (b) ee (c) e1/ e (d) æç ö÷
è eø
x
1
Sol. (c) Let y = æç ö÷
è ø
x
1
Þ log y = x × log
x
1 dy 1 1 1
\ × = x × × æç - 2 ö÷ + log × 1
y dx 1 è x ø x
x
1
= - 1 + log
x
x
1 1
= æç log - 1ö÷ × æç ö÷
dy
\
dx è x ø èx ø
dy
Now, =0
dx
1
Þ log = 1 = log e
x
1
Þ =e
x
1
\ x=
e
1
Hence, the maximum value of f æç ö÷ = (e )1/ e .
èe ø
Fillers
Q. 60 The curves y = 4 x 2 + 2x - 8 and y = x 3 - x + 13 touch each other at
the point ......... .
Sol. The curves y = 4x 2 + 2 x - 8 and y = x 3 - x + 13 touch each other at the point (3, 34).
Given, equation of curves are y = 4x 2 + 2 x - 8 and y = x 3 - x + 13
dy
\ = 8x + 2
dx
dy
and = 3x 2 - 1
dx
So, the slope of both curves should be same
\ 8x + 2 = 3x 2 - 1
Þ 3x 2 - 8x - 3 = 0
Þ 3x 2 - 9x + x - 3 = 0
Þ 3x(x - 3) + 1 (x - 3) = 0
Þ (3x + 1)(x - 3) = 0
1
\ x = - and x = 3,
3
2
1 1 -1
For x = - , y = 4 × æç - ö÷ + 2 × æç ö÷ - 8
3 è 3ø è 3ø
4 2 4 - 6 - 72
= - -8=
9 3 9
74
=-
9
2
and for x = 3, y = 4 × (3) + 2 × (3) - 8
= 36 + 6 - 8 = 34
1 -74 ö
So, the required points are (3, 34) and æç - , ÷.
è 3 9 ø
2x 2 - 1
Q. 63 The function f (x) = , (where, x > 0) decreases in the interval
x4
......... .
2x 2 - 1
Sol. The function f(x ) = , where x > 0, decreases in the interval (1, ¥ ).
x4
x 4 × 4x - (2 x 2 - 1) × 4x 3 4x 5 - 8x 5 + 4x 3
Q f ¢(x ) = =
x8 x8
5 3 3 2
- 4x + 4x 4x (- x + 1)
= =
x8 x8
Also, f ¢(x ) < 0
4x 3 (1 - x 2 )
Þ < 0 Þ x 2 >1
x8
Þ x >± 1
\ x Î (1, ¥ )
b
Q. 64 The least value of function f (x) = ax + (where ,a > 0, b > 0, x > 0) is
x
......... .
b
Sol. The least value of function f(x ) = ax + (where, a > 0, b > 0, x > 0) is 2 ab.
x
b
Q f ¢(x ) = a - and f ¢(x ) = 0
x2
b
Þ a=
x2
b b
Þ x2 = Þ x = ±
a a
(- 2 ) 2b
Now, f ¢¢(x ) = - b × 3 = + 3
x x
b 2b + 2 b × a3 / 2
At x = , f ¢¢(x ) = + 3/ 2
=
a æbö b3 / 2
ç ÷
èaø
a3
= + 2 b -1/ 2 × a3 / 2 = + 2 >0 [Q a, b > 0 ]
b
æ bö b b
\ Least value of f(x ), f çç ÷÷ = a × +
è a ø a b
a
= a × a-1/ 2 × b1/ 2 + b × b -1/ 2 × a1/ 2
= ab + ab = 2 ab
7
Integrals
Short Answer Type Questions
Verify the following
2x - 1
Q. 1 ò dx = x - log|(2 x + 3)2 | + C
2x + 3
2x - 1 2x + 3 - 3 - 1
Sol. Let I =ò dx = ò dx
2x + 3 2x + 3
1 4
= ò 1dx - 4ò dx = x - ò dx
2x + 3 æ 3ö
2çx + ÷
è 2ø
æ 3ö ½ æ 2 x + 3 ö½
= x - 2 log + ç x + ÷ C ¢ = x - 2 log½ç ÷½ + C ¢
è 2ø ½è 2 ø½
é m ù
= x - 2 log|(2 x + 3)| + 2 log 2 + C ¢ êëQ log n = log m - log núû
= x - log|(2 x + 3)2| + C [Q C = 2 log 2 + C ¢]
2x + 3
Q. 2 ò 2
dx = log| x 2 + 3x | + C
x + 3x
2x + 3
Sol. Let I= ò x 2 + 3x dx
Put x 2 + 3x = t
Þ (2 x + 3) dx = dt
1
\ I = ò dt = log|t| + C
t
= log|(x 2 + 3x )| + C
(x 2 + 2)d
Q. 3 ò x
x +1
K Thinking Process
1
First of all divided numerator by denominator, then use the formula ò dx = log | x| to
get the solution. x
x2 + 2
Sol. Let I= ò
x+1
dx
æ 3 ö
= ò çç x - 1 + ÷ dx
è x + 1 ÷ø
1
= ò (x - 1) dx + 3ò dx
x+1
x2
= - x + 3log|(x + 1)| + C
2
e 6 log x - e 5 log x
Q. 4 ò dx
e 4 log x - e 3 log x
æ e 6 log x - e 5 log x ö
Sol. Let I = ò çç 4 log x ÷ dx
èe - e 3 log x ÷ø
æ elog x 6 - elog x 5 ö
= òç ÷ dx [Q alog b = log b a ]
ç log x 4 log x 3 ÷
è e - e ø
æ x6 - x5 ö
= ò çç 4 ÷ dx
3 ÷
[Q elog x = x ]
èx - x ø
æ x3 - x2 ö 2
= ò çç ÷ dx = x (x - 1)dx
÷ ò
è x -1 ø x -1
x3
= ò x 2dx = +C
3
(1 + cos x)
Q. 5 ò dx
x + sin x
(1 + cos x )
Sol. Consider that, I= ò (x + sin x ) dx
Let x + sin x = t Þ (1 + cos x ) dx = dt
1
\ I = ò dt = log|t| + C
t
= log|(x + sin x )| + C
dx
Q. 6 ò
1 + cos x
K Thinking Process
x
cos x = 2 cos2 - 1 and also use formula i.e., ò sec x = tanx + C to solve
2
the above
2
problem.
dx dx
Sol. Let I= ò 1 + cos x = ò x
-1 1 + 2 cos 2
2
1 1 1 x
= ò dx = ò sec 2 dx
2 cos 2 x 2 2
2
1 x x
= × tan × 2 + C = tan + C [Q ò sec 2 x dx = tan x ]
2 2 2
Q. 7 ò tan 2 x sec 4 x dx
K Thinking Process
Use the formula sec2x = 1 + tan2 x and put tanx = t to solve this problem.
Sol. Let I = ò tan2 x sec 4 x dx
Put tanx = t Þ sec 2 x dx = dt
\ I = ò t 2 (1 + t 2 ) dt = ò (t
2
+ t 4 ) dt
3 5 5
t t tan x tan3 x
= + +C= + +C
3 5 5 3
sin x + cos x
Q. 8 ò dx
1 + sin 2x
sin x + cos x (sin x + cos x )
Sol. Let I= ò 1 + sin2 x
dx = ò sin2 x + cos 2 x + 2 sin x cos x
dx
sin x + cos x
= ò (sin x + cos x )2
dx = ò 1dx = x + C
Q. 9 ò 1 + sin x dx
Sol. Let I= ò 1 + sinx dx
x x x x é 2 x 2 x ù
= ò sin2
2
+ cos 2 + 2 sin cos dx
2 2 2 êëQ sin 2 + cos 2 = 1úû
æ x x ö2 æ x xö
= òç sin + cos ÷ dx = ò ç sin + cos ÷ dx
è 2 2ø è 2 2ø
x x x x
= - cos × 2 + sin × 2 + C = - 2 cos + 2 sin + C
2 2 2 2
x
Q. 10 ò dx
x +1
x
Sol. Let I= ò x +1
dx
1
Put x =t Þ dx = dt
2 x
Þ dx = 2 x dt
æx x ö t 2 ×t t3
\ I = 2 ò çç ÷ dt = 2 ò
÷ dt = 2 ò dt
è t + 1ø t +1 t +1
t3 + 1- 1 ( t + 1) (t 2 - t + 1) 1
= 2ò dt = 2 ò dt - 2 ò dt
t +1 t +1 t +1
1
= 2 ò ( t 2 - t + 1) dt - 2 ò dt
t +1
ét 3 t 2 ù
= 2ê - + t - log|(t + 1)|ú + C
ë3 2 û
éx x x ù
= 2ê - + x - log|( x + 1)|ú + C
ë 3 2 û
a+x
Q. 11 ò dx
a-x
K Thinking Process
Here, put x = a cos2 q and also use the formula i.e., cos 2 q = 2 cos2 q - 1 = 1 - 2 sin2 q, to
get the solution.
a+ x
Sol. Let I= òa-x
dx
Put x = acos2 q
Þ dx = - a × sin2 q × 2 × dq
a + acos 2 q
\ I = - 2ò × asin2 qdq
a - acos 2 q
é x -1 x 1 -1 x ù
êëQ cos 2 q = a Þ 2 q = cos a Þ q = 2 cos a úû
1 + cos 2 q 2 cos 2 q
= - 2 aò sin2 qdq = - 2 a ò sin2 qdq
1 - cos 2 q 2 sin2 q
cos q
= - 2 aò cot q × sin2 qdq = - 2 aò × 2 sin q × cos qdq
sin q
= - 4aò cos 2 qdq = - 2 aò (1 + cos 2 q)dq
é sin2 q ù
= - 2 aê q + +C
ë 2 úû
é1 x 1 x2 ù
= - 2 aê cos -1 + 1- 2 ú + C
êë 2 a 2 a úû
é æx ö x ù
2
= - aêcos -1 ç ÷ + 1 - 2 ú + C
êë è ø
a a úû
Alternate Method
a+ x (a + x )(a + x )
Let I= ò a-x
dx = ò
(a - x )(a + x )
dx
(a + x )
= ò a2 - x 2
dx
a x
I= ò 2
a -x 2
+ ò
a - x2
2
dx
\ I = I1 + I 2 …(i)
a æx ö
Now, I1 = ò = asin-1 ç ÷ + C1
2
a -x 2 èaø
x
and I2 = ò a2 - x 2
dx
Put a2 - x 2 = t 2 Þ - 2 x dx = 2t dt
t
\ I 2 = - ò dte = - ò 1dt
t
= - t + C 2 = - a2 - x 2 + C 2
æx ö
\ I = asin-1 ç ÷ + C1 - a2 - x 2 + C 2 [Q t 2 = a2 - x 2 ]
èaø
æx ö
I = asin-1 ç ÷ - a2 - x 2 + C [Q C = C1 + C 2 ]
èaø
x 1/2
Q. 12 ò dx
1 + x 3/ 4 x1 2
Sol. Let I= ò 1 + x 3 4 dx
Put x = t4 Þ dx = 4t 3dt
t 2 (t 3 ) æ t2 ö
\ I = 4ò 3
dt = 4ò çç t 2 - ÷ dt
÷
1+ t è 1+ t3 ø
t2
I = 4ò t 2dt - 4ò dt
1+ t3
I = I1 - I 2
t3 4 34
I1 = 4ò t 2dt = 4 × + C1 = x + C1
3 3
t2
Now, I 2 = 4ò dt
1+ t3
Again, put 1 + t 3 = z Þ 3t 2dt = dz
1 4 1
Þ t 2dt = dz = ò dz
3 3 z
4 4
= log| z| + C 2 = log|(1 + t 3 )| + C 2
3 3
4 34
= log|(1 + x )| + C 2
3
4 4
\ I = x 3 4 + C1 - log|(1 + x 3 4 )| - C 2
3 3
4
= x 3 4 - log|(1 + x 3 4 ) + C [Q C = C1 - C 2 ]
3
1 + x2
Q. 13 ò dx
x4
1 + x2 1 + x2 1
Sol. Let I= ò x 4
dx = ò x
×
x3
dx
1 + x2 1 1 1
= ò x2
× 3 dx = ò
x x2
+ 1 × 3 dx
x
1 -2
Put 1+ = t2 Þ 3 dx = 2t dt
x2 x
1
Þ - = t dt
x3
3/ 2
t3 1æ 1 ö
\ I = - ò t 2dt = - + C = - ç1 + 2 ÷ +C
3 3è x ø
dx
Q. 14 ò
16 - 9x 2
K Thinking Process
1
First of all concert the expression in form of , then use the formula,
a - x2
2
1 æ xö
ò dx = sin-1ç ÷ + C .
2
a -x 2 è aø
dx dx 1 -1 æ 3x ö
Sol. Let I= ò 16 - 9x 2
= ò 2
(4) - (3x ) 2
dx =
3
sin ç ÷+C
è 4 ø
dt
Q. 15 ò
3t - 2t 2
dt 1 dt
Sol. Let I= ò 3t - 2 t 2
=
2 ò æ 3 ö
- çt 2 - t ÷
è 2 ø
1 dt
=
2 ò éæ 1 3 ö æ 3 ö2 æ 3 ö2 ù
- êçt 2 - 2 × × t ÷ + ç ÷ - ç ÷ ú
êë è 2 2 ø è 4ø è 4 ø ûú
1 dt
=
2 ò éæ æ 3ö ù
2 2
3ö
- êçt - ÷ - ç ÷ ú
êë è 4ø è 4 ø úû
1 dt
=
2 ò2
æ 3ö æ 3 ö2
ç ÷ - çt - ÷
è 4ø è 4ø
æ 3ö
çt - ÷
=
1
sin-1 ç 4 ÷ + C = 1 sin-1 æç 4t - 3 ö÷ + C
2 ç 3 ÷ 2 è 3 ø
ç ÷
è 4 ø
3x - 1
Q. 16 ò dx
x2 + 9
K Thinking Process
First of all convert to the given integral into two parts, then by using formula i.e.,
1
ò a2 + x2 = log| x + a + x | + C, get the desired result.
2 2
3x - 1
Sol. Let I= ò x2 + 9
dx
3x 1
I= ò x2 + 9
dx - ò x2 + 9
dx
I = I1 - I 2
3x
Now, I1 = ò
x2 + 9
Put x 2 + 9 = t 2 Þ 2 x dx = 2t dt Þ xdx = tdt
t
\ I1 = 3ò dt
t
= 3ò dt = 3t + C1 = 3 x 2 + 9 + C1
1 1
and I2 = ò x2 + 9
dx = ò x 2 + (3)2
dx
= log|x + x 2 + 9| + C 2
\ I = 3 x 2 + 9 + C1 - log|x + x 2 + 9| - C 2
= 3 x 2 + 9 - log|x + x 2 + 9| + C [Q C = C1 - C 2 ]
Q. 17 ò 5 - 2x + x 2 dx
K Thinking Process
First of all convert the given expression into x2 + a2 form, then use the formula i.e.,
1 a2
ò x2 + a2 dx = x x2 + a2 + log| x + x2 + a2 | + C .
2 2
Sol. Let I=ò 5 - 2 x + x 2 dx = ò x 2 - 2x + 1 + 4d x
=ò (x - 1)2 + (2 )2 dx = ò (2 )2 + (x - 1)2 dx
x -1 2
= 2 + (x - 1)2 + 2 log|x - 1 + 2 2 + (x - 1)2| + C
2
x -1
= 5 - 2 x + x 2 + 2 log|x - 1 + 5 - 2 x + x 2| + C
2
x
Q. 18 ò 4
dx
x -1
x
Sol. Let I= ò x 4 - 1dx
1
Put x 2 = t Þ 2xdx = dt Þ xdx = dt
2
1 dt 1 1 ½ t - 1½ é dx 1 ½ x - a½ ù
\ I= ò = × log½
2 t - 1 2 2 ½t + 1½
2
½+ C êQ ò 2
êë x -a 2
= log ½
2 a ½ x + a½
½+ Cú
úû
1
= [log|x 2 - 1| - log|x 2 + 1|] + C
4
x2
Q. 19 ò dx
1 - x4
K Thinking Process
1 1 1 ½1 + x½
Here, use ò dx = tan-1x + C and ò a2 - x2 dx = 2 a log½½1 - x½+ C, to solve this
1 + x2 ½
problem.
x2
Sol. Let I= ò 1 - x 4 dx
æ 1 x2 1 x2 ö
ç + - + ÷
ç2 2 2 2 ÷ø
=ò è dx [Q a2 - b 2 = (a + b )(a - b )]
(1 - x 2 )(1 + x 2 )
1 1
(1 + x 2 ) - (1 - x 2 )
=ò 2 2 dx
(1 - x 2 )(1 + x 2 )
1
(1 + x 2 )
2 1 (1 - x 2 )
=ò 2 2
dx - ò dx
(1 - x )(1 + x ) 2 (1 - x 2 )(1 + x 2 )
1 1 1 1 1 1 ½1 + x ½ 1
½ + C1 - tan-1 x + C 2
2 ò 1 - x2
= dx - ò dx = × log ½
2 1 + x2 2 2 ½1 - x ½ 2
1 ½1 + x½ 1
= log½ ½ - tan-1 x + C [Q C = C1 + C 2 ]
4 ½1 - x½ 2
Q. 20 ò 2ax - x 2 dx
=ò - (x 2 - 2 ax + a2 - a2 ) dx = ò - (x - a)2 - a2 dx
=ò a2 - (x - a)2 dx
x-a 2 a 2 -1 æ x - a ö
= a - (x - a)2 + sin ç ÷+C
2 2 è a ø
x-a a 2 -1 æ x - a ö
= 2 ax - x 2 + sin ç ÷+C
2 2 è a ø
sin -1 x
Q. 21 ò dx
(1 - x 2 ) 3 4
sin-1 x sin-1 x
Sol. Let I= ò (1 - x 2 )3 4 dx = ò (1 - x 2 ) 1 - x2
dx
1
Put sin-1 x = t Þ dx = dt
1 - x2
and x = sin t Þ 1 - x 2 = cos 2 t
Þ cost = 1 - x 2
t
\ I=ò dt = ò t × sec 2 tdt
cos 2 t
æd ö
= t × ò sec 2 tdt - ò ç t × ò sec 2 t dt ÷ dt
è dt ø
= t × tan t - ò 1× tan t dt
= t tan t + log|cos t| + C [Q ò tan x dx = - log|cos x| + C ]
x
= sin-1 x × + log| 1 - x 2| + C
2
1- x
(cos 5x + cos 4 x)
Q. 22 ò dx
1 - 2 cos 3x
9x x
2 cos × cos
cos 5x + cos 4x 2 2 dx
Sol. Let I=ò dx = ò
1 - 2 cos 3x æ 3x ö
1 - 2 ç 2 cos 2 - 1÷
è 2 ø
é C+D C-D 2 ù
êëQ cos C + cos D = 2 cos 2 . cos 2 and cos 2 x = 2 cos x - 1úû
9x x 9x x
2 cos × cos 2 cos × cos
\ I=ò 2 2 dx = - ò 2 2 dx
3x 3x
3 - 4cos 2 4cos 2 -3
2 2
9x x 3x
2 cos × cos × cos
2 2 2 dx é 3x ù
= -ò êmultiply and divide by cos 2 ûú
3 3x 3x ë
4cos - 3cos
2 2
9x x 3x
2 cos × cos × cos
= -ò 2 2 2 dx = - 2 cos 3x × cos x dx
3x ò 2 2
cos 3 ×
2
ì æ 3x xö æ 3x x ö ü
= - ò ícos ç + ÷ + cos ç - ÷ ý dx
î è 2 2 ø è 2 2 øþ
= - ò (cos 2x + cos x ) dx
é sin2 x ù
= -ê + sin x ú + C
ë 2 û
1
= - sin2 x - sin x + C
2
sin 6 x + cos6 x
Q. 23 ò dx
sin 2 x cos2 x
K Thinking Process
Use a3 + b3 = (a + b)(a2 - ab + b2) and sec2 x = 1 + tan2 x, cosec 2x = 1 + cot2 x, to solve
the above problem.
sin6 x + cos 6 x (sin2 x )3 + (cos 2 x )3
Sol. Let I= ò sin2 x cos 2 x
dx = ò sin2 x × cos 2 x
dx
x
Q. 24 ò dx
a - x3
3
x x
Sol. Let I= ò
a3 - x 3
dx = ò
(a3 2 )2 - (x 3 2 )2
3
Put x 3 2 = t Þ x 1/ 2dx = dt
2
2 dt 2 t
\ I= ò = sin-1 3 2 + C
3 (a3 2 )2 - t 2 3 a
2 -1 x 3 2 2 -1 x 3
= sin + C = sin +C
3 a3 2 3 a3
cos x - cos 2x
Q. 25 ò dx
1 - cos x
K Thinking Process
C+D D -C x
Apply the formula, cos C - cos D = 2 sin × sin and cos x = 1 - 2 sin2 to solve
2 2 2
it.
3x x
2 sin × sin
cos x - cos 2 x 2 2
Sol. Let I=ò dx = ò dx
1 - cos x x
1 - 1 + 2 sin2
2
3x x 3x
sin × sin sin
= 2ò 2 2 dx = 2 dx
2 x
ò x
2 sin sin
2 2
x x
3sin - 4sin3
=ò 2 2 dx [Q sin 3x = 3sin x - 4sin3 x ]
x
sin
2
x 1 - cos x
= 3ò dx - 4ò sin2 dx = 3ò dx - 4ò dx
2 2
= 3ò dx - 2 ò dx + 2 ò cos x dx
= ò dx + 2 ò cos x dx = x + 2sin x + C = 2sinx + x + C
dx
Q. 26 ò
x x4 - 1
dx
Sol. Let I= òx x4 - 1
Put x 2 = sec q Þ q = sec -1 x 2
Þ 2x dx = sec q × tan q dq
1 sec q × tan q 1 1
2 ò sec q tan q
\ I= dq = ò dq = q + C
2 2
1
= sec -1(x 2 ) + C
2
2
Q. 27 ò0 (x 2 + 3)dx
K Thinking Process
b b-a
òa f(x)dx = lim h [ f (a) + f (a + h) + ¼+ f {a + (n - 1) h}], where h =
h ®0 n
® 0 as
n® ¥ ×
2
ò0 (x
2
Sol. Let I= + 3) dx
b-a 2-0
Here, a = 0, b = 2 and h = =
n n
2
Þ h= Þ nh = 2 Þ f(x ) = (x 2 + 3)
n
2
Now, ò0 (x 2 + 3) dx = lim h [f(0) + f (0 + h) + f(0 + 2 h) + ¼ + f {0 + (n - 1) h}]
h ®0
...(i)
Q f(0) = 3
Þ f(0 + h) = h2 + 3, f(0 + 2 h) = 4h2 + 3 = 2 2 h2 + 3
f [0 + (n - 1)h] = (n2 - 2 n + 1)h + 3 = (n - 1)2 h + 3
From Eq. (i),
2
ò0 (x 2 + 3) dx = lim h[3 + h2 + 3 + 2 2 h2 + 3 + 32 h2 + 3 + ¼ + (n - 1)2 h2 + 3]
h ®0
2
Q. 28 ò0 e x dx
2
ò0 e
x
Sol. Let I= dx
Here, a = 0 and b=2
b-a
\ h=
n
Þ nh = 2 and f(x ) = e x
2
ò0 e dx = hlim
x
Now, h[f(0) + f(0 + h) + f(0 + 2 h) + ¼ + f{0 + (n - 1) h}]
®0
é 1× (e h )n - 1ù æ e nh - 1 ö
= lim h ê h ú = lim hçç h ÷
÷
h ®0 ê e - 1 ú
ë û h ®0 è e - 1 ø
æ e2 - 1ö
= lim hçç h ÷
÷
h ®0
è e - 1ø
h h é h ù
= e 2 lim h
- lim h êQ lim h = 1ú
h ®0 e -1 h ®0 e -1 êë h ®0 e - 1 úû
2 2
=e -1 =e -1
Evaluate the following questions.
1 dx
Q. 29 ò0
e + e -x
x
1 dx 1 ex
Sol. Let I= ò0 e + e -x
x
= ò0 1 + e 2x
dx
Put ex = t
Þ e x dx = dt
e dt
\ I= ò1 = [tan-1 t ]e1
1+ t2
= tan-1 e - tan-1 1
p
= tan-1 e -
4
p2 tan x
Q. 30 ò0 dx
1 + m2 tan 2 x
p/ 2 tan x dx
Sol. Let I= ò0 1 + m2 tan2 x
dx
sin x
p/ 2 cos x
=ò 2
dx
0 sin x
2
1+ m ×
cos 2 x
sin x
p/ 2 cos x
=ò dx
0 cos 2 x + m2 sin2 x
cos 2 x
p/ 2 sin x cos x dx
= ò0 1 - sin2 x + m2 sin2 x
dx
p/ 2 sin x cos x
= ò0 1 - sin2 x(1 - m2 )
dx
Put sin2 x = t
Þ 2sin x cos x dx = dt
1 1 dt
\ I= ò
2 0 1 - t (1 - m2 )
1
1é 1 ù
= ê - log|1 - t (1 - m2 )|× ú
2 êë 1 - m2 úû 0
1é 2 1 1 ù
= ê - log|1 - 1 + m | × 2
+ log|1|× ú
2 êë 1+ m 1 - m2 úû
1é 2 1 ù 2 log m
= ê - log|m | × ú= ×
2 êë 1 - m2 úû 2 (m2 - 1)
m
= log
m2 - 1
2 dx
Q. 31 ò 1
(x - 1)(2 - x)
K Thinking Process
1
First of all convert the given function into form, then apply the formula i.e.,
a2 - x2
1 x
ò dx = sin-1 + C .
2 2 a
a -x
2 dx 2 dx
Sol. Let I= ò1 (x - 1)(2 - x )
= ò1 2x - x 2 - 2 + x
2 dx
= ò1 - (x 2 - 3x + 2 )
2 dx
= ò1 é 3 æ 3ö
2
9ù
- êx 2 - 2 × x + ç ÷ + 2 - ú
êë 2 è2 ø 4 úû
2 dx
= ò1 ìïæ 3 ö 2 æ 1 ö 2 üï
- íç x - ÷ - ç ÷ ý
îïè 2ø è 2 ø þï
2
é æ 3 öù
2 dx ê -1 ç x - 2 ÷ ú
= ò1 2
= êsin ç
ç 1 ÷ú
÷ú
æ 1ö æ 3 ö2 ê ç ÷
ç ÷ - çx - ÷ êë è 2 ø úû1
è2 ø è 2ø
= [sin-1(2 x - 3)]12 = sin-1 1 - sin-1(-1)
p p é p ù
= + êëQ sin 2 = 1 and sin (- q) = - sin qúû
2 2
=p
1 x
Q. 32 ò0 dx
1 + x2
1 x
Sol. Let I= ò0 1 + x2
dx
Put 1 + x2 = t 2
Þ 2 x dx = 2tdt
Þ x dx = tdt
2 tdt
\ I= ò1 t
2
= [t ]1 = 2 -1
p
Q. 33 ò0 x sin x cos2 x dx
K Thinking Process
a a
Here, use the property i.e., ò f (x)dx = ò (a - x)dx and
0 0
sin (p - x) = sin x, cos(p - x) = cos x .
p
ò0 x sin x cos x dx
2
Sol. Let I= …(i)
p
and I = ò (p - x )sin(p - x )cos 2 (p - x )dx
0
p
Þ I = ò (p - x )sin x cos 2 x dx …(ii)
0
On adding Eqs. (i) and (ii), we get
p
ò0 p sin x cos
2
2I = x dx
Put cos x = t
Þ - sinx dx = dt
As x ® 0, then t ® 1
and x ® p, then t ® -1
-1
-1 ét 3 ù
\ I = - p ò t 2 dt Þ I = - p ê ú
ë 3 û1
1
p 2p
Þ 2 I = - [-1 - 1] Þ 2 I =
3 3
p
\ I=
3
1/2 dx
Q. 34 ò0
(1 + x 2 ) 1 - x 2
1/ 2 dx
Sol. Let I= ò0 (1 + x ) 1 - x 2
2
Put x = sin q
Þ dx = cos q dq
As x ® 0, then q ® 0
1 p
and x ® , then q ®
2 6
p/ 6 cos q p/ 6 1
\ I=ò dq = ò dq
0 (1 + sin2 q) cos q 0 1 + sin2 q
p/ 6 1
=ò dq
0 cos 2 q (sec 2 q + tan2 q)
p/ 6 sec 2 q
= ò0 sec q + tan2 q
2
dq
p/ 6 sec 2 q
= ò0 1 + tan2 q + tan2 q
dq
p/ 6 sec 2 q
= ò0 1 + 2 tan2 q
dq
t A B
Þ = +
(t - 4)(t + 3) t - 4 t + 3
Þ t = A (t + 3) + B (t - 4)
On comparing the coefficient of t on both sides, we get
A+ B=1 …(i)
Þ 3 A - 4B = 0 …(ii)
Þ 3(1 - B) - 4B = 0
Þ 3 - 3B - 4B = 0
Þ 7B = 3
3
Þ B=
7
3 3
If B = , then A + = 1
7 7
3 4
Þ A = 1- =
7 7
x2 4 3
= +
(x - 4)(x 2 + 3)
2
7(x 2 - 4) 7(x 2 + 3)
4 1 3 1
7ò 7 ò x 2 + ( 3 )2
\ I= dx + dx
x 2 - ( 2 )2
4 1 ½x - 2 ½ 3 1 x
= × log½ ½+ × tan-1 +C
7 2 × 2 ½x + 2 ½ 7 3 3
1 ½x - 2½ 3 x
= log½ ½+ tan-1 +C
7 ½x + 2½ 7 3
x2
Q. 36 ò dx
(x 2 + a 2 )(x 2 + b 2 )
x2
Sol. Let I= ò (x 2 + a2 )(x 2 + b2 )dx
x2
Now, [let x 2 = t ]
(x + a )(x 2 + b 2 )
2 2
t A B
= = +
(t + a2 )(t + b 2 ) (t + a2 ) (t + b 2 )
t = A (t + b 2 ) + B (t + a2 )
On comparing the coefficient of t, we get
A+ B=1 …(i)
b 2 A + a2 B = 0 …(ii)
Þ b 2 (1 - B) + a2 B = 0
Þ b 2 - b 2 B + a2 B = 0
Þ b 2 + ( a2 - b 2 ) B = 0
- b2 b2
Þ B= 2 2
=
a -b b - a2
2
2
b
From Eq. (i), A+ =1
b 2 - a2
b 2 - a2 - b 2 - a2
Þ A= 2 2
=
b -a b - a2
2
2
-a b2 1
\ I= ò (b2 - a2 )(x 2 + a2 )dx + ò b2 - a2 × x 2 + b2 dx
- a2 1 b2 1
= 2
(b - a 2 ò
) x 2 + a2
dx +
b - a2 x 2 + b 2 2 ò dx
- a2 1 x b 2
1 x
= 2 × tan-1 + 2 × tan-1
b - a2 a a b - a2 b b
1 é -1 x -1 x ù
= 2 - a tan + b tan
b - a2 êë a b úû
1 é x xù
= 2 a tan-1 - b tan-1 ú
a - b 2 êë a bû
p x
Q. 37 ò0
1 + sin x
px
Sol. Let I= ò0
1 + sin x
dx ...(i)
p p-x p p-x
and I=ò dx = ò0 dx ...(ii)
0 1 + sin( p - x ) 1 + sin x
On adding Eqs. (i) and (ii), we get
p1
2I = pò dx
1 + sinx
0
p (1 - sin x ) dx
= pò
0 (1 + sin x )(1 - sin x )
p (1 - sin x ) dx
= pò
0 cos 2 x
p
= p ò (sec 2 x - tan x × sec x ) dx
0
p p
= p ò sec 2 x dx - p ò sec x x × tan x dx
0 0
= p[tan x ]p0 - p[sec x ]p0
p
= p[tan x - sec x ]
0
= p [tan p - sec p - tan 0 - sec 0]
Þ 2 I = p[0 + 1 - 0 + 1]
2I = 2p
\ I=p
2x - 1
Q. 38 ò dx
(x - 1)(x + 2)(x - 3)
K Thinking Process
px + q A B C
Apply = + + , then get the values of A, B and
(x - a)(x - b)(x - c) (x - a) (x - b) (x - c)
1
C and use ò dx = log | x | + C .
x
Sol. (2 x - 1)
Let I= ò (x - 1)(x + 2 )(x - 3)dx
2x - 1 A B C
Now, = + +
(x - 1)(x + 2 )(x - 3) (x - 1) (x + 2 ) (x - 3)
Þ 2 x - 1 = A(x + 2 )(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x + 2 )
Put x = 3, then
6 - 1 = C(3 - 1)(3 + 2 )
1
Þ 5 = 10C Þ C =
2
Again, put x = 1, then
2 - 1 = A (1 + 2 )(1 - 3)
1
Þ 1 = - 6A Þ A=-
6
Now, put x = - 2, then
-4 - 1 = B (-2 - 1)(-2 - 3)
1
Þ -5 = 15B Þ B = -
3
1 1 1 1 1 1
6ò x - 1
\ I=- dx - ò dx + ò dx
3 x+2 2 x-3
1 1 1
= - log| (x - 1)| - log| (x + 2 )| + log| (x - 3)| + C
6 3 2
= - log| (x - 1)|1 6 - log| (x + 2 )|1 3 + log| (x - 3)|1 2 + C
½ x-3 ½
= log½ 16 13 ½
+C
½ (x - 1) (x + 2 ) ½
-1
xæ 1 + x + x2 ö
Q. 39 ò e tan ç ÷dx
ç 1 + x 2 ÷ø
è
æ
-1 x + x 2 ö÷
x ç1 +
Sol. Let I = ò e tan ç 1 + x 2 ÷ dx
è ø
-1 æ 1 + x ö
2
x
= ò e tan x çç 2
+ ÷ dx
÷
è1 + x 1 + x2 ø
-1
-1 x e tan x
= ò e tan x
dx + ò 2
dx
1+ x
I = I1 + I 2 …(i)
-1
x e tan x
Now, I2 = ò 1 + x2
dx
= tan t × et - ò sec 2 t × et dt + C
= tan t × et - ò (1 + tan2 t ) et dt + C [Q sec 2 q = 1 + tan2 q]
-1 x
e tan
I 2 = tan t × et - ò (1 + x 2 ) dx + C
1 + x2
-1
I 2 = tan t × et - ò e tan x
dx + C
tan -1 x -1
\ I = òe dx + tan t × et - ò e tan x
dx + C
t
= tan t × e + C
-1
= x e tan x
+C
x
Q. 40 ò sin -1 dx
a+x
K Thinking Process
First of all put x = tan2 q and convert the given expression into two parts, then use the
æ d ö
formulae for integration by part i.e., ò I× IIdx = Iò IIdx - ò ç Iò IIdx÷ d x.
è dx ø
-1 x
Sol. Let I= ò sin a+ x
dx
Put
x = a tan2 q
Þ dx = 2 a tan q sec 2 q d q
a tan2 q
\ I = ò sin-1 (2 a tan q × sec 2 q) dq
a + a tan2 q
æ tan q ö
= 2 aò sin-1 çç ÷ tan q × sec 2 q dq
÷
è sec q ø
-1
= 2 aò sin (sin q)tan q × sec 2 q dq
= 2 aò q × tan q sec 2 q d q
I II
é æd ö ù
= 2 a ê q × ò tan q × sec 2 q dq - ò ç q × ò tan q × sec 2 q dq ÷ dqú
ë è dq ø û
é ù
êPut tan q = t ú
êÞ sec q × tan q × dq = dt ú
ê ú
êëÞ ò tan q sec 2 q dq = ò t dt úû
é tan2 q tan2 q ù
= 2 a êq × -ò dqú
ë 2 2 û
= aq tan2 q - aò ( sec 2 q - 1) dq
= aq × tan2 q - a tan q + aq + C
éx x xù
= aê tan-1 + tan-1 ú+C
ë a a aû
p /2 1 + cos x
Q. 41 òp / 3 dx
(1 - cos x) 5/2
p/ 2 1 + cos x
Sol. Let I= òp/ 3 (1 - cos x )5 / 2
dx
p/ 2 1 + cos x
= òp/ 3 (1 - cos x )2 1 + cos x
dx
p2 1 p2 1
= òp3 (1 - cos 2 x )
dx = ò
p3 sin2 x
dx
p2
= òp3 cosec
2
x dx = [- cot x ]pp// 23
é p pù é 1 ù 1
= - êcot - cot ú = - ê 0 - =+
ë 2 3û ë 3 úû 3
Alternate Method
1/ 2
æ 2 xö
ç 2 cos ÷
p/2 1 + cos x è 2øp/ 2
Let I=ò dx = òp/ 3 æ dx
p/ 3 (1 - cos x )5 / 2 5/ 2
2 xö
ç 2 sin ÷
è 2ø
æx ö æx ö
cosç ÷ cosç ÷
2 p/2 è 2 ø dx = 1 p/ 2 è 2 ø dx
= ò
4 2 p/3 5æ x ö
ò
4 p/ 3 5æ x ö
sin ç ÷ sin ç ÷
è2 ø è2 ø
x
Put sin = t
2
x 1
Þ cos × dx = dt
2 2
x
Þ cos dx = 2dt
2
p 1
As x® , then t ®
3 2
p 1
and x ® , then t ®
2 2
1/ 2
2 1 2 dt 1 é t -5 + 1 ù
\ I= ò
4 1/ 2 t 5
= ê ú
2 ë -5 + 1û1/ 2
é ù
ê ú
1ê 1 1 ú
=- -
8 ê æ 1 ö4 æ 1 ö4 ú
êç ÷ ç ÷ ú
ëè 2 ø è2 ø û
1 12 3
= - (4 - 16) = =
8 8 2
Note If we integrate the trigonometric function in different ways [using different identities]
then, we can get different answers.
Q. 42 ò e -3x cos 3 x dx
Sol. Let I = ò e -3 x cos 3 x dx
II I
æd ö
= cos 3 x ò e -3 x dx - ò ç cos 3 x ò e -3 x dx ÷ dx
è dx ø
-3 x -3 x
e e
= cos 3 x × - ò (- 3cos 2 x ) sin x × dx
-3 -3
1
= - cos 3 x e -3 x - ò cos 2 x sin x e -3 xdx
3
1
= - cos 3 x e -3 x - ò (1 - sin2 x )sin x e -3 xdx
3
1
= - cos 3 x e -3 x - ò sin x e -3 xdx + ò sin3 x e -3 xdx
3
I II
1 e -3 x e -3 x
= - cos 3 x e -3 x - ò sin x e -3 xdx + sin3 x × - ò 3sin2 x cos x × dx
3 -3 -3
1 1
= - cos 3 x e -3 x - ò sin x e -3 xdx - sin3 x e -3 x + ò (1 - cos 2 x )cos x e -3 xdx
3 3
1 -3 x -3 x 1 3
I = - cos x e3
- ò sin x e - sin x e -3 x + ò cos x e -3 xdx - ò cos 3 x e -3 xdx
3 3
I II
e -3 x é e -3 x e -3 x ù
2I = [cos 3 x + sin3 x ] - êsin x × - ò cos x × dx ú + ò cos x e -3 xdx
3 ë -3 -3 û
e -3 x 1 -3 x 1
2I = 3 3
[cos x + sin x ] + sin x × e - ò cos x × e dx + ò cos x e -3 xdx
-3 x
-3 3 3
e -3 x 1 2
2I = [cos 3 x + sin3 x ] + sin x e -3 x + ò cos x e -3 xdx
-3 3 3
-3 x
Now, let I1 = ò cos x e dx
I II
e -3 x e -3 x
I1 = cos x × - ò (- sin x ) × dx
-3 -3
-1 1
cos x × e -3 x - sin x × e -3 xdx
3 ò
I1 =
3
1 1é e -3 x e -3 x ù
= - cos x × e -3 x - êsin x × - ò cos x × dx ú
3 3ë -3 -3 û
1 -3 x 1 -3 x 1 -3 x
= - cos x × e + sin x × e - ò cos x × e dx
3 9 9
1 1 1
I1 + I1 = - e -3 x × cos x + sin x × e -3 x
9 3 9
æ 10 ö 1 -3 x 1
ç ÷ I1 = - e × cos x + sin x × e -3 x
è 9ø 3 9
- 3 -3 x 1 -3 x
I1 = e × cos x + e sin x
10 10
1 1 3
2 I = - e -3 x [sin3 x + cos 3 x ] + sin x × e -3 x - e -3 x × cos x
3 3 10
1 -3 x
+ e × sin x + C
10
1 -3 x 13 3
\ I = - e [sin3 x + cos 3 x ] + e -3 x × sin x - e -3 x × cos x + C
6 30 10
éQ sin 3x = 3sin x - 4sin3 x ù
ê ú
êëand cos 3x = 4cos 3 x - 3cos x úû
e -3 x 3e -3 x
= [sin 3x - cos 3x ] + [sin x - 3cos x ] + C
24 40
Q. 43 ò tan x dx
Sol. Let I= ò tan x dx
Put tanx = t Þ sec 2 x dx = 2t dt
2
2t t2
\ I = òt × 2
dt = 2 ò dt
sec x 1+ t4
( t 2 + 1) + (t 2 - 1)
= ò (1 + t 4 )
dt
t2 + 1 t2 - 1
= ò 1 + t 4 dt + ò 1 + t 4 dt
1 1
1+ 1-
t 2 dt + t 2 dt
= ò 1 ò 1
t2 + 2
t2 +
t t2
æ 1ö æ 1ö
1 - ç - 2 ÷ dt 1+ ç- 2 ÷
=ò è t ø + è t ø
æ 1ö
2 ò æ 1 ö 2 dt
çt - ÷ + 2 çt + ÷ - 2
è tø è tø
1 æ 1ö
Put u =t - Þ du = ç 1 + 2 ÷ dt
t è t ø
1 æ 1ö
and v = t + Þ dv = ç 1 - 2 ÷ dt
t è t ø
du dv
\ I=ò 2 2
+ ò 2
u + ( 2) v - ( 2 )2
1 u 1 ½v- 2½
= tan-1 + log ½ ½+ C
2 2 2 2 ½v + 2½
æ tan x - 1 ö
=
1
tan-1 çç ÷ + 1 log ½
½
tan x - 2 tan x + 1½
½+ C
2 2 tan x ÷ 2 2 tan x + 2 tanx + 1½
è ø ½
p /2 dx
Q. 44 ò0
(a cos x + b 2 sin 2 x)2
2 2
p/ 2 dx
Sol. Let I= ò0 (a2 cos 2 x + b 2 sin2 x )2
Divide numerator and denominator by cos 4 x, we get
p/ 2 sec 4 x dx
I=ò
0 2
(a + b 2 tan2 x )2
p/ 2 (1 + tan2 x ) sec 2 x dx
= ò0 (a2 + b 2 tan2 x )2
Put tanx = t
Þ sec 2 x dx = dt
As x ® 0, then t ® 0
p ¥ (1 + t 2 )
and x ® , then t ® ¥
2
I= ò0 (a2 + b 2 t 2 )2
1+ t2
Now, [let t 2 = u]
(a + b 2 t 2 )2
2
1+ u A B
= +
(a2 + b 2u )2 (a2 + b 2u ) (a2 + b 2u )2
Þ 1 + u = A(a2 + b 2u ) + B
On comparing the coefficient of x and constant term on both sides, we get
a2 A + B = 1 …(i)
2
and b A=1 …(ii)
1
\ A= 2
b
a2
Now, + B=1
b2
a2 b 2 - a2
Þ B = 1- 2
=
b b2
2
¥ (1 + t )
\ I= ò0 (a2 + b 2t 2 )2
1 ¥ dt b 2 - a2 ¥ dt
=
b 2 ò0 2
a + bt 2 2
+
b2
ò0 (a2 + b 2t 2 )2
1 ¥ dt b 2 - a2 ¥ dt
=
b 2 ò0 æa 2 ö
+
b 2 ò0 (a2 + b 2t 2 )2
b ç 2 + t 2 ÷÷
2ç
è b ø
¥
1 é -1 æ tb ö ù b 2 - a2 æ p 1 ö
= 3 ê
tan ç ÷ ú + ç × ÷
ab ë è a øû0 b 2 è 4 a3 b ø
1 p b 2 - a2
= 3
[tan-1 ¥ - tan-1 0] + ×
ab 4 ( a3 b 3 )
p p b 2 - a2
= + ×
2 ab 3 4 ( a3 b 3 )
æ 2 a2 + b 2 - a2 ö p æ a2 + b 2 ö
= p çç ÷= ç
÷ 4 ç a3 b 3
÷
÷
è 4a3 b 3 ø è ø
1
Q. 45 ò0 x log(1 + 2x) dx
K Thinking Process
æ d ö
Use formula for integration by part i.e., ò I× IIdx = Iò IIdx - ò ç Iò Idx÷ dx and also
è dx ø
1
use ò = log | x | + C.
x
1
Sol. Let I= ò0 x log(1 + 2 x )dx1
é x2 ù 1 x2
= êlog(1 + 2 x ) ú - ò ×2 × dx
ë 2 û0 1 + 2x 2
1 2 x2
= [x log(1 + 2 x )]10 - ò dx
2 1 + 2x
é æ x ö ù
1 ê 1ç x 2
÷ ú
= [1log 3 - 0] - ê ò ç - ÷dx ú
2 ê çç 2 1 + 2 x ÷÷ ú
0
êë è ø úû
1 1 1 1 1 x
= log 3 - ò x dx + ò dx
2 2 0 2 0 1 + 2x
1
1 (2 x + 1 - 1)
1 1 éx2 ù 1 1 2
= log 3 - ê ú + ò dx
2 2 ë 2 û0 2 0 (2 x + 1)
1 1 é1 ù 1 1 1 1 1
= log 3 - ê - 0ú + ò dx - ò dx
2 2 ë2 û 4 0 4 0 1 + 2x
1 1 1 1
= log 3 - + [x ]10 - [log|(1 + 2 x )|]10
2 4 4 8
1 1 1 1
= log 3 - + - [log 3 - log 1]
2 4 4 8
1 1
= log 3 - log 3
2 8
3
= log 3
8
p
Q. 46 ò0 x logsin x dx
K Thinking Process
a a
First of all use property of definite integral i.e., ò0 f(x) dx = ò0 f(a - x) dx, then use
2a a
ò0 f(x) dx = 2ò f(x) dx.
0
p
Sol. Let I= ò0 x logsin x dx ...(i)
p
I = ò (p - x )logsin(p - x ) dx
0
p
= ò (p - x )logsin x dx ...(ii)
0
p
2 I = p ò logsinx dx ...(iii)
0
2I = 2pò
p/2 éQ f(x ) dx = 2 ò f (x ) dx ù
2a a
ëê ò0
logsinx dx
0 0 ûú
p/2
I = pò logsinx dx ...(iv)
0
p/ 2
Now, I=p ò0 logsin(p / 2 - x ) dx ...(v)
On adding Eqs. (iv) and (v), we get
p/2
2I = p ò0 (logsin x + logcos x ) dx
p/ 2
2I = p ò0 logsin x cos x dx
p / 22 2 sin x cos x
=p ò0 log
2
dx
p/2
2I = p ò0 (logsin2 x - log 2 ) dx
p/ 2 p/2
2I = p ò0 logsin2 x dx - p ò0 log 2 dx
1
Put 2x = t Þ dx = dt
2
As x ® 0, then t ® 0
p
and x ® , then t ® p
2
p p p2
\ 2I =
2 ò0 logsint dt -
2
log 2
2
p p p
Þ 2I =
2 ò0 logsin x dx - 2 log2
p2
Þ 2I = I - log 2 [from Eq. (iii)]
2
2
p p2 æ 1ö
\ I=- log 2 = log ç ÷
2 2 è2 ø
p /4
Q. 47 òp / 4 log(sin x + cos x) dx
p/ 4
Sol. Let I= ò- p / 4 log(sin x + cos x ) dx ...(i)
p/ 4 ì æp p ö æp p öü
I= ò- p/ 4 log íîsin çè 4 - 4
- x ÷ + cos ç - - x ÷ ý dx
ø è4 4 øþ
p/ 4
= ò- p/ 4 log{sin(- x ) + cos(- x )} dx
p4
and I= ò- p/ 4 log(cos x - sin x ) dx ...(ii)
From Eqs. (i) and (ii),
p4
2I = ò- p/ 4 logcos2 x dx
p/ 4
2I = ò0 logcos 2 x dx ...(iii)
éQ f(x ) dx = 2
ò0 f(x ), if f(- x ) = f(x )ùûú
a a
ëê ò- a
dt
Put 2x = t Þ dx =
2
As x ® 0, then t ® 0
p p
and x ® , then t ®
4 2
1 p2
2 ò0
2I = logcost dt ...(iv)
1 p2 æp ö éQ af(x ) dx = af(a - x ) dx ù
2 I = ò logcosç - t ÷ dt
2 0 è2 ø ëê ò0 ò0 ûú
1 p2
Þ 2 I = ò logsin t dx ...(v)
2 0
On adding Eqs. (iv) and (v), we get
1 p2
4I = ò logsin t cos t dt
2 0
1 p2 sin2 t
Þ 4I = ò log dt
2 0 2
1 p 2 1 p2
Þ 4I = ò logsin2 x dx - ò log 2 dx
2 0 2 0
1 p2 æp ö p
Þ 4I = ò logsinç - 2 x ÷ dx - log 2 .
2 0 è2 ø 4
1 p2 p
Þ 4I = ò logcos 2 x dx - log 2
2 0 4
p/4 p éQ 2 a f(x ) dx = 2 af(x ) dx ù
4I = ò logcos 2 x dx - log 2
êë ò0 ò0
Þ
0 4 úû
p
Þ 4I = 2 I - log 2 [from Eq. (iii)]
4
p p æ 1ö
\ I = - log 2 = log ç ÷
8 8 è2 ø
Objective Type Questions
cos 2x - cos 2 q
Q. 48 ò cos x - cos q
dx is equal to
(2 cos 2 x - 1 - 2 cos 2 q + 1)
= ò cos x - cos q
dx
dx
Q. 49 is equal to
sin(x - a)sin(x - b)
sin( x - b) sin( x - a)
(a) sin( b - a) log +C (b) cosec ( b - a) log +C
sin( x - a) sin( x - b)
sin( x - b) sin( x - a)
(c) cosec( b - a) log +C (d) sin( b - a) log +C
sin( x - a) sin( x - b)
dx
Sol. (c) Let I= ò sin(x - a)sin(x - b)
1 sin(b - a)
sin(b - a) ò sin(x - a)sin(x - b )
= dx
1 sin(x - a - x + b )
sin(b - a) ò sin(x - a)sin(x - b )
= dx
1 sin{(x - a) - (x - b )}
sin(b - a) ò sin(x - a)sin(x - b )
= dx
1
= [log|sin(x - b )| - log|sin(x - a)|] + C
sin(b - a)
sin(x - b )
= cosec(b - a) log +C
sin(x - a)
Q. 50 ò tan -1 x dx is equal to
(a) ( x + 1) tan -1 x - x + C (b) x tan -1 x - x + C
(c) x - x tan -1 x + C (d) x - ( x + 1) tan -1 x + C
K Thinking Process
æ d ö
Use formula for integration by part i.e., ò I× II dx = Iò II dx - ò ç Iò II dx÷ dx.
è dx ø
Sol. (a) Let I = ò 1 × tan-1 x dx
1 1 2
= tan-1 x × x - ò × dx
2 (1 + x ) x
1 2
= x tan-1 x - ò dx
2 x (1 + x )
Put x = t 2 Þ dx = 2t dt
t
\ I = x tan-1 x - ò t (1 + t 2 )dt
t2
= x tan-1 x - ò 1 + t 2 dt
æ 1 ö
= x tan-1 x - ò çç 1 - ÷ dt
÷
è 1+ t2 ø
= x tan-1 x - x + tan-1 t + C
-1
= x tan x - x + tan-1 x + C
= (x + 1)tan-1 x - x +C
x9
Q. 51 ò dx is equal to
(4 x 2 + 1)6
1 æ 1 ö -5 1æ 1 ö -5
(a) ç4 + 2÷ + C (b) ç4 + 2÷ + C
5x è x ø 5è x ø
-5
1 1 æ 1 ö
(c) (1 + 4) -5 + C (d) ç 2 + 4÷ + C
10 x 10 è x ø
x9 x9
Sol. (d) Let I= ò (4x 2 + 1)6 dx = ò æ 1 ö
6
dx
x 12 ç 4 + 2 ÷
è x ø
dx
= ò æ 1 ö
6
3
x ç4 + 2 ÷
è x ø
1 -2
Put 4+ = t Þ 3 dx = dt
x2 x
1 1
Þ dx = - dt
x3 2
1 dt 1 é t -6 + 1 ù
\ I =- ò 6 =- ê ú+C
2 t 2 ë -6 + 1û
-5
1 é1ù 1 æ 1 ö
= +C= ç4 + 2 ÷ +C
10 êë t 5 úû 10 è x ø
dx 1
Q. 52 If ò 2
= a log|1 + x 2| + b tan -1 x + log| x + 2| + C , then
(x + 2) (x + 1) 5
-1 -2 1 2
(a) a = ,b= (b) a = ,b=-
10 5 10 5
-1 2 1 2
(c) a = , b = (d) a = ,b=
10 5 10 5
K Thinking Process
1 A Bx + C
Use method of partial fraction i.e., = +
(x - a) (x2 + bx + c) (x - a) (x2 + bx + c)
to solve the above problem.
dx 1
Sol. (c) Given that, ò = alog|1 + x 2| + b tan-1 x + log|x + 2| + C
(x + 2 ) (x 2 + 1) 5
dx
Now, I= ò (x + 2 ) (x 2 + 1)
1 A Bx + C
= + 2
(x + 2 ) (x 2 + 1) x+2 x +1
Þ 1 = A(x 2 + 1) + (Bx + C ) (x + 2 )
Þ 1 = Ax 2 + A + Bx 2 + 2 Bx + Cx + 2C
Þ 1 = ( A + B)x 2 + (2 B + C )x + A + 2C
Þ A + B = 0, A + 2 C = 1, 2 B + C = 0
1 1 2
We have, A = , B = - and C =
5 5 5
1 2
- x+
dx 1 1
\ ò (x + 2 ) (x 2 + 1) = 5 ò x + 2 dx + ò x 2 + 15 dx
5
1 1 1 x 1 2
5ò x + 2 5ò 1 + x 2
=dx - dx + ò dx
5 1 + x2
1 1 2
= log|x + 2| - log|1 + x 2| + tan-1 x + C
5 10 5
2 -1
\ b = and a =
5 10
3
Q. 53 ò x is equal to
x +1
x 2 x3 x2 x3
(a) x + + - log|1 - x| + C (b) x + - - log|1 - x| + C
2 3 2 3
2 3 2 3
x x x x
(c) x - - - log|1 + x| + C (d) x - + - log|1 + x| + C
2 3 2 3
x3
Sol. (d) Let I= ò x + 1 dx
æ 1 ö
= ò çç (x 2 - x + 1) - ÷ dx
è ( x + 1) ÷ø
x3 x2
= - + x - log|x + 1|+ C
3 2
x + sin x
Q. 54 ò dx is equal to
1 + cos x
(a) log|1 + cos x| + C (b) log| x + sin x| + C
x x
(c) x - tan +C (d) x × tan + C
2 2
x + sin x
Sol. (d) Let I= ò 1 + cos x dx
x sin x
= ò 1 + cos x dx + ò 1 + cos x dx
x 2 sin x / 2 cos x / 2
= ò 2 cos2 x / 2 dx + ò 2 cos 2 x / 2
dx
1
2ò
= x sec 2 x / 2 dx + ò tan x / 2 dx
1é x ù x
= ê x × tan x / 2 × 2 - ò tan × 2 dx ú + ò tan 2 dx
2ë 2 û
x
= x × tan +C
2
x 3dx
Q. 55 If = a(1 + x 2 ) 3/2 + b 1 + x 2 + C , then
2
1+x
1 -1
(a) a = , b = 1 (b) a = , b =1
3 3
-1 1
(c) a = , b = -1 (d) a = , b = -1
3 3
x3
Sol. (d) Let I= ò 1 + x2
dx = a(1 + x 2 )3 / 2 + b 1 + x 2 + C
x3 x2 × x
Q I= ò 1+ x 2
dx = ò 1 + x2
dx
Put 1 + x2 = t 2
Þ 2 x dx = 2t dt
t (t 2 - 1) t3
\ I=ò dt = -t + C
t 3
1
= (1 + x 2 )3 / 2 - 1 + x 2 + C
3
1
\ a = and b = - 1
3
p /4 dx
Q. 56 ò-p / 4 is equal to
1 + cos 2x
(a) 1 (b) 2 (c) 3 (d) 4
p/4dx p/4 dx
Sol. (a) Let I=ò =ò
- p / 4 1 + cos 2 x - p / 4 2 cos 2 x
1 p/4 p/4
= ò sec 2 x dx = ò sec 2 x dx = [tan x ]0p/ 4 = 1
2 -p / 4 0
p /2
Q. 57 ò0 1 - sin 2x dx is equal to
(a) 2 2 (b) 2 ( 2 + 1)
(c) 2 (d) 2 ( 2 - 1)
p/ 2
Sol. (d) Let I= ò0 1 - sin2 x dx
p/4 p/ 2
= ò0 (cos x - sin x )2 dx + òp / 4 (sin x - cos x )2 dx
p /4
Q. 58 ò0 cos xe sin x dx is equal to
(a) e + 1 (b) e - 1 (c) e (d) - e
p/ 2
Sol. (b) Let I= ò0 cos x esin xdx
Put sinx = t Þ cos x dx = dt
As x ® 0, then t ® 0
and x ® p / 2, then t ® 1
1 t
ò0e dt = [e ]0
t 1
\ I=
= e1 - e 0 = e - 1
x +3
Q. 59 ò 2
e x dx is equal to
(x + 4)
æ 1 ö æ 1 ö
(a) ex çç ÷+C
÷ (b) e- x çç ÷+C
÷
è x + 4ø è x + 4ø
æ 1 ö æ 1 ö
(c) e- x çç ÷+C
÷ (d) e2x çç ÷+C
÷
è x - 4ø è x - 4ø
x+ 3
ò (x + 4)2 e
x
Sol. (a) Let I= dx
ex ex
= ò (x + 4) - ò (x + 4)2 dx
æ 1 1 ö
= ò e x çç - ÷ dx
÷
è ( x + 4 ) (x + 4)2 ø
æ 1 ö
= e x çç ÷+C
÷ [Q ò e x {f(x ) + f ¢(x )} dx = e x f(x ) + C ]
è x + 4ø
Fillers
a 1 p
Q. 60 If ò0 dx = , then a = ......... .
2
1 + 4x 8
a 1 p
Sol. Let I = ò0 1 + 4x 2 dx = 8
a 1 2
Now, ò0 dx = [tan-1 2 x ]a0
æ1 2ö 4
4ç + x ÷
è4 ø
1
= tan-1 2 a - 0 = p/ 8
2
1 p
tan-1 2 a =
2 8
Þ tan-1 2 a = p/ 4
Þ 2a = 1
1
\ a=
2
sin x
Q. 61 ò dx = ......... .
3 + 4 cos2 x
Sol. sin x
Let I= ò 3 + 4cos2 x dx
Put cos x = t Þ - sinx dx = dt
dt 1 dt
\ I = -ò 2
=- ò
3 + 4t 4 æ 3 ö2
ç ÷ 2
ç 2 ÷ +t
è ø
1 2 2t
=- × tan-1 +C
4 3 3
1 æ 2 cos x ö
=- tan-1 ç ÷+C
2 3 è 3 ø
p
Q. 62 The value of ò-p sin 3 x cos2 x dx is ......... .
p
ò- psin x cos x dx
3 2
Sol. We have, f( x ) =
p
f(- x ) = ò sin3 (-2 ) - cos 2 (- x ) dx
-p
= - f( x )
Since, f(x ) is an odd function.
p
ò- psin
3
\ x cos 2 x dx = 0
8
Application o f Integrals
Short Answer Type Questions
Q. 1 Find the area of the region bounded by the curves y 2 = 9x and y = 3x.
K Thinking Process
On solving both the equation of curves, get the values of x and then at those values, find
the area of the shaded region.
Sol. We have, y2 = 9x and y = 3x
Þ (3x )2 = 9x
2
Þ 9x - 9x = 0
Þ 9x(x - 1) = 0
Þ x = 1, 0
Y
y=3x
(0, 0) X
(1, 0)
y 2 = 9x
1 1
\ Required area, A = ò0 9x dx - ò0 3x dx
1 1
= 3ò x 1/ 2 dx - 3ò x dx
0 0
1 1
é x 3/ 2 ù éx2 ù
=3ê ú -3ê ú
ë 3 / 2 û0 ë 2 û0
= 3 æç - 0 ö÷ - 3 æç - 0 ö÷
2 1
è3 ø è2 ø
3 1
= 2 - = sq units
2 2
Q. 2 Find the area of the region bounded by the parabola y 2 = 2 px
x 2 = 2 py.
Sol. We have, y2 = 2 px and x 2 = 2 py
\ y = 2 px
Þ x 2 = 2 p × 2 px
Þ x 4 = 4 p2 × (2 px )
Þ x 4 = 8 p3 x
Þ x - 8 p3 x = 0
4
Þ x (x - 8 p3 ) = 0
3
Þ x = 0, 2 p
Y
x 2 = 2py
X
O 2p
y 2 = 2 px
2p x2 2p
\ Required area = ò0 2 px dx -
2p ò0
dx
2p 1 2p 2
= 2 pò x 1/ 2dx -
2 p ò0
x dx
0
2p 2p
é 2(x )3 / 2 ù 1 éx3 ù
= 2p ê ú - ê ú
ë 3 û0 2 p ë 3 û0
= 2 p é × (2 p)3 / 2 - 0ù -
1 é1
(2 p)3 - 0ù
2
ëê 3 úû 2 p ëê 3 úû
= 2 p æç × 2 2 p3 / 2 ö÷ -
2 1 æ1 3ö
ç 8p ÷
è3 ø 2p è3 ø
æ 4 2 3/ 2 ö 1 æ8 3ö
= 2 p çç p ÷÷ - ç p ÷
è 3 ø 2 p è3 ø
4 2 8
= × 2 p2 - p2
3 6
(16 - 8)p2 8 p2
= =
6 6
4 p2
= sq units
3
Q. 3 Find the area of the region bounded by the curve y = x 3 , y = x + 6 and
x = 0.
Sol. We have, y = x 3 , y = x + 6 and x = 0
Y
y=x 3 y=x + 6
X
O (0, 0) (2, 0)
\ x3 = x + 6
3
Þ x -x=6
Þ x3 - x - 6 = 0
Þ x 2 (x - 2 ) + 2 x (x - 2 ) + 3 (x - 2 ) = 0
Þ (x - 2 )(x 2 + 2 x + 3) = 0
Þ x = 2, with two imaginary points
2
ò0 (x + 6 - x
3
\ Required area of shaded region = ) dx
2
éx2 x4 ù
=ê + 6x - ú
ë2 4 û0
= é + 12 - - 0ù
4 16
ëê 2 4 ûú
= [2 + 12 - 4] = 10 sq units
X
(0, 0) (9, 0)
O
y 2 = 9x
9 9 9
ò0 ( ò0 3x ò0
1/ 2
\ Area of shaded region, A = 9x - x ) dx = dx - x dx
9 2 ù9
é x 3/ 2 ù éx
= ê3 × × 2ú - ê ú
ë 3 û0 ë 2 û0
é 3
´2 ù
ê 3 × 32 ú
× 2 - 0ú - é - 0ù
81
=ê
3 ê
ë2 úû
ê ú
ë û
81 108 - 81 27
= 54 - = = sq units
2 2 2
Q. 6 Find the area of the region enclosed by the parabola x 2 = y and the line
y = x + 2.
Sol. We have, x 2 = y and y = x + 2 Y
2
Þ x =x+2
Þ x2 - x - 2 = 0
y
Þ x 2 - 2x + x - 2 = 0 x=
2
Þ x(x - 2 ) + 1(x - 2 ) = 0 X¢ X
–1 2
Þ (x + 1)(x - 2 ) = 0
Þ x = - 1, 2 y=x+2
Y¢
2
2 éx2 x3 ù
ò-1(x + 2 - x
2
\ Required area of shaded region = ) dx = ê + 2x - ú
ë2 3 û -1
=é + 4- - +2 - ù
4 8 1 1
êë 2 3 2 3 úû
3 9 36 + 9 - 18 27 9
=6+ - = = = sq units
2 3 6 6 2
X
(0, 0) (2, 0)
x=2
2 2
\ Area of shaded region, A = 2 ò 8x dx = 2 ×2 2 ò x 1/ 2dx
0 0
2
é x 3/ 2 ù é2 ù
= 4 × 2 × ê2 × ú = 4 2 ê × 2 2 - 0ú
ë 3 û0 ë3 û
32
= sq units
3
Q. 8 Sketch the region {(x, 0) : y = 4 - x 2 } and X-axis. Find the area of the
region using integration.
Sol. Given region is {(x, 0) : y = 4 - x 2 } and X-axis.
We have, y= 4 - x 2 Þ y2 = 4 - x 2Þ x 2 + y2 = 4
Y
X
(–2, 0) (2, 0)
2 2
\ Area of shaded region, A = ò-2 4 - x 2 dx = ò-2 2 2 - x 2 dx
2
éx 22 xù
= ê 22 - x 2 + × sin-1 ú
ë 2 2 2 û -2
2 p 2 -1 p p
= × 0 + 2 . + × 0 - 2 sin (-1) = 2 . + 2 .
2 2 2 2 2
= 2p sq units
Q. 9 Calculate the area under the curve y = 2 x included between the lines
x = 0 and x = 1.
Sol. We have, y = 2 x , x = 0 and x = 1
Y
y=2Öx
X
(0, 0) O (1,0)
x=1
1
\ Area of shaded region, A = ò0 (2 x ) dx
1
é x 3/ 2 ù
= 2×ê × 2ú
ë 3 û0
æ 2 ö 4
= 2 ç × 1 - 0 ÷ = sq units
è3 ø 3
Q. 10 Using integration, find the area of the region bounded by the line
2 y = 5x + 7, X-axis and the lines x = 2 and x = 8.
Sol. We have, 2 y = 5x + 7
5x 7
Þ y= +
2 2
+7
5x
=
2y
X
(0, 0) (2, 0) (8, 0)
x=2 x=8
8
1 8 1é x ù 2
2 ò2
\ Area of shaded region = (5x + 7 ) d x = ê 5 × + 7x ú
2ë 2 û2
1 1
= [5× 32 + 7 × 8 - 10 - 14] = [160 + 56 - 24]
2 2
192
= = 96 sq units
2
Q. 11 Draw a rough sketch of the curve y = x - 1 in the interval [1, 5].
Find the area under the curve and between the lines x = 1 and x = 5.
Sol. Given equation of the curve is y = x - 1.
Þ y2 = x - 1
Y
X
O 1 5
y=Öx – 1
x=5
x=1
5
5 é 2 × (x - 1)3 / 2 ù
ò1 (x - 1)
1/ 2
\ Area of shaded region, A = dx = ê ú
ë 3 û1
= é 2
× (5 - 1)3/ 2 ù
-0 =
16
sq units
ëê 3 ûú 3
X
–a O a
x=0 x=a
a
\ Required area of shaded region, A = ò0 a2 - x 2 dx
a
éx 2 a 2 -1 x ù
=ê a - x2 + sin ú
ë2 2 a û0
é a 2 -1 a 2 -1 ù
= ê0 + sin (1) - 0 - sin 0ú
ë 2 2 û
a2 p p a2
= × = sq units
2 2 4
Q. 13 Find the area of the region bounded by y = x and y = x.
Sol. Given equation of curves are y= x and y = x .
Þ x= x Þ x2 = x
Þ x 2 - x = 0 Þ x(x - 1) = 0
Þ x = 0, 1
Y
y=Öx
(0, 0)
X
(1, 0)
y=x
1 1
\ Required area of shaded region, A = ò0 ( x )dx - ò0 xdx
1 1
é x 3/ 2 ù éx2 ù
= ê2 × ú -ê ú
ë 3 û0 ë 2 û0
2 1 2 1 1
= × 1 - = - = sq units
3 2 3 2 6
Q. 14 Find the area enclosed by the curve y = - x 2 and the straight line
x + y + 2 = 0.
Sol. We have, y = - x 2 and x + y + 2 = 0
Y
–1 2
X
–x 2=y
Þ -x - 2 = - x 2 Þ x 2 - x - 2 = 0
2
Þ x + x - 2 x - 2 = 0 Þ x(x + 1) - 2(x + 1) = 0
Þ (x - 2 )(x + 1) = 0Þ x = 2, - 1
2 2
\ Area of shaded region, A = ò-1(-x - 2 + x
2
) dx = ½ò (x 2 - x - 2 ) dx½
½ -1 ½
2
éx3 x2 ù
- 2 x ú = ½é - - 4 + + - 2 ù½
8 4 1 1
= ê -
ê úû½
ë 3 2 û - 1 ½ë 3 2 3 2
16 - 12 - 24 + 2 + 3 - 12½ ½ 27½ 9
=½ = - = sq units
½ 6 ½ ½ 6½ 2
Q. 15 Find the area bounded by the curve y = x, x = 2 y + 3 in the first
quadrant and X-axis.
Sol. Given equation of the curves are y = x and x = 2 y + 3 in the first quadrant.
3
2y+
Y
y = 2y + 3
x=
Þ y2 = 2 y + 3 y = Öx
3
2
Þ y - 2y - 3 = 0
2
Þ y - 3y + y - 3 = 0 X
Þ y( y - 3) + 1( y - 3) = 0 –1
Þ ( y + 1)( y - 3) = 0
Þ y = - 1, 3
\ Required area of shaded region,
3
3 é 2 y2 y3 ù
ò0 (2 y + 3 - y )dy = ê 2 + 3 y - 3 ú
2
A=
ë û0
= é 18 ù
+ 9 - 9 - 0 = 9 sq units
ëê 2 ûú
(0, 0) (2, 0) X
(x – 2)2 + y2 = 4
Þ x 2 + 2 x = 4x
Þ x 2 - 2x = 0
Þ x(x - 2 ) = 0
Þ x = 0, 2
Also, x 2 + y2 = 4x
Þ x 2 - 4x = - y2
Þ x - 4x + 4 = - y2 + 4
2
Þ (x - 2 )2 - 2 2 = - y2
\ Required area = 2 × ò é 2 2 - (x - 2 )2 - 2 x ù dx
2
0 ë û
éé x - 2 2 2 -1 æ x - 2 ö ù
2
é x 3/ 2 ù ù
2
= 2 êê × 2 2 - (x - 2 )2 + sin ç ÷ú - ê 2 × ú ú
êë ë 2 2 è 2 øû0 ë 3 / 2 û0 ú
û
éæ p ö 2 2 3/ 2 ù
= 2 ê ç 0 + 0 - 1× 0 + 2 × ÷ - (2 - 0)ú
ëè 2ø 3 û
4p 8 × 2 16 æ 8ö
= - = 2p - = 2 ç p - ÷ sq units
2 3 3 è 3ø
Q. 17 Find the area bounded by the curve y = sin x between x = 0 and x = 2p.
K Thinking Process
We know that, sin x curve has positive region from [0 , p] and negative region in [p , 2 p].
2p p 2p
Sol. Required area = ò0 sin x dx = ò0 sin x dx + ½½òp sin x dx½
½
= - [cos x ] p0 + [- cos x ] 2p p
= - [cos p - cos 0] + - [cos 2 p - cos p ]
Y
y=sin x
2p
p X
O
= - [- 1 - 1] + - (1 + 1)
= 2 + 2 = 4 sq units
Q. 18 Find the area of region bounded by the triangle whose vertices are
(- 1, 1), (0, 5) and (3, 2), using integration.
Sol. Let we have the vertices of a DABC as A (- 1, 1,) B (0, 5) and C (3, 2 ).
Y
B (0, 5)
C (3, 2)
A
(–1, 1)
X¢ X
–1 3
Y¢
æ 5 - 1ö
\ Equation of AB is y - 1 = çç ÷÷ (x + 1)
è 0 + 1ø
Þ y - 1 = 4x + 4
Þ y = 4x + 5 …(i)
æ2 - 5ö
and equation of BC is y - 5 = çç ÷÷(x - 0)
è 3 - 0ø
-3
Þ y-5= (x )
3
Þ y=5-x …(ii)
æ 2 - 1ö
Similarly, equation of AC is y - 1 = çç ÷÷ (x + 1)
è 3 + 1ø
1
Þ y - 1 = (x + 1)
4
Þ 4y = x + 5 …(iii)
0 3
\ Area of shaded region = ò-1 ( y1 - y2 )dx + ò0 ( y1 - y2 )dx
0 é x + 5ù 3é x + 5ù
= ò-1 êë 4x + 5 - 4 úû
dx + ò0 êë 5 - x - 4 úû
dx
0 3
é 4x 2 x 2 5x ù é x 2 x 2 5x ù
=ê + 5x - - ú + ê 5x - - - ú
ë 2 8 4 û -1 ë 2 8 4 û0
é 1 5 ù é ù
= ê 0 - æç 4 × + 5 (-1) - + ö÷ ú + ê æç 15 - - -
1 9 9 15 ö
÷ - 0ú
ë è 2 8 4 øû ëè 2 8 4ø û
é 1 5
= - 2 + 5 + - + 15 - - -
9 9 15 ù
êë 8 4 2 8 4 úû
æ 1 - 10 - 36 - 9 - 30 ö
= 18 + ç ÷
è 8 ø
æ 84 ö
= 18 + ç - ÷ = 18 -
21 15
= sq units
è 8 ø 2 2
Þ x + 8ax - 2 ax - 16a2 = 0
2
X
–4a O 2a 4a
–1
x 2+y 2 = (4a)2
y 2 = 6a x
\ Area of required region = 2 é ò (4 a)2 - x 2 dx ù
2a 4a
6ax dx + ò
êë 0 2a úû
= 2 éò (4 a)2 - x 2 dx ù
2 a 4 a
6a x 1/ 2dx + ò
ëê 0 2a ûú
é é x 3/ 2 ù
2a
æx (4 a)2 -1 x ö ù
4a
= 2 ê 6a ê ú + ç ( 4 a )2
- x 2
+ sin ÷ ú
êë ç2 4 a ÷ø 2 a ú
ë 3 / 2 û0 è 2
û
é 2 4a 16 a 2
p 2 a 16 a2 2aù
= 2 ê 6a × ((2 a)3 / 2 - 0) + ×0+ × - 16 a2 - 4 a2 - × sin-1 ú
ë 3 2 2 2 2 2 4a û
é 2 3/ 2 2 2a 2 pù
= 2 6a ×2 2 a + 0 + 4p a - ×2 3 a - 8a ×
êë 3 2 6 úû
é 4 4a p ù
2
= 2 ê 12 × a2 + 4p a2 - 2 3 a2 - ú
ë 3 3 û
é 8 3 a2 + 12 p a2 - 6 3 a2 - 4 a2 p ù
=2 ê ú
ë 3 û
2
= a2 [8 3 + 12 p - 6 3 - 4p ]
3
2 2 4
= a [2 3 + 8p ] = a2 [ 3 + 4p ]
3 3
2x+y=7
(0, 3)
(0, 1)
X¢ X
O x+
1 (0, –1)
2y =
x= 2
y–
Y¢
2( y - 1) + y = 7
On solving Eqs. (ii) and (iii), we get
Þ 2y - 2 + y = 7
Þ y=3
On solving Eqs. (i) and (iii), we get
2(2 - 2 y) + y = 7
Þ 4 - 4y + y = 7
Þ -3 y = 3
Þ y = -1
1 3 (7 - y) 3
\ Required area = ò (2 - 2 y) dy + ò dy - ò ( y - 1) dy
-1 -1 2 1
1 3 3
é 2 y2 ù é7 y y2 ù é y2 ù
= ê -2 y + ú + ê - ú -ê - yú
ë 2 û -1 ë 2 2 × 2 û -1 ë 2 û1
é 2
= -2 + - 2 -
2 ù é 21 9 7 1 ù é 9
+ - + + - - 3 - + 1ù
1
êë 2 2 úû êë 2 4 2 4 úû êë 2 2 úû
42 - 9 + 14 + 1ù é 9 - 6 - 1 + 2 ù
= [-4] + é -
ëê 4 ûú ëê 2 ûú
= - 4 + 12 - 2 = 6 sq units
(0, 5)
X¢ X
–1 3
x +5
4 y= y=5–x
Y¢
Given equations of lines are
y = 4x + 5 …(i)
y=5-x …(ii)
and 4y = x + 5 …(iii)
On solving Eqs. (i) and (ii), we get
4x + 5 = 5 - x
Þ x=0
On solving Eqs. (i) and (iii), we get
4(4x + 5) = x + 5
Þ 16x + 20 = x + 5
Þ 15x = - 15
Þ x = -1
On solving Eqs. (ii) and (iii), we get
4 (5 - x ) = x + 5
Þ 20 - 4x = x + 5
Þ x=3
0 3 1 3
\ Required area = ò-1 (4x + 5)dx + ò0 (5 - x )dx -
4 ò-1
(x + 5)dx
0 3 3
é 4x 2 ù é x2 ù 1 éx2 ù
=ê + 5x ú + ê 5x - ú - ê + 5x ú
ë 2 û -1 ë 2 û0 4 ë 2 û -1
é
= [0 - 2 + 5] + 15 - - 0 -
9 ù 1 é9
+ 15 - + 5ù
1
êë 2 úû 4 êë 2 2 úû
21 1
=3+ - × 24
2 4
21 15
=-3+ = sq units
2 2
Q. 22 Find the area bounded by the curve y = 2cos x and the X-axis from
x = 0 to x = 2p.
2p
Sol. Required area of shaded region = ò0 2 cos xdx
p/ 2 3 p/ 2 2p
=ò 2 cos x dx + ½ò 2 cos x dx½ + ò3 p/ 2 2 cos x dx
0 ½ p/ 2 ½
Y
y=cos x
p
O p/2 3p/2 X
2p
–3 –1 0 3 X
ì - x, if x < - 1
Q y=í
îx + 2, if x ³ - 1
-1 3
\ Area of shaded region, A = ò-3 - x dx + ò-1(x + 2 ) dx
-1 3
éx2 ù éx2 ù
=-ê ú + ê + 2x ú
2
ë û -3 ë 2 û -1
=- é 1 9ù é 9
- + + 6- +
1
2ù
êë 2 2 úû êë 2 2 úû
= - [- 4] + [8 + 4]
= 12 + 4 = 16 sq units
X¢ X
O p/4 p/2
y=cos x
Y¢
p/ 4
\ Required area = ò0 (cos x - sin x )dx
= [sin x ]p0/ 4 + [cos x ]p0/ 4
p p
= æç sin - sin 0 ö÷ + æç cos - cos 0 ö÷
è 4 ø è 4 ø
æ 1 ö æ 1 ö
= ç - 0÷ + ç - 1÷
è 2 ø è 2 ø
1 1
= + -1
2 2
2 - 2 +2
= - 1+ =
2 2
-2 + 2 2
= = ( 2 - 1) sq units
2
Q. 25 The area of the region bounded by the curve x 2 = 4 y and the straight
line x = 4 y - 2 is
3 5
(a) sq unit (b) sq unit
8 8
7 9
(c) sq unit (d) sq units
8 8
Sol. (d) Given equation of curve is x 2 = 4 y and the straight line x = 4 y - 2.
Y x 2 = 4y
2
4 y–
x=
(–1, 1/4)
(2, 1)
O X
Y¢
For intersection point, put x = 4 y - 2 in equation of curve, we get
(4 y - 2 )2 = 4 y
Þ 16 y2 + 4 - 16 y = 4 y
Þ 16 y2 - 20 y + 4 = 0
Þ 4 y2 - 5 y + 1 = 0
Þ 4 y2 - 4 y - y + 1 = 0
Þ 4 y ( y - 1) - 1( y - 1) = 0
Þ (4 y - 1)( y - 1) = 0
1
\ y = 1,
4
For y = 1, x = 4 × 1 = 2 [since, negative value does not satisfy the equation of line]
1 1
For y = , x = 4 × = - 1 [positive value does not satisfy the equation of line]
4 4
So, the intersection points are (2, 1) and æç - 1, ö÷.
1
è 4ø
2
2 æx +2ö 2 x
\ Area of shaded region = ò ç ÷ dx - ò dx
-1 è 4 ø -1 4
2 2
1 éx2 ù 1 x3
= ê + 2x ú -
4ë 2 û -1 4 3 -1
= - é + 4- - +2 ù- é + ù
1 4 1 1 8 1
4 êë 2 2 úû 4 êë 3 3 úû
1 15 1 9 45 - 18
= × - × =
4 2 4 3 24
27 9
= = sq units
24 8
Q. 26 The area of the region bounded by the curve y = 16 - x 2 and X-axis is
(a) 8p sq units (b) 20 p sq units
(c) 16p sq units (d) 256p sq units
Sol. (a) Given equation of curve is y = 16 - x 2 and the equation of line is X-axis i.e., y = 0.
Y
X¢ X
(–4, 0) O (4, 0)
Y¢
\ 16 - x 2 = 0 …(i)
2
Þ 16 - x = 0
Þ x 2 = 16
Þ x=± 4
So, the intersection points are (4, 0) and (-4, 0).
4
ò-4 (16 - x
2 1/ 2
\ Area of curve, A = ) dx
4
= ò-4 (42 - x 2 ) dx
4
éx 2 42 -1 x ù
=ê 4 - x2 + sin ú
ë2 2 4 û -4
é 4 2 4 ù
= é 42 - 42 + 8sin-1 ù - ê - 4 - (- 4 )2 + 8sin-1 æç - ö÷ ú
4 4
ëê 2 4 ûú ë 2 è 4 øû
p p
= é2 × 0 + 8 × - 0 + 8 × ù = 8p sq units
ëê 2 2 ûú
Q. 27 Area of the region in the first quadrant enclosed by the X-axis, the
line y = x and the circle x 2 + y 2 = 32 is
(a) 16p sq units (b) 4p sq units (c) 32p sq units (d) 24 p sq units
Sol. (b) We have, area enclosed by X-axis i.e., y = 0, y = x and the circle x 2 + y2 = 32 in first
quadrant.
Since, x 2 + (x )2 = 32 [Q y = x ]
Þ 2 x 2 = 32
Þ x=±4
So, the intersection point of circle x 2 + y2 = 32 and line y = x are (4, 4) or (- 4, 4).
and x 2 + y2 = (4 2 )2
Since, y=0
\ x 2 + (0)2 = 32
Þ x=± 4 2
So, the circle intersects the X-axis at (±4 2 , 0).
Y
y=x
(4, 4)
(0, 0)
X¢ X
(4, 0)
32
2 +
y2 =
(–4, –4) x
Y¢
4 4 2
Area of shaded region = ò xdx + ò (4 2 )2 - x 2 dx
0 4
2 4 4 2
x x (4 2 )2 -1 x
= + (4 2 )2 - x 2 + sin
2 0
2 2 4 2 4
16 é4 2 (4 2 ) 4 4 ù
= + ê × 0 + 16 sin-1 - (4 2 ) - 16 - 16 sin-1
2
2 ë 2 (4 2 ) 2 4 2 úû
p p
= 8 + é 16 × - 2 × 16 - 16 × ù
êë 2 4 úû
= 8 + [8p - 8 - 4p] = 4p sq units
O p/2 p
X
y=cos x
p/ 2 p
A= ò0 cos x dx + ½ò cos x dx½
½ p/ 2 ½
é p ù ½ p ½
= sin - sin 0 + sin - sin p
êë 2 úû ½ 2 ½
= 1 + 1 = 2 sq units
Q. 29 The area of the region bounded by parabola y 2 = x and the straight
line 2y = x is
4 2 1
(a) sq units (b) 1 sq unit (c) sq unit (d) sq unit
3 3 3
Sol. (a) We have to find the area enclosed by parabola y2 = x and the straight line 2 y = x .
Y
(4, 2)
2y = x
(0, 0)
X
(4, 0)
y2 = x
2
\ æx ö = x
ç ÷
è2 ø
Þ x 2 = 4x Þ x(x - 4) = 0
Þ x = 4Þ y = 2 and x = 0 Þ y = 0
So, the intersection points are (0, 0) and (4, 2).
Area enclosed by shaded region,
A = ò é x - ù dx
4 x
0 êë 2 úû
4
é 1+1 ù 4
êx 2 1 x2 ú é x 3/ 2 x 2 ù
=ê - × ú = ê2 × - ú
1 2 2 3 4 û0
ê +1 ú ë
ë2 û0
2 3 / 2 16 2 1
= 4 - - ×0 + ×0
3 4 3 4
16 16 64 - 48 16 4
= - = = = sq units
3 4 12 12 3
Q. 30 The area of the region bounded by the curve y = sin x between the
p
ordinates x = 0, x = and the X-axis is
2
(a) 2 sq units (b) 4 sq units (c) 3 sq units (d) 1 sq unit
p
Sol. (d) Area of the region bounded by the curve y = sin x between the ordinates x = 0, x =
and the X-axis is 2
Y
X
O p/2 p
y = sin x
p/ 2
A= ò0 sin x dx
p
= - [cos x ] p0/ 2 = - écos - cos 0ù
êë 2 úû
= - [0 - 1] = 1 sq unit
2
y2
Q. 31 The area of the region bounded by the ellipse x + = 1 is
25 16
(a) 20 p sq units (b) 20 p 2 sq units (c) 16p 2 sq units (d) 25p sq units
x2 y2
Sol. (a) We have, + =1
52 42
Here, a = ± 5 and b = ± 4
y2 x2
and 2
= 1- 2
4 5
æ x2 ö
Þ y = 16 çç 1 -
2 ÷
è 25 ÷ø
Y
(0, 4)
(–5, 0) (5, 0)
X
(0, –4) x2 y2
+ =1
25 16
16
Þ y= (25 - x 2 )
25
4
Þ (52 - x 2 )
y=
5
4 5
\ Area enclosed by ellipse, A = 2 × ò 52 - x 2 dx
5 -5
8 5
= 2 × ò 52 - x 2 dx
5 0
5
8 éx 2 52 -1 x ù
=2× ê 5 - x2 + sin ú
5 ë2 2 5 û0
8 é5 2 2 52 -1 5 25 ù
=2× ê 5 -5 + sin -0- × 0ú
5 ë2 2 5 2 û
8 é 25 p ù
=2× ×
5 êë 2 2 úû
16 25p
= ×
5 4
= 20p sq units
Q. 32 The area of the region bounded by the circle x 2 + y 2 = 1 is
(a) 2p sq units (b) p sq units
(c) 3p sq units (d) 4p sq units
Sol. (b) We have, x 2 + y2 = 12 [Q r = ± 1]
2 2 2
Þ y = 1- x Þ y = 1- x
Y
(0, 1)
X
(–1, 0) (0, 0) (1, 0)
(0, –1)
1 1
\ Area enclosed by circle = 2 ò 12 - x 2 dx = 2 × 2 ò 12 - x 2 dx
-1 0
1
éx 12 xù
= 2 × 2 ê 12 - x 2 + sin-1 ú
ë 2 2 1 û0
1 p
= 4 é × 0 + × - 0 - × 0ù
1 1
ëê 2 2 2 2 ûú
p
= 4 × = p sq units
4
Q. 33 The area of the region bounded by the curve y = x + 1 and the lines
x = 2, x = 3, is
7 9 11 13
(a) sq units (b) sq units (c) sq units (d) sq units
2 2 2 2
3
3 éx2 ù
Sol. (a) Required area, A = ò2 (x + 1)dx = ê 2 + x ú
ë û2
= é 9 4
+ 3- -2 = ù é 5
+ 1ù = sq units
7
êë 2 2 úû êë 2 úû 2
y=–1
3
+
2y
x=
1
é 2 y2 ù
=ê + 3 yú
ë 2 û -1
= [ y2 + 3 y]1-1
= [1 + 3 - 1 + 3] = 6 sq units
9
Differential Equations
Short Answer Type Questions
dy
Q. 1 Find the solution of = 2 y -x .
dx
dy
Sol. Given that, = 2 y -x
dx
dy 2 y é m - n am ù
Þ = êQ a = nú
dx 2 x ë a û
dy dx
Þ =
2y 2x
On integrationg both sides, we get
-y
ò2 dy = ò 2 - x dx
- 2- y - 2- x
Þ = +C
log 2 log 2
Þ - 2 - y + 2 - x = + C log 2
Þ 2 - x - 2 - y = - C log 2
Þ 2 -x - 2 -y = K [where, K = + C log2 ]
dy 1
Q. 4 Solve (x 2 - 1) + 2xy = 2 .
dx x -1
Sol. Given differential equation is
dy 1
(x 2 - 1) + 2 xy = 2
dx x -1
dy æ 2 x ö 1
Þ +ç ÷ y= 2
dx çè x 2 - 1 ÷ø (x - 1)2
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dx
2x 1
P= 2 ,Q = 2
x -1 (x - 1)2
dx
æ 2x ö
ò çç x 2 - 1 ÷÷
IF = e ò
Pdx è ø
=e
2
Put x - 1 = t Þ 2xdx = dt
dt
ò
\ IF = e t = elog t = t = (x 2 - 1)
The complete solution is
y × IF =ò Q × IF + K
1
Þ y × (x 2
- 1) = ò 2 . (x 2 - 1) dx + K
(x - 1)2
dx
Þ y × (x 2 - 1) = ò (x 2 - 1) + K
1 æ x - 1ö
Þ y × (x 2 - 1) = log çç ÷÷ + K
2 è x + 1ø
Q. 5 Solve dy + 2xy = y.
dx
dy
Sol. Given that, + 2 xy = y
dx
dy
Þ + 2 xy - y = 0
dx
dy
Þ + (2 x - 1) y = 0
dx
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dx
P = (2 x - 1), Q = 0
IF = e ò = eò
Pdx ( 2 x - 1) dx
æ 2 x2 ö
ç - x÷
ç 2 ÷ 2
-x
= e è ø = ex
The complete solution is
2 2
-x -x
y × ex = ò Q × ex dx + C
2
-x
Þ y . ex =0+C
2
Þ y = C ex - x
IF = e ò = eò
Pdx adx
= e ax
The general solution is y × e ax = ò e mx × e ax dx + C
( m + a) x
Þ y × e ax = ò e dx + C
( m + a) x
e
Þ y × e ax = +C
( m + a)
e( m + a ) x (m + a) C
Þ ( m + a) y = +
e ax e ax
mx - ax
Þ ( m + a) y = e + K e [Q K = (m + a) C ]
Þ (x + C ) e x + y + 1 = 0
Q. 8 Solve ydx - xdy = x 2 ydx.
Sol. Given that, ydx - xdy = x 2 ydx
1 1 dy
Þ - . =1 [dividing throughout by x 2 ydx ]
x 2 xy dx
1 dy 1
Þ - . + 2 - 1= 0
xy dx x
dy xy
Þ - + xy = 0
dx x 2
dy y
Þ - + xy = 0
dx x
dy æ 1
Þ + ç x – ö÷ y = 0
dx è xø
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dx
1
P = æç x – ö÷, Q = 0
è xø
IF = e ò
Pdx
æ 1ö
ò çè x - x ÷ø dx
=e
x2
- log x
= e2
x2
=e x , e - log x
x2
1
= e 2
x
The general solution is
1 x2/ 2 1 2
y× e = ò 0 × e x / 2 dx + C
x x
1 2
Þ y × ex / 2 = C
x
2
Þ y = C x e- x /2
dy
Q. 9 Solve the differential equation = 1 + x + y 2 + xy 2 , when
dx
y = 0 and x = 0.
dy
Sol. Given that, = 1 + x + y2 + xy2
dx
dy
Þ = (1 + x ) + y2 (1 + x )
dx
dy
Þ = (1 + y2 ) (1 + x )
dx
dy
Þ = (1 + x ) dx
1 + y2
On integrating both sides, we get
x2
tan-1 y = x + + K ... (i)
2
When y = 0 and x = 0, then substituting these values in Eq. (i), we get
tan-1 (0) = 0 + 0 + K
Þ K=0
-1 x2
Þ tan y=x +
2
æ x2 ö
Þ y = tan çç x + ÷
è 2 ÷ø
æ 2 + sin x ö dy
Q. 11 If y (x) is a solution of çç ÷÷ = - cos x and y (0) = 1, then find
è 1 + y ø dx
æpö
the value of y ç ÷.
è2ø
æ 2 + sin x ö dy
Sol. Given that, çç ÷÷ = - cos x
è 1 + y ø dx
dy cos x
Þ =- dx
1+ y 2 + sin x
On integrating both sides, we get
1 cos x
ò 1 + y dy = - ò 2 + sin x dx
Þ log (1 + y) = - log (2 + sin x ) + log C
Þ log (1 + y) + log (2 + sin x ) = log C
Þ log (1 + y) (2 + sin x ) = log C
Þ (1 + y) (2 + sin x ) = C
C
Þ 1+ y =
2 + sin x
C
Þ y= -1 ... (i)
2 + sin x
When x = 0 and y = 1, then
C
1= - 1
2
Þ C=4
On putting C = 4 in Eq. (i), we get
4
y= -1
2 + sin x
p 4 4
\ y æç ö÷ = -1 = -1
è 2 ø 2 + sin p 2+1
2
4 1
= - 1=
3 3
dy
Q. 12 If y (t) is a solution of (1 + t) - ty = 1 and y (0) = - 1, then show
dt
1
that y (1) = - .
2
dy
Sol. Given that, (1 + t ) - ty = 1
dt
dy æ t ö 1
Þ -ç ÷ y=
dt çè 1 + t ÷ø 1+ t
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dt
æ t ö 1
P = - çç ÷, Q =
è1 + t ÷ø 1+ t
t æ 1 ö
-ò dt - ò çç 1 - ÷ dt = e - [ t - log (1 + t )]
1+ t 1+ t ÷
IF = e = e è ø
= e - t × elog ( 1 + t )
= e - t (1 + t )
The general solution is
(1 + t ) (1 + t ) × e - t
y (t ) ×
et
= ò (1 + t )
dt + C
e- t et C et
Þ y (t ) = × + C ¢, where C ¢=
(-1) 1 + t 1+ t
1
Þ y (t ) = - + C¢
1+ t
When t = 0 and y = - 1, then
- 1 = - 1 + C¢Þ C¢ = 0
1 1
y (t ) = - Þ y (1) = -
1+ t 2
Q. 13 Form the differential equation having y = (sin - 1 x)2 + A cos - 1 x + B,
where A and B are arbitrary constants, as its general solution.
Sol. Given that, y = (sin- 1 x )2 + A cos - 1 x + B
On differentiating w.r.t. x, we get
dy 2 sin-1 x (- A)
= +
dx 1- x 2
1 - x2
dy
Þ 1 - x2 = 2 sin- 1 x - A
dx
Again, differentiating w.r.t. x, we get
d 2 y dy - 2x 2
1 - x2 + . =
dx 2 dx 2 1 + x 2 1 - x2
d2y x dy
Þ (1 - x 2 ) - . 1 - x2 =2
dx 2 1 - x2 dx
dy d2y
Þ (1 - x 2 )
-x =2
dx 2 dx
d2y dy
Þ (1 - x 2 ) 2 - x -2 = 0
dx dx
which is the required differential equation.
Q. 14 Form the differential equation of all circles which pass through origin
and whose centres lie on Y-axis.
Sol. It is given that, circles pass through origin and their centreslie on Y-axis. Let (0, k) be the
centre of the circle and radius is k.
So, the equation of circle is
(x - 0)2 + ( y - k )2 = k 2
Þ x 2 + ( y - k )2 = k 2
Þ x 2 + y2 - 2 ky = 0
x 2 + y2
Þ =k ... (i)
2y
On differentiating Eq. (i) w.r.t. x, we get
2 2dy
2 y æç 2 x + 2 y
dy ö 2
÷ - (x + y )
è dx ø dx
=0
4 y2
4 y æç x + y
dy ö 2 2 dy
Þ ÷ - 2 (x + y ) =0
è dx ø dx
dy dy
Þ 4xy + 4 y2 - 2 ( x 2 + y2 ) =0
dx dx
dy
Þ [4 y2 - 2 (x 2 + y2 )] + 4xy = 0
dx
dy
Þ ( 4 y2 - 2 x 2 - 2 y2 ) + 4xy = 0
dx
dy
Þ (2 y2 - 2 x 2 ) + 4xy = 0
dx
dy
Þ ( y2 - x 2 ) + 2 xy = 0
dx
dy
Þ ( x 2 - y2 ) - 2 xy = 0
dx
Q. 15 Find the equation of a curve passing through origin and satisfying the
dy
differential equation (1 + x 2 ) + 2xy = 4 x 2 .
dx
dy
Sol. Given that, (1 + x 2 ) + 2 xy = 4x 2
dx
dy 2x 4x 2
Þ + . y =
dx 1 + x 2 1 + x2
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dx
2x 4x 2
P= 2
,Q =
1+ x 1 + x2
2x
ò dx
1 + x2
\ IF = e ò Pdx = e
Put 1 + x 2 = t Þ 2xdx = dt
dt
ò x2)
IF = 1 + x 2 = e t = elog t = elog ( 1 +
The general solution is
4x 2
y × (1 + x 2 ) = ò 1 + x 2 (1 + x
2
) dx + C
Þ y × (1 + x 2 ) = ò 4x 2 dx + C
x3
Þ y × (1 + x 2 ) = 4+C ... (i)
3
Since, the curve passes through origin, then substituting
x = 0 and y = 0 in Eq. (i), we get
C=0
The required equation of curve is
4x 3
y (1 + x 2 ) =
3
4x 3
Þ y=
3 (1 + x 2 )
dy
Q. 16 Solve x2 = x 2 + xy + y 2 .
dx
dy
Sol. Given that, x2 = x 2 + xy + y2
dx
dy y y2
Þ = 1+ + 2 ... (i)
dx x x
y y2
Let f (x, y) = 1 + + 2
x x
ly l2 y2
f (lx, ly) = 1 + + 2 2
lx l x
æ y y2 ö
f (lx, ly) = l0 çç 1 + + 2 ÷÷
è x x ø
0
= l f (x, y)
which is homogeneous expression of degree 0.
dy dv
Put y = vx Þ =v+ x
dx dx
On substituting these values in Eq.(i), we get
æ v + x dv ö = 1 + v + v 2
ç ÷
è dx ø
dv
Þ x = 1 + v + v2 - v
dx
dv
Þ x = 1 + v2
dx
dv dx
Þ 2
=
1+ v x
On integrating both sides, we get
tan-1 v = log|x| + C
tan-1 æç ö÷ = log|x| + C
y
Þ
èx ø
-1
-1 e tan y -1
x × e tan ò1+ × e tan
y y
The general solution is = 2
dy + C
y
-1
-1 (e tan y 2
)
x × e tan ò
y
Þ = × dy + C
1 + y2
1
Put tan-1 y = t Þ dy = dt
1 + y2
-1
\ x × e tan y
= ò e 2t dt + C
-1 1 2 tan -1 y
Þ x × e tan y
= e +C
2
-1 -1
Þ 2 x e tan y
= e 2 tan y
+2C
-1 -1
tan y 2 tan y
Þ 2x e =e + K [Q K = 2 C]
Þ æz+ 1ö
ç ÷ dz = 2 dx
è z ø
On integrating both sides, we get
æ 1 + 1 ö dz = 2 dx
òç
è zø
÷ ò
Þ z + log z = 2 x - log C
Þ (x + y) + log (x + y) = 2 x - log C [Q z = x + y]
Þ 2x - x - y = log C + log (x + y)
Þ x - y = log|C (x + y)|
Þ e x - y = C (x + y)
1
Þ (x + y) = e x - y
C
Þ x + y = Ke x - y éQ K = 1 ù
êë C úû
dy
Q. 20 Solve 2 ( y + 3) - xy = 0, given that y (1) = - 2.
dx
dy
Sol. Given that, 2 ( y + 3) - xy =0
dx dy
Þ 2 ( y + 3) = xy
dx
dx æ y ö
Þ 2 = çç ÷÷ dy
x è y + 3ø
dx æ y + 3 - 3 ö
Þ 2× = çç ÷÷ dy
x è y+ 3 ø
dx æ 3 ö
Þ 2× = çç 1 - ÷ dy
x è y + 3 ÷ø
On integrating both sides, we get
2 log x = y - 3 log ( y + 3) + C ... (i)
When x = 1 and y = - 2, then
2 log 1 = - 2 - 3log (- 2 + 3) + C
Þ 2 × 0 = - 2 - 3× 0 + C
Þ C =2
On substituting the value of C in Eq. (i), we get
2 log x = y - 3 log ( y + 3) + 2
Þ 2 log x + 3 log ( y + 3) = y + 2
Þ log x 2 + log ( y + 3)3 = ( y + 2 )
Þ log x 2 ( y + 3)3 = y + 2
+ 2
Þ x 2 ( y + 3)3 = e y
Q. 21 Solve the differential equation dy = cos x (2 - y cosec x ) dx given that
p
y = 2, when x = .
2
Sol. Given differential equation,
dy = cos x (2 - y cosec x )dx
dy
Þ = cos x (2 - y cosec x )
dx
dy
Þ = 2 cos x - y cosec x × cos x
dx
dy
Þ = 2cos x - ycot x
dx
dy
Þ + ycot x = 2 cos x
dx
which is a linear differential equation.
dy
On comparing it with + Py = Q, we get
dx
P = cot x, Q = 2 cos x
IF = e ò = eò
Pdx cot x dx
= elog sin x = sin x
The general solution is
y × sin x = ò 2 cos x × sin x dx + C
Þ y × sin x = ò sin 2 x dx + C [Q sin 2 x = 2 sin x cos x ]
cos 2 x
Þ y × sin x = - +C ... (i)
2
p
When x = and y = 2, then
2
p
cos æç 2 ´ ö÷
p è 2ø
2 . sin = - +C
2 2
1
Þ 2 ×1= + + C
2
1 4-1
Þ 2 - =C Þ =C
2 2
3
Þ \ C=
2
On substituting the value of C in Eq. (i), we get
1 3
y sin x = - cos 2 x +
2 2
= x 2 (- cos x ) + ò 2 x cos x dx
= - x 2 cos x + [2 x (sin x ) - ò 2 sin x dx ]
I1 = - x 2 cos x + 2 x sin x + 2 cos x ... (ii)
and I 2 = ò x log x dx
2
x3 1 x3
= log x × -ò × dx
3 x 3
x3 1
= log x × - ò x 2dx
3 3
x3 1 x3
= log x × - × ... (iii)
3 3 3
On substituting the value of I1 and I 2 in Eq. (i), we get
x3 1
y × x 2 = - x 2 cos x + 2 x sin x + 2 cos x + log x - x 3 + C
3 9
2 sin x 2 cos x x x
\ y = - cos x + + + log x - + Cx - 2
x x2 3 9
Q. 26 Find the general solution of (1 + tan y) (dx - dy) + 2x dy = 0.
Sol. Given differential equation is (1 + tan y) (dx - dy) + 2 x dy = 0
on dividing throughout by dy, we get
æ dx ö
(1 + tan y) ç - 1÷ + 2 x = 0
è dy ø
dx
Þ (1 + tan y) - (1 + tan y) + 2 x = 0
dy
dx
Þ (1 + tan y) + 2 x = (1 + tan y)
dy
dx 2x
Þ + =1
dy 1 + tan y
which is a linear differential equation.
dx
On comparing it with + Px = Q, we get
dy
2
P= ,Q = 1
1 + tan y
2 2 cos y
ò1+ tan y
dy ò cos y + sin y
dy
IF = e =e
cos y + sin y + cos y - sin y
ò cos y + sin y
dy
=e
æ cos y - sin y ö
ò çç 1 + cos y ÷ dy
+ sin y ÷ø + log (cos y + sin y )
=e è = ey
y
= e × (cos y + sin y) [Q elog x
= x]
The general solution is
x × e y (cos y + sin y) = ò 1× e y (cos y + sin y) dy + C
Þ x × e y (cos y + sin y) = ò e y (sin y + cos y) dy + C
Þ x × e y (cos y + sin y) = e y sin y + C [Q ò e x {f (x ) + f ¢ (x )} dx = e x f (x )]
Þ x (sin y + cos y) = sin y + Ce - y
dy
Q. 27 Solve = cos (x + y) + sin (x + y) .
dx
dy
Sol. Given, = cos (x + y) + sin (x + y) …(i)
dx
Put x + y= z
dy dz
Þ 1+ =
dx dx
On substituting these values in Eq. (i), we get
æ dz - 1ö = cos z + sin z
ç ÷
è dx ø
dz
Þ = (cos z + sin z + 1)
dx
dz
Þ = dx
cos z + sin z + 1
On integrating both sides, we get
dz
ò cos z + sin z + 1 = ò 1d x
dz
Þ ò 1 - tan2 z /2 2 tan z /2
= ò dx
+ +1
1 + tan2 z /2 1 + tan2 z /2
dz
Þ ò 1 - tan2 z / 2 + 2 tan z / 2 + 1 + tan2 z/2
= ò dx
(1 + tan2 z / 2 )
(1 + tan2 z / 2 ) dz
Þ ò 2 + 2 tan2 z / 2
= ò dx
sec 2 z / 2 dz
Þ ò 2 (1 + tan z / 2 ) = ò dx
Put 1 + tan z / 2 = t Þ æ 1 sec 2 z / 2 ö d z = d t
ç ÷
è2 dt ø
Þ ò t = ò dx
Þ log|t| = x + C
Þ log|1 + tan z / 2| = x + C
(x + y)
Þ log 1 + tan =x+C
2
Let y × e - 3x = I … (i)
- 3x
\ I = òe sin2 x
II I
æ e - 3x ö æ e - 3x ö
Þ I = sin 2 x çç . ÷ - ò 2 cos 2 x ç ÷
÷ ç - 3 ÷ dx + C1
è -3 ø è ø
1 - 3x 2 - 3x
Þ I=- e sin 2 x + ò e cos 2 x dx + C1
3 3 II I
1 - 3x 2 æ e - 3x e - 3x ö
Þ I=- e sin 2 x + çç cos 2 x - ò (- 2 sin2 x ) dx ÷÷ + C1 + C 2
3 3è -3 -3 ø
1 - 3x 2 - 3x 4
Þ I=- e sin 2 x - cos 2 x e - I + C¢ [where, C ¢ = C1 + C 2 ]
3 9 9
4I 1 2
Þ I+ 2 = + e - 3 x æç - sin2 x - cos 2 x ö÷ + C ¢
9 è 3 9 ø
13 1 2
Þ I = e - 3 x æç - sin2 x - cos 2 x ö÷ + C ¢
9 è 3 9 ø
Þ I=
9 -3x æ 1 2 ö é where C = 9C ¢ù
e ç - sin2 x - cos 2 x ÷ + C êë
13 è 3 9 ø 13 úû
3 - 3x æ 2 ö
Þ I= e ç - sin2 x - cos 2 x ÷ + C
13 è 3 ø
3 - 3 x (- 3 sin2 x - 2 cos 2 x )
Þ = e +C
13 3
e - 3x
Þ = (- 3 sin 2 x - 2 cos 2 x ) + C
13
e - 3x
Þ I=- (2 cos 2 x + 3sin 2 x ) + C
13
On substituting the value of I in Eq. (i), we get
e - 3x
y × e - 3x = - ( 2 cos 2 x + 3 sin 2 x ) + C
13
1
Þ y=- (2 cos 2 x + 3 sin 2 x ) + C e 3 x
13
Q. 29 Find the equation of a curve passing through (2, 1), if the slope of the
x2 + y 2
tangent to the curve at any point (x, y) is .
2x y
x 2 + y2
Sol. It is given that, the slope of tangent to the curve at point (x, y) is .
2 xy
æ dy ö x 2 + y2
\ ç ÷ =
è dx ø( x, y ) 2 xy
dy 1 æ x yö
Þ = ç + ÷ … (i)
dx 2 è y x ø
which is homogeneous differential equation.
Put y = vx
dy dv
Þ =v+ x
dx dx
On substituting these values in Eq. (i), we get
dv 1 æ 1
v+ x = ç + v ö÷
dx 2 è v ø
dv 1 æ 1 + v 2 ö
Þ v+ x = ç ÷
dx 2 çè v ÷ø
dv 1 + v 2
Þ x = -v
dx 2v
dv 1 + v 2 - 2 v 2
Þ x =
dx 2v
dv 1 - v 2
Þ x =
dx 2v
2v dx
Þ dv =
1 - v2 x
On integrating both sides, we get
2v dx
ò 1 - v 2 dv = ò x
Put 1 - v 2 = t in LHS, we get
- 2 vdv = dt
dt dx
Þ -ò =ò
t x
Þ - log t = log x + log C
Þ - log (1 - v 2 ) = log x + log C
æ y2 ö
Þ - log çç 1 - 2 ÷÷ = log x + log C
è x ø
æ x 2 - y2 ö
Þ - log çç 2
÷ = log x + log C
÷
è x ø
æ x2 ö
Þ log çç 2 ÷ = log x + log C
2 ÷
èx - y ø
x2
Þ =C x …(ii)
x 2 - y2
Since, the curve passes through the point (2, 1).
(2 )2 2
\ = C (2 ) Þ C =
(2 ) - (1)2
2
3
So, the required solution is 2 (x 2 - y2 ) = 3x .
Q. 30 Find the equation of the curve through the point (1, 0), if the slope of
y -1
the tangent to the curve at any point (x, y) is .
x2 + x
y-1
Sol. It is given that, slope of tangent to the curve at any point (x, y) is 2 .
x + x
æ ö
dy y - 1
\ ç ÷ =
è dx ø( x, y ) x 2 + x
dy y-1
Þ =
dx x 2 + x
dy dx
Þ =
y - 1 x2 + x
On integrating both sides, we get
dy dx
ò y - 1 = ò x2 + x
dy dx
Þ ò y - 1 = ò x (x + 1)
dy æ1 1 ö
Þ ò y - 1 = ò ççè x -
x+
÷ dx
1 ÷ø
Þ log( y - 1) = log x - log(x + 1) + log C
æ xC ö
Þ log( y - 1) = log çç ÷÷
è x + 1ø
Since, the given curve passes through point (1, 0).
1× C
\ 0 - 1= Þ C = -2
1+ 1
-2 x
The particular solution is y - 1=
x+1
Þ ( y - 1)(x + 1) = - 2 x
Þ ( y - 1)(x + 1) + 2 x = 0
Q. 31 Find the equation of a curve passing through origin, if the slope of the
tangent to the curve at any point (x, y) is equal to the square of the
difference of the abcissa and ordinate of the point.
dy
Sol. Slope of tangent to the curve =
dx
and difference of abscissa and ordinate = x - y
dy
According to the question, = (x - y)2 …(i)
dx
Put x - y= z
dy dz
Þ 1- =
dx dx
dy dz
Þ = 1-
dx dx
On substituting these values in Eq. (i), we get
dz
1- = z2
dx
dz
Þ 1 - z2 =
dx
dz
Þ dx =
1 - z2
On integrating both sides, we get
dz
ò dx = ò 1 - z2
1 1+ z
Þ x= log +C
2 1- z
1 1+ x - y
Þ tx = log +C ... (ii)
2 1- x + y
Since, the curve passes through the origin.
1 1+ 0 - 0
\ 0 = log +C
2 1- 0 + 0
Þ C=0
On substituting the value of C in Eq. (ii), we get
1 1+ x - y
x = log
2 1- x + y
1+ x - y
Þ 2 x = log
1- x + y
1+ x - y
Þ e 2x =
1- x + y
Þ (1 - x + y) e 2 x = 1 + x - y
Q. 32 Find the equation of a curve passing through the point (1, 1), if the
tangent drawn at any point P (x, y) on the curve meets the coordinate
axes at A and B such that P is the mid-point of AB.
Sol. The below figure obtained by the given information
(0, 2y)
B
P(
x,
y) A (2x, 0)
Let the coordinate of the point P is (x, y ). It is given that, P is mid-point of AB.
So, the coordinates of points A and B are (2 x, 0) and (0, 2 y), respectively.
0 - 2y y
\ Slope of AB = =-
2x - 0 x
Since, the segment AB is a tangent to the curve at P.
dy y
\ =-
dx x
dy dx
Þ =-
y x
On integrating both sides, we get
log y = - log x + log C
C
log y = log …(i)
x
Since, the given curve passes through (1, 1).
C
\ log 1 = log
1
Þ 0 = log C
Þ c =1
1
\ log y = log
x
1
Þ y=
x
Þ xy = 1
3/2
é æ dy ö2 ù d2y
Q. 35 The degree of the differential equation ê1 + ç ÷ ú = is
êë è dx ø úû dx 2
3
(a) 4 (b) (c) not defined (d) 2
2
2 3/ 2
é dy ù d2y
Sol. (d) Given that ê1 + æç ö÷ ú =
ë è dx ø û dx 2
On squaring both sides, we get
3 2
é æ dy ö ù
2
æd2y ö
ê1 + ç ÷ ú = çç 2 ÷÷
ë è dx ø û è dx ø
So, the degree of differential equation is 2.
Q. 36 The order and degree of the differential equation
1/ 4
d2y æ dy ö
2
+ç ÷ + x 1/ 5 = 0 respectively, are
dx è ø
d x
(a) 2 and 4 (b) 2 and 2
(c) 2 and 3 (d) 3 and 3
1/ 4
d2y
+ æç ö÷
dy
Sol. (a) Given that, 2
= - x 1/ 5
dx è dx ø
1/ 4
d2y
+ æç ö÷
dy
Þ 2
= - x 1/ 5
dx è dx ø
1/ 4
æ dy ö æ d2y ö
Þ ç ÷ = - çç x 1/ 5 + ÷
è dx ø è dx 2 ÷ø
On squaring both sides, we get
1/ 2 2
æ
æ dy ö d2y ö
= çç x 1/ 5 +
ç ÷ ÷
è dx ø
è dx 2 ÷ø
Again, on squaring both sides, we have
4
dy æ 1/ 5 d 2 y ö
= çx + ÷
dx çè dx 2 ÷ø
order = 2, degree = 4
1
=
x
Q. 44The solution of dy - y = 1, y(0) = 1 is given by
dx
(a) xy = - ex (b) xy = - e- x
(c) xy = - 1 (d) y = 2ex - 1
Sol. (b) Given that,
dy
- y=1
dx
dy
Þ = 1+ y
dx
dy
Þ = dx
1+ y
On integrating both sides, we get
log(1 + y) = x + C ...(i)
When x = 0 and y = 1, then
log 2 = 0 + c
Þ C = log 2
The required solution is
log (1 + y) = x + log 2
1+ yö
Þ logæç ÷=x
è 2 ø
1+ y
Þ = ex
2
Þ 1 + y = 2e x
Þ y = 2e x - 1
y +1
Q. 45 The number of solutions of dy = , when y(1) = 2 is
dx x -1
(a) none (b) one (c) two (d) infinite
dy y+1
Sol. (b) Given that, =
dx x -1
dy dx
Þ =
y+1 x -1
On integrating both sides, we get
log( y + 1) = log(x - 1) - log C
C( y + 1) = (x - 1)
x -1
Þ C=
y+1
When x = 1and y = 2, then C = 0
So, the required solution is x - 1 = 0.
Hence, only one solution exist.
2 3
æ dy ö
Q. 51 The degree of differential equation d 2
y
+ ç ÷ + 6 y 5 = 0 is
dx è dx ø
(a) 1 (b) 2 (c) 3 (d) 5
3
d2y
+ æç ö÷ + 6 y5 = 0
dy
Sol. (a)
dx 2 è dx ø
We know that, the degree of a differential equation is exponent heighest of order
derivative.
\ Degree = 1
= e(log sec x )
= sec x
1 + y2
Q. 54 The solution of differential equation dy = is
dx 1 + x2
(a) y = tan -1 x (b) y - x = k(1 + xy)
(c) x = tan -1 y (d) tan( xy) = k
dy 1 + y2
Sol. (b) Given that, =
dx 1 + x 2
dy dx
Þ =
1 + y2 1 + x 2
On integrating both sides, we get
tan-1 y = tan-1 x + C
Þ tan-1 y - tan-1 x = C
æ y-x ö
Þ tan-1 çç ÷÷ = C
è 1 + xy ø
y-x
Þ = tan C
1 + xy
Þ y - x = tan c(1 + x y)
Þ y - x = K (1 + x y)
where, k = tan C
1+ y
Q. 55 The integrating factor of differential equation dy +y= is
dx x
x ex
(a) (b) (c) xex (d) ex
ex x
dy 1+ y
Sol. (b) Given that, + y=
dx x
dy 1 + y
Þ = - y
dx x
dy 1 + y - xy
Þ =
dx x
dy 1 y (1 - x )
Þ = +
dx x x
dy æ 1 - x ö 1
Þ -ç ÷ y=
dx è x ø x
- (1 - x ) 1
Here, P= ,Q =
x x
1- x x -1
-ò dx ò dx
IF = e ò
Pdx
=e x =e x
æ 1ö
ò çè 1 - x ÷ø dx
=e
= eò
x - log x
æ1ö
log ç ÷
= ex ×e èxø
1
= ex ×
x
Q. 57 The solution of differential equation cos x sin ydx + sin x cos ydy = 0 is
sin x
(a) =C (b) sin x sin y = C
sin y
(c) sin x + sin y = C (d) cos x cos y = C
Sol. (b) Given differential equation is
cos x sin ydx + sin x cos ydy = 0
Þ cos x sin ydx = - sin x cos ydy
cos x cos y
Þ dx = - dy
sin x sin y
Þ cot x dx = - cot ydy
On integrating both sides, we get
logsin x = - logsin y + log C
Þ logsin x sin y = log C
Þ sin x × sin y = C
dy
Q. 58 The solution of x + y = e x is
dx
ex k ey k
(a) y = + (b) y = xex + Cx (c) y = xex + k (d) x = +
x x y y
dy
Sol. (a) Given that, x + y = ex
dx
dy y ex
Þ + =
dx x x
which is a linear differential equation.
1
ò x dx
\ IF = e = e(log x ) = x
æd x ö
The general solution is y × x = ò çç × x ÷÷ d x
è x ø
Þ y × x = ò e xdx
Þ y× x = ex + k
ex k
Þ y= +
x x
Q. 62 The curve for which the slope of the tangent at any point is equal to
the ratio of the abcissa to the ordinate of the point is
(a) an ellipse (b) parabola
(c) circle (d) rectangular hyperbola
dy
Sol. (d) Slope of tangent to the curve =
dx
x
and ratio of abscissa to the ordinate =
y
dy x
According to the question, =
dx y
yd y = x d x
On integrating both sides, we get
y2 x 2
= +C
2 2
y2 x 2
Þ - = C Þ y2 - x 2 = 2C
2 2
which is an equation of rectangular hyperbola.
x2
dy
Q. 63 The general solution of differential equation =e 2 + xy is
dx
2 2
(a) y = Ce-x / 2 (b) y = C ex / 2
2 2
(c) y = ( x + C) ex / 2 (d) y = (C - x) ex / 2
dy 2
Sol. (c) Given that, = e x / 2 + xy
dx
dy 2
Þ - xy = e x / 2
dx
2
/2
Here, P = - x, Q = e x
\ IF = e ò - x dx = e -x
2
/2
2
/2
Þ y = (x + C ) e x
dy
Q. 66 The solution of + y = e - x , y (0) = 0 is
dx
(a) y = e-x ( x -1) (b) y = xex
(c) y = xe-x + 1 (d) y = xe- x
dy
Sol. (d) Given that, + y = e -x
dx
which is a linear differential equation.
Here, P = 1and Q = e - x
IF = e ò = e x
dx
- x cos x - ò - cos x dx
= - x cos x + sin x
Put the value of I in Eq. (i), we get
xy = - x cos x + sin x + C
Þ x ( y + cos x ) = sin x + C
1 ex
Þ ò 1 dy - ò 1 + y
dy = ò 1 + e x dx
Þ y - log|(1 + y) = log|(1 + e x ) + log k
Þ y = log (1 + y) + log (1 + e x ) + log (k )
Þ y = log {k (1 + y) (1 + e x )}
dy
Q. 74 The solution of differential equation = e x -y + x 2 e - y is
dx
x3
(a) y = ex - y - x 2 e- y + C (b) ey - ex = +C
3
x3 x3
(c) ex + ey = +C (d) ex - ey = +C
3 3
dy
Sol. (b) Given that, = e x - y + x 2 e -y
dx
dy
Þ = e xe - y + x 2 e - y
dx
dy e x + x 2
Þ =
dx ey
Þ e dy = (e + x 2 ) dx
y x
Fillers
d2 y
Q. 76 (i) The degree of the differential equation
2
+ e dy / dx = 0 is ....... .
dx
2
æ dy ö
(ii) The degree of the differential equation 1 + ç ÷ = x is ........ .
è dx ø
(iii) The number of arbitrary constants in the general solution of a
differential equation of order three is ....... .
dy y 1
(iv) + = is an equation of the type ........ .
dx x log x x
(v) General solution of the differential equation of the type
is given by ........ .
xdy
(vi) The solution of the differential equation + 2 y = x 2 is ........ .
dx
2 dy 2
(vii) The solution of (1 + x ) + 2xy - 4x = 0 is ........ .
dx
(viii) The solution of the differential equation ydx + ( x + xy) dy = 0 is
...... .
dy
(ix) General solution of + y = sin x is ....... .
dx
(x) The solution of differential equation cot y dx = xdy is ....... .
dy 1+ y
(xi) The integrating factor of +y= is ......... .
dx x
Sol. (i) Given differential equation is
dy
d2 y
+ e dx = 0
dx 2
Degree of this equation is not defined.
2
(ii) Given differential equation is 1 + æç ö÷ = x
dy
è dx ø
So, degree of this equation is two.
(iii) There are three arbitrary constants.
dy y 1
(iv) Given differential equation is + =
dx x log x x
dy
The equation is of the type + Py = Q
dx
(v) Given differential equation is
dx
+ P1 x = Q1
dy
The general solution is
x × IF = ò Q ( IF ) dy + C i .e., x e ò = ò Q {e ò } d y + C
Pdy Pd y
x4
Þ yx 2 = +C
4
x2
Þ y= + Cx -2
4
(vii) Given differential equation is
dy
(1 + x 2 ) + 2 xy - 4x 2 = 0
dx
dy 2 xy 4x 2
Þ + 2
- =0
dx 1 + x 1 + x2
dy 2x 4x 2
Þ + 2
y=
dx 1 + x 1 + x2
2x
ò 1 + x2
dx
\ IF = e
Put 1 + x 2 = t Þ 2xdx = dt
dt
ò log ( 1 + x 2 )
\ IF = e t = elog t = e = 1 + x2
The general solution is
.4x 2
y × (1 + x 2 ) = ò (1 + x 2 ) dx + C
(1 + x 2 )
Þ (1 + x 2 ) y = ò 4x 2 dx + C
x3
Þ (1 + x 2 )y = 4 +C
3
4x 3
Þ y= + C (1 + x 2 )-1
3(1 + x 2 )
(viii) Given differential equation is
Þ ydx + (x + xy) dy = 0
Þ ydx + x (1 + y) d y = 0
dx æ1 + y ö
Þ = ç ÷ dy
-x è y ø
1 æ1 ö
Þ ò x dx = - ò çè y + 1÷ø dy [on integrating]
I = sin x e x - ò cos x e x dx
= sin x e x - cos x e x + ò (- sin x ) e x dx
2I = e x (sin x - cos x )
1
I = e x (sin x - cos x )
2
From Eq. (i),
x
y× ex = (sin x - cos x ) + C
2
1
Þ y = (sin x - cos x ) + C × e - x
2
(x) Given differential equation is
cot y dx = xdy
1
Þ dx = tan y dy
x
On integrating both sides, we get
1
Þ ò x dx = ò tan y d y
Þ log (x ) = log (sec y) + log C
æ x ö
Þ log çç ÷÷ = log C
è sec y ø
x
Þ =C
sec y
Þ x = C sec y
(xi) Given differential equation is
dy 1+ y
+ y=
dx x
dy 1 y
+ y= +
dx x x
1 1
+ y æç 1 - ö÷ =
dy
Þ
dx è x ø x
æ 1ö
ò çè 1 - x ÷ø dx
\ IF = e
= e x - log x
ex
= e x × e - log x
=
x
True/False
Q. 77 State True or False for the following
dx
(i) Integrating factor of the differential of the form + P1 x = Q 1 is
dy
given by e ò 1 .
P dy
dx
(ii) Solution of the differential equation of the type + P1 x = Q 1 is
dy
given by x × IF = ò (IF) ´ Q 1 dy.
(iii) Correct substitution for the solution of the differential equation of
dy
the type = f (x, y), where f (x, y) is a homogeneous function of
dx
zero degree is y = vx.
(iv) Correct substitution for the solution of the differential equation of
dy
the type = g (x, y), where g (x, y) is a homogeneous function of
dx
the degree zero is x = vy.
(v) Number of arbitrary constants in the particular solution of a
differential equation of order two is two.
(vi) The differential equation representing the family of circles
x 2 + ( y - a)2 = a2 will be of order two.
1/ 3
dy æ y ö
(vii) The solution of =ç ÷ is y 2/ 3 - x 2 / 3 = c
dx è x ø
(viii) Differential equation representing the family of curves
d2 y dy
y = e x (A cos x + B sin x) is -2 + 2 y = 0.
2 dx
dx
dy x + 2 y
(ix) The solution of the differential equation = is x + y = kx 2 .
dx x
xdy y æ yö
(x) Solution of = y + x tan is sin ç ÷ = c x
dx x èxø
(xi) The differential equation of all non horizontal lines in a plane is
d2x
= 0.
dy 2
Sol. (i) True
Given differential equation,
dx
+ P1 x = Q1
dy
IF = e ò
p1dy
\
(ii) True
(iii) True
(iv) True
(v) False
There is no arbitrary constant in the particular solution of a differential equation.
(vi) False
We know that, order of the differential equation = number of arbitrary constant
Here, number of arbitrary constant = 1.
So order is one.
(vii) True
1/ 3
dy æ y ö
Given differential equation, =ç ÷
dx è x ø
dy y1/ 3
Þ = 1/ 3
dx x
Þ y- 1/ 3 dy = x -1/ 3 dx
On integrating both sides, we get
-1/ 3 -1/ 3
ò y dy = ò x dx
y-1/ 3 + 1 x -1/ 3 + 1
Þ = + C¢
-1 -1
+1 +1
3 3
3 2/ 3 3 2/ 3
Þ y = x + C¢
2 2
Þ y2 / 3 - x 2 / 3 = C ¢ é where, 2 C ¢ = C ù
êë 3 úû
(viii) True
Given that, y = e x ( A cos x + B sin x )
On differentiating w.r.t. x, we get
dy
= e x (- A sin x + Bcos x ) + e x ( A cos x + Bsin x )
dx
dy
Þ - y = e x (- A sin x + Bcos x )
dx
Again differentiating w.r.t. x, we get
d 2 y dy
- = e x (- A cos x - Bsin x ) + e x (- A sin x + Bcos x )
dx 2 dx
d 2 y dy dy
Þ - + y= -y
dx 2 dx dx
d2y dy
Þ -2 + 2y = 0
dx 2 dx
(ix) True
dy x + 2 y dy 2
Given that, = Þ = 1+ .y
dx x dx x
dy 2
Þ - y=1
dx x
-2
dx
IF = e x = e -2 log x
= x -2
The differential solution,
y × x -2 = ò x -2 × 1d x + k
y x -2 + 1
Þ = + k
x 2
-2 + 1
y -1
Þ = + k
x2 x
Þ y = - x + kx 2
Þ x + y = kx 2
(x) True
Given differential equation,
= y + x tan æç ö÷
xdy y
dx èx ø
= + tan ç ö÷. æ
dy y y
Þ …(i)
dx x èx ø
y
Put = v i .e., y = vx
x
dy xdv
Þ =v+
dx dx
On substituting these values in Eq. (i), we get
xdv
+ v = v + tan v
dx
dx dv
Þ =
x tan v
On integrating both sides, we get
1 1
ò x dx = ò tan v dx
Þ log (x ) = log (sin v ) + log C ¢
æ x ö
Þ log çç ÷÷ = log C ¢
è sin v ø
x
Þ = C¢
sin v
Þ sin v = Cx é where, C = 1 ù
êë C ¢úû
y
Þ sin = Cx
x
(xi) True
Let any non-horizontal line in a plane is given by
y = mx + c
On differentiating w.r.t. x, we get
dy
=m
dx
Again, differentiating w.r.t. x, we get
d2y
=0
dx 2
10
Vector Algebra
Short Answer Type Questions
®
Q. 1 Find the unit vector in the direction of sum of vectors a = 2$i - $j + k$
®
and b = 2$j + k$ .
K Thinking Process
®
® a
We know that, unit vector in the direction of a vector a is . So, first we will find the
®
| a|
sum of vectors and then we will use this concept.
® ® ®
Sol. Let c denote the sum of a and b.
® ® ®
We have, c = a+ b
= 2 $i - $j + k$ + 2 $j + k$ = 2 $i + $j + 2 k$
®
® c 2 $i + $j + 2k$ 2 $i + $j + 2k$
\ Unit vector in the direction of c = = =
® 9
|c| 2 2 + 12 + 2 2
2 $i + $j + 2k$
c$ =
3
® ®
Q. 2 If a = $i + $j + 2k$ and b = 2$i + $j + 2k$ , then find the unit vector in the
direction of
® ® ®
(i) 6 b (ii) 2 a - b
® ®
Sol. Here, a = $i + $j + 2k$ and b = 2 $i + $j - 2k$
®
(i) Since, 6 b = 12 $i + 6$j - 12 k$
®
® 6b
\Unit vector in the direction of 6b =
®
|6b|
12 $i + 6$j - 12k$ 6(2 $i + $j - 2k$ )
= =
2
12 + 6 + 12 2 2 324
6(2 $i + $j - 2k$ ) 2 $i + $j - 2 k$
= =
18 3
® ®
(ii) Since, 2 a - b = 2($i + $j + 2k$ ) - (2 $i + $j - 2k$ )
= 2 $i + 2 $j + 4k$ - 2 $i - $j + 2k$ = $j + 6k$
® ®
® ® 2a - b $j + 6k$ 1 $
\Unit vector in the direction of 2 a - b = = = ( j + 6k$ )
®
|2 a - b|
® 1 + 36 37
®
Q. 3 Find a unit vector in the direction of PQ , where P and Q have
coordinates (5, 0, 8) and (3, 3, 2), respectively.
Sol. Since, the coordinates of P and Q are (5, 0, 8) and (3, 3, 2), respectively.
¾® ¾® ¾®
\ PQ = OQ - OP
= (3$i + 3$j + 2k$ ) - (5$i + 0$j + 8 k$ )
= - 2 $i + 3$j - 6k$
¾®
¾® PQ -2 $i + 3$j - 6 k$
\ Unit vector in the direction of PQ = ¾®
=
| PQ| 2 2 + 32 + 62
-2 i + 3 j - 6 k$ -2 $i + 3$j - 6 k$
$ $
= =
49 7
® ® ® ®
Q. 4 If a and b are the position vectors of A and B respectively, then find
® ® ® ®
the position vector of a point C in BA produced such that BC = 1 . 5 BA.
¾® ® ¾® ®
Sol. Since, OA = a and OB = b
¾® ¾® ¾® ® ®
\ BA = OA - OB = a - b
¾® ® ®
and 1.5 BA = 1.5(a - b )
¾® ¾® ® ®
Since, BC = 1.5 BA = 1.5(a - b )
¾® ¾® ® ®
OC - OB = 1.5 a - 1.5 b
¾® ® ® ® ¾® ®
OC = 15
. a - 15
. b+ b [Q OB = b]
® ®
= 1.5 a - 0.5 b
® ®
3a - b
=
2
Graphically, explanation of the above solution is given below
® ®
(a – b) A
B C
®
®
a
b ®
–b
3a 2
®
O
Q. 5 Using vectors, find the value of k, such that the points (k, - 10, 3),
(1, - 1, 3) and (3, 5, 3) are collinear.
K Thinking Process
® ® ®
Here, use the following stepwise approach first, get the values of | AB| , |BC and | AC|
® ® ®
and then use the concept that three points are collinear, if | AB | + |BC | = AC such that.
A B C
Sol. Let the points are A(k, - 10, 3) , B(1, - 1, 3) and C(3, 5, 3) .
® ® ®
So, AB = OB - OA
= ($i - $j + 3 k$ ) - (k $i - 10$j + 3 k$ )
= (1 - k )$i + (-1 + 10)$j + (3 - 3)k$
= (1 - k )$i + 9$j + 0 k$
®
\ |AB| = (1 - k )2 + (9)2 + 0 = (1 - k )2 + 81
® ® ®
Similarly, BC = OC - OB
= (3$i + 5$j + 3 k$ ) - ($i - $j + 3k$ )
= 2 $i + 6$j + 0 k$
®
\ |BC | = 2 2 + 62 + 0 = 2 10
® ® ®
and AC = OC - OA
= (3$i + 5$j + 3k$ ) - (k $i - 10$j + 3 k$ )
= (3 - k )$i + 15$j + 0 k$
®
\ |AC | = (3 - k )2 + 225
If A, B and C are collinear, then sum of modulus of any two vectors will be equal to the
modulus of third vectors
® ® ®
For|AB| + |BC | = |AC |,
(1 - k )2 + 81 + 2 10 = (3 - k )2 + 225
Þ (3 - k )2 + 225 - (1 - k )2 + 81 = 2 10
Þ 9 + k 2 - 6 k + 225 - 1 + k 2 - 2 k + 81 = 2 10
Þ k 2 - 6 k + 234 - 2 10 = k 2 - 2 k + 82
Þ k 2 - 6 k + 234 + 40 - 2 k 2 - 6k + 234 × 2 10 = k 2 - 2 k + 82
Þ k 2 - 6 k + 234 + 40 - k 2 + 2 k - 82 = 4 10 k 2 + 234 - 6 k
Þ -4 k + 192 = 4 10 k 2 + 234 - 6 k
Þ - k + 48 = 10 k 2 + 234 - 6 k
On squaring both sides, we get
48 ´ 48 + k 2 - 96 k = 10(k 2 + 234 - 6k )
Þ k 2 - 96 k - 10 k 2 + 60 k = - 48 ´ 48 + 2340
Þ -9k 2 - 36k = - 48 ´ 48 + 2340
Þ (k 2 + 4k ) = + 16 ´ 16 - 260 [dividing by 9 in both sides]
Þ k2 + 4 k = - 4
k2 + 4 k + 4 = 0
Þ (k + 2 )2 = 0
\ k = -2
®
Q. 6 A vector r is inclined at equal angles to the three axes. If the
® ®
magnitude of r is 2 3 units, then find the value of r .
K Thinking Process
®
If a vector r is inclined at equal angles to the three axes, then direction cosines of vector,
® ® ® ®
r will be same and then use, r = r × | r | .
®
Sol. We have, | r|= 2 3
® ® ®
Since, r is equally inclined to the three axes, r so direction cosines of the unit vector r will
be same. i.e., l = m = n.
We know that,
l2 + m2 + n2 = 1
Þ l2 + l2 + l2 = 1
1
Þ l2 =
3
æ 1 ö
Þ l=±ç ÷
è 3ø
1 $ 1 $ 1 $
So, r$ = ± i ± j± k
3 3 3
®
® ® é ù
\ r = r$| r| êQ r$ = r ú
®
ê | r |úû
ë
é 1 $ 1 $ 1 $ù
= ê± i ± j± k 2 3 [Q |r |= 2 3 ]
ë 3 3 3 úû
= ± 2 $i ± 2 $j ± 2k$ = ± 2($i + $j + k$ )
® ®
Sol. Let a = 2 $i - $j + 2k$ and b = 4$i - $j + 3k$
® ®
So, any vector perpendicular to both the vectors a and b is given by
$i $j k$
® ®
a ´ b = 2 -1 2
4 -1 3
= i (-3 + 2 ) - $j(6 - 8) + k$ (-2 + 4)
$
®
= - $i + 2 $j + 2k$ = r [say]
r
A vector of magnitude 6 in the direction of r
®
r - $i + 2 $j + 2k$
= .6= .6
®
| r| 12 + 2 2 + 2 2
- 6 $ 12 $ 12 $
= i + j+ k
3 3 3
= - 2 i + 4j + 4 k
$ $ $
Q. 9 Find the angle between the vectors 2$i - $j + k$ and 3$i + 4 $j - k$ .
K Thinking Process
® ®
® ® a× b
If a and b are two vectors, making angle q with each other, then cos q = , using
® ®
| a || b |
this concept we will find q.
® ®
Sol. Let a = 2 $i - $j + k$ and b = 3$i + 4$j - k$
® ®
We know that, angle between two vectors a and b is given by
® ®
a× b
cos q =
® ®
| a||b|
(2 $i - $j + k$ )(3$i + 4$j - k$ )
=
4 + 1 + 1 9 + 16 + 1
6- 4-1 1
= =
6 26 2 39
æ 1 ö
\ q = cos -1 ç ÷
è 2 39 ø
® ® ® ® ® ® ® ® ®
Q. 10 If a + b + c = 0, then show that a ´ b = b ´ c = c ´ a . Interpret the
result geometrically.
® ® ®
Sol. Since, a + b+ c =0
® ® ®
Þ b=-c -a
® ® ® ® ®
Now, a ´ b = a ´ (- c - a )
® ® ® ® ® ®
= a ´ (- c ) + a ´ (- a ) = - a ´ c
® ® ® ®
Þ a ´b = c ´a …(i)
® ® ® ® ®
Also, b ´ c = (- c - a ) ´ c
® ® ® ® ® ®
= (- c ´ c ) + (- a ´ c ) = - a ´ c
® ® ® ®
Þ b ´c = c ´a …(ii)
® ® ® ® ® ®
From Eqs. (i) and (ii), a ´b = b ´c = c ´a
Geometrical interpretation of the result
D
E C
® ® ® ®
c b |b| sin q c
q
A ® B
a
® ® ® ®
If ABCD is a parallelogram such that AB = a and AD = b and these adjacent sides are
making angle q between each other, then we say that
® ® ® ®
Area of parallelogram ABCD = |a||b||sin q| = |a ´ b|
Since, parallelogram on the same base and between the same parallels are equal in area.
® ® ® ® ® ®
We can say that, |a ´ b| = |a ´ c| = |b ´ c|
® ® ® ® ® ®
This also implies that, a ´b =a ´c = b ´c
® ® ®
So, area of the parallelograms formed by taking any two sides represented by a , b and c as
adjacent are equal.
®
Q. 11 Find the sine of the angle between the vectors a = 3$i + $j + 2k$ and
®
b = 2$i - 2$j + 4 k$ .
K Thinking Process
® ®
We know that, if a and b are in their component form, then
a 1b1 + a2 b2 + a3 b3
cos q = . After getting cos q, we shall find the sine of the
a21 + a22 + a23 b21 + b22 + b23
angle.
3 ´ 2 + 1 ´ ( -2 ) + 2 ´ 4
=
3 + 12 + 2 2 2 2 + (-2 )2 + 42
2
6-2 + 8 12 6 6 3
= = = = =
14 24 2 14 6 84 2 21 21
\ sin q = 1 - cos 2 q
9 12 2 3 2
= 1- = = =
21 21 3 7 7
Q.13 Using vectors, find the area of the DABC with vertices A(1, 2 , 3),
B(2 , - 1, 4) and C(4, 5, - 1).
K Thinking Process
We know that,
1 ® ®
Area of DABC = | AB ´ AC | . So, here we shall use this concept.
2
®
Sol. Here, AB = (2 - 1)$i + (-1 - 2 )$j + (4 - 3)k$
= $i - 3$j + k$
®
and AC = (4 - 1)$i + (5 - 2 )$j + (- 1 - 3) k$
= 3$i + 3$j - 4 k$
C (4, 5, –1)
A B
(1, 2, 3) (2, –1, 4)
$i $j k$
® ®
\ AB ´ AC = 1 -3 1
3 3 -4
= $i (12 - 3) - $j(-4 - 3) + k$ (3 + 9)
= 9$i + 7 $j + 12k$
® ®
and |AB ´ AC| = 92 + 7 2 + 12 2
= 81 + 49 + 144
= 274
1 ® ®
\ Area of DABC = |AB ´ AC|
2
1
= 274 sq units
2
Q. 14 Using vectors, prove that the parallelogram on the same base and
between the same parallels are equal in area.
Sol. Let ABCD and ABFE are parallelograms on the same base AB and between the same
parallel lines AB and DF.
Here, AB||CD and AE || BF
D E C F
®
b
A B
®
a
® ® ® ®
Let AB = a and AD = b
® ®
\ Area of parallelogram ABCD = a ´ b
® ®
Now, area of parallelogram ABFF = AB ´ AE
® ® ®
= AB ´ (AD + DE )
® ® ® ® ®
= AB ´ (b + k a ) [let DE = k a , where k is a scalar]
® ® ®
= a ´ (b + k a )
® ® ® ®
= (a ´ b ) + (a ´ k a )
® ® ® ®
= (a ´ b ) + k(a ´ a )
® ® ® ®
= (a ´ b ) [Q a ´ a = 0 ]
= Area of parallelogram ABCD
Hence proved.
a C
c sin A
C A
D C cos A
b
®
Since, CD = b - c cos A
In DBDC,
a2 = (b - c cos A)2 + (c sin A)2
Þ a2 = b 2 + c 2 cos 2 A - 2 bc cos A + c 2 sin2 A
Þ 2 bc cos A = b 2 - a2 + c 2 (cos 2 A + sin2 A)
b 2 + c 2 - a2
\ cos A =
2 bc
® ® ®
Q. 16 If a , b and c determine the vertices of a triangle, show that
1 ® ® ® ® ® ®
[ b ´ c + c ´ a + a ´ b] gives the vector area of the triangle. Hence,
2
® ® ®
deduce the condition that the three points a , b and c are collinear.
Also, find the unit vector normal to the plane of the triangle.
K Thinking Process
Here, we shall use the following two concepts.
® ® ®
(i) If a , b and c are collinear, then the area of the triangle formed by the vectors will be
zero.
® ® ® ®
(ii) We know that, a ´ b = | a || b | sin qn.
$
® ® ®
Sol. Since, a , b and c are the vertices of a DABC as shown.
C
a®
®
c–
c®–
®
b
A ® ® B
b–a
1 ® ®
\ Area of DABC = |AB ´ AC |
2
® ® ® ® ® ®
Now, AB = b - a and AC = c - a
1 ® ® ® ®
\ Area of DABC = |b - a ´ c - a |
2
1 ® ® ® ® ® ® ® ®
= |b ´ c - b ´ a - a ´ c + a ´ a |
2
1 ® ® ® ® ® ® ®
= |b ´ c + a ´ b + c ´ a + 0 |
2
1 ® ® ® ® ® ®
= |b ´ c + a ´ b + c ´ a | …(i)
2
For three points to be collinear, area of the D ABC should be equal to zero.
1 ® ® ® ® ® ®
Þ [b ´ c + c ´ a + a ´ b ] = 0
2
® ® ® ® ® ®
Þ b ´c +c ´a + a ´b = 0 …(ii)
® ® ®
This is the required condition for collinearity of three points a , b and c .
Let n$ be the unit vector normal to the plane of the D ABC.
® ®
AB ´ AC
\ n$ = ® ®
|AB ´ AC |
® ® ® ® ® ®
a ´b + b ´c + c ´a
=
® ® ® ® ® ®
|a ´ b + b ´ c + c ´ a |
®
Q. 17 Show that area of the parallelogram whose diagonals are given by a
® ®
®|a´b|
and b is . Also, find the area of the parallelogram, whose
2
^ ^ ^ ^
diagonals are 2 i - j + k and $i + 3 j - k .
K Thinking Process
® ®
If p and q are adjacent sides of a parallelogram, then the area formed by parallelogram
® ®
= | p ´ q | and then we shall obtained the desired result.
® ® ¾® ® ® ®
AB = p, AD = q Þ BC = q
By triangle law of addition, we get
® ® ® ®
AC = p + q = a [say] ...(i)
® ® ® ®
Similarly, BD = - p + q = b [say] ...(ii)
On adding Eqs. (i) and (ii), we get
® ® ® ® 1 ® ®
a + b = 2q Þ q = (a + b )
2
On subtracting Eq. (ii) from Eq. (i), we get
® ® ® ® 1 ® ®
a - b = 2p Þ p = (a - b )
2
® 1 ® ®
® ® ®
Now, p ´q =
(a - b ) ´ (a + b )
4
1 ® ® ® ® ® ® ® ®
= (a ´ a + a ´ b - b ´ a - b ´ b )
4
1 ® ® ® ®
= [a ´ b + a ´ b ]
4
1 ® ®
= (a ´ b )
2
® ® 1 ® ®
So, area of a parallelogram ABCD = |p ´ q| = |a ´ b|
2
Now, area of a parallelogram, whose diagonals are 2 $i - $j + k$ and $i + 3$j - k$ .
1
= |(2 $i - $j + k$ ) ´ ($i + 3$j - k$ )|
2
$i $j k$
1
= 2 -1 1
2
1 3 -1
1
= |[$i (1 - 3) - $j(-2 - 1) + k$ (6 + 1)]|
2
1
= |-2 $i + 3$j + 7k$|
2
1
= 4 + 9 + 49
2
1
= 62 sq units
2
® ®
Q. 18 $ then find a vector ®
If a = $i - $j + k$ and b = $j - k,
® ® ®
c such that a ´ c = b
® ®
and a × c =3.
K Thinking Process
We know that, for any two vectors
$i $j k$
® ®
a ´ b = a1 a2 a3
b1 b2 b3
® ® ® ®
and a × b = a 1b1 + a2 b2 + a3 b3, where a = a 1$i + a2 $j + a3k$ and b = b1$i + b2 $j + b3 k$ .
So, we shall use this concept.
®
Sol. Let c = x $i + y $j + zk$
® ®
Also, a = $i + $j + k$ and b = $j - k$
® ® ®
For a ´ c = b,
½ $i $j k$ ½
½ 1 1 1½ = $j - k$
½ ½
½x y z½
Þ $i ( z - y) - $j( z - x ) + k$ ( y - x ) = $j - k$
\ z- y=0 ...(i)
x - z=1 …(ii)
x - y=1 …(iii)
® ®
Also, a× c = 3
( i + j + k ) × (x i + y j + zk$ ) = 3
$ $ $ $ $
Þ x + y+ z=3 …(iv)
On adding Eqs. (ii) and (iii), we get
2x - y - z = 2 …(v)
On solving Eqs. (iv) and (v), we get
5
x=
3
5 2 2
\ y = - 1 = and z =
3 3 3
® 5 2 2
Now, c = $i + $j + k$
3 3 3
1 $
= (5 i + 2 j + 2k$ )
$
3
®
$i - 2 $j + 2 k$
\ Vector in the direction of a with magnitude 9 = 9 ×
3
= 3($i - 2 $j + 2 k$ )
Q. 20 The position vector of the point which divides the join of points
® ® ® ®
2 a - 3 b and a + b in the ratio 3 : 1, is
® ® ® ® ® ®
3a -2b 7a -8b 3a 5a
(a) (b) (c) (d)
2 4 4 4
® ® ® ®
Sol. (d) Let the position vector of the point R divides the join of points 2 a - 3 b and a + b.
® ® ® ®
3(a + b ) + 1 (2 a - 3 b )
\ Position vector R =
3+1
Since, the position vector of a point R dividing the line segment joining the points P and
® ®
® ® mq + n p
Q, whose position vectors are p and q in the ratio m : n internally, is given by .
m+ n
®
5a
\ R =
4
Q. 21 The vector having initial and terminal points as (2, 5, 0) and (-3, 7,
4), respectively is
(a) - $i + 12$j + 4k$ (b) 5$i + 2$j - 4k$
(c) -5$i + 2$j + 4k$ (d) $i + $j + k$
® ®
Q. 22 The angle between two vectors a and b with magnitudes 3 and 4,
® ®
respectively and a × b = 2 3 is
p p p 5p
(a) (b) (c) (d)
6 3 2 2
® ® ® ®
Sol. (b) Here, |a| = 3,|b| = 4 and a × b = 2 3 [given]
® ® ® ®
We know that, a × b =|a||b|cos q
Þ 2 3= 3 × 4 × cos q
2 3 1
Þ cos q = =
4 3 2
p
\ q=
3
®
Q. 23 Find the value of l such that the vectors a = 2$i + l$j + k$ and
®
b = $i + 2$j + 3k$ are orthogonal.
3 -5
(a) 0 (b) 1 (c) (d)
2 2
K Thinking Process
Two non-zero vectors are orthogonal, if their dot product is zero. So, by using this
concept, we shall get the value of l.
® ® ® ®
Sol. (d) Since, two non-zero vectors a and b are orthogonal i.e., a × b = 0.
\ (2 $i + l$j + k$ ) × ($i + 2 $j + 3k$ ) = 0
Þ 2 + 2l + 3 = 0
-5
\ l=
2
Q. 24 The value of l for which the vectors 3$i - 6$j + k$ and 2$i - 4 $j + lk$ are
parallel, is
2 3 5 2
(a) (b) (c) (d)
3 2 2 5
Sol. (a) Since, two vectors are parallel i.e., angle between them is zero.
\ (3$i - 6$j + k$ ) × (2 $i - 4$j + lk$ ) = |3$i - 6$j + k$| ×|2 $i - 4$j + lk$|
® ® ® ® ® ®
[Q a × b = |a||b|cos 0°Þ a × b =|a||b|]
Þ 6 + 24 + l = 9 + 36 + 1 4 + 16 + l2
Þ 30 + l = 46 20 + l2
Þ 900 + l2 + 60l = 46 (20 + l2 ) [on squaring both sides]
Þ l2 + 60l - 46l2 = 920 - 900
Þ - 45l2 + 60l - 20 = 0
2
Þ - 45l + 30l + 30l - 20 = 0
Þ - 15l(3l - 2 ) + 10 (3l - 2 ) = 0
Þ (10 - 15l)(3l - 2 ) = 0
2 2
\ l= ,
3 3
Alternate Method
® ®
Let a = 3$i - 6$j + k$ and b = 2 $i - 4$j + lk$
® ®
Since, a || b
3 -6 1 2
Þ = = Þl=
2 -4 l 3
®
Q. 25 The vectors from origin to the points A and B are a = 2$i - 3$j + 2k$ and
®
b = 2$i + 3$j + k$ respectively, then the area of DOAB is equal to
(a) 340 (b) 25
1
(c) 229 (d) 229
2
1 ® ®
Sol. (d) \ Area of DOAB = |OA ´ OB|
2
1
= |(2 $i - 3$j + 2 k$ ) ´ (2 $i + 3$j + k$ )|
2
½ $i $j k$ ½
1½
= 2 -3 2½
2½ ½
½2 3 1½
1
= | [$i (-3 - 6) - $j (2 - 4) + k$ (6 + 6)]|
2
1
= |- 9i + 2 $j + 12k$|
2
1 1
\ Area of DOAB = (81 + 4 + 144) = 229
2 2
® ® ® ®
Q. 26 For any vector a , the value of ( a ´ $i )2 + ( a ´ $j)2 + ( a ´ k$ )2 is
2 2
® ®
(a) a (b) 3 a
2 2
® ®
(c) 4 a (d) 2 a
®
Sol. (d) Let a = x $i + y$j + zk$
®2
\ a = x 2 + y2 + z2
½$i $j k$ ½
a ´ i = ½x y z½
®
\ $
½ ½
½1 0 0½
= $i [0] - $j[- z] + k$ [- y]
= z$j - yk$
®
\ (a ´ $i )2 = ( z$j - yk$ )( z$j - yk$ )
= y2 + z2
®
Similarly, (a ´ $j )2 = x 2 + z2
®
and (a ´ k$ )2 = x 2 + y2
® ® ®
\ (a ´ $i )2 + (a ´ $j )2 + (a ´ k$ )2 = y2 + z2 + x 2 + z2 + x 2 + y2
®2
= 2(x 2 + y2 + z2 ) = 2 a
® ® ® ® ® ®
Q. 27 If | a | = 10, | b | = 2 and a × b = 12 , then the value of | a ´ b | is
(a) 5 (b) 10 (c) 14 (d) 16
K Thinking Process
® ® ® ® ® ® ® ®
We know that, | a ´ b | = | a || b ||sin q| n$ and a × b = | a || b |cos q. So, we shall use these
® ®
formulae to get the value of | a ´ b | .
® ® ® ®
Sol. (d) Here, |a| = 10,|b| = 2 and a × b = 12 [given]
® ® ® ®
\ a × b =|a||b|cos q
12 = 10 ´ 2 cos q
12 3
Þ cos q = =
20 5
9
Þ sin q = 1 - cos 2 q = 1 -
25
4
sin q = ±
5
® ® ® ®
\ |a ´ b| = |a || b|| sin q|
4
= 10 ´ 2 ´
5
= 16
Q. 28 The vectors l$i + $j + 2 k$ , $i + l$j - k$ and 2$i - $j + l k$ are coplanar, if
(a) l = - 2 (b) l = 0
(c) l = 1 (d) l = -1
® ® ®
Sol. (a) Let a = l $i + $j + 2k$ , b = $i + l$j - k$ and c = 2 $i - $j + lk$
® ® ®
For a , b and c to be coplanar,
½l 1 2½
½ 1 l -1½ = 0
½ ½
½ 2 -1 l ½
Þ l(l2 - 1) - 1(l + 2 ) + 2(-1 - 2 l) = 0
Þ l3 - l - l - 2 - 2 - 4l = 0
Þ l3 - 6l - 4 = 0
Þ (l + 2 )(l2 - 2 l - 2 ) = 0
2± 12
Þ l = - 2 or l =
2
2±2 3
Þ l = - 2 or l = = 1± 3
2
® ® ® ® ® ® r
Q. 29 If a , b and c are unit vectors such that a + b + c = 0, then the value
® ® ® ® ® ®
of a × b + b× c + c × a is
(a) 1 (b) 3
3
(c) - (d) None of these
2
® ® ® ®2 ®2 ®2
Sol. (c) We have, a + b + c = 0 and a = 1, b = 1, c = 1
® ® ® ® ® ®
Q (a + b + c )(a + b + c ) = 0
®2 ®® ® ® ®® ®2 ® ® ®® ®® ®2
Þ a + a × b + a × c + b ×a + b + b × c + c × a + c × b + c = 0
®2 ®2 ®2 ® ® ® ® ® ®
Þ a + b + c + 2 (a × b + b× c + c × a ) = 0
® ® ® ® ® ® ® ® ® ® ® ®
[Q a × b = b× a , b× c = c × b and c × a = a × c ]
® ® ® ® ® ®
Þ 1 + 1 + 1 + 2(a × b + b× c + c × a ) = 0
® ® ® ® ® ® 3
Þ a × b + b× c + c × a = -
2
® ®
Q. 30 The projection vector of a on b is
æ ® ®ö ® ® ® ® æ ® ®ö
ç a× b ÷ ® a× b a× b ç a× b ÷ $
(a) ç ÷b (b) (c) (d) ç b
ç|® ÷ ® ®
ç| ® 2÷÷
è b| ø | b| | a| è a| ø
® æ ® ö
® ® ® b ® ç® b ÷ ®
Sol. (a) Projection vector of a on b is given by = a × b = ça× ÷÷ × b
® ç |®
|b| è b| ø
® ® ® ® ® ® ® ®
Q. 31 If a , b and c are three vectors such that a + b + c = 0 and | a | = 2,
® ® ® ® ® ® ® ®
| b | = 3 and | c | = 5, then the value of a × b + b× c + c × a is
(a) 0 (b) 1 (c) -19 (d) 38
® ® ®
® ® ® ® 2 2
Sol. (c) Here, a + b + c = 0 and a = 4, b = 9, c = 25
2
® ® ® ® ® ® ®
\ (a + b + c ) × (a + b + c ) = 0
® ®
® ® ® ® ® ® ®2 ® ® ® ® ® ® ®
Þ a 2 + a × b + a × c + b× a + b + b× c + c × a + c × b + c2 = 0
® ® ®
® ® ® ® ®® ® ® ® ®
Þ a 2 + b2 + c 2 + 2(a × b + b× c + c ×a ) = 0 [Q a × b = b× a ]
® ® ® ® ® ®
Þ 4 + 9 + 25 + 2(a × b + b× c + c × a ) = 0
® ® ® ® ® ® -38
Þ a × b + b× c + c × a = = - 19
2
® ®
Q. 32 If | a | = 4 and -3 £ l £ 2 , then the range of |l a | is
(a) [0, 8] (b) [-12, 8]
(c) [0, 12] (d) [8, 12]
®
Sol. (c) We have, | a | = 4 and -3 £ l £ 2
® ®
\ | la | = |l||a|= l|4|
®
Þ | la | = |-3 |4 = 12, at l = - 3
®
| la | = |0|4 = 0, at l = 0
®
and | la | = |2|4 = 8, at l = 2
®
So, the range of|la| is [0, 12].
Alternate Method
Since, -3 £ l £ 2
0 £|l| £ 3
Þ 0 £ 4| l| £ 12
®
|la|Î [0, 12 ]
® ® ® ® ® ® ®
Q. 35 If r × a = 0, r × b = 0 and r × c = 0 for some non-zero vector r , then the
® ® ®
value of a × ( b ´ c ) is…… .
® ® ® ®
Sol. Since, r is a non-zero vector. So, we can say that a , b and c are in a same plane.
® ® ®
\ a × (b ´ c ) = 0
® ® ®
[since, angle between a , b and c are zero i.e., q = 0]
® ®
Q. 36 The vectors a = 3$i - 2$j + 2k$ and b = - $i - 2k$ are the adjacent sides of
a parallelogram. The angle between its diagonals is…… .
® ®
Sol. We have, a = 3$i - 2 $j + 2k$ and b = - $i - 2 k$
® ® ® ®
\ a + b = 2 $i - 2 $j and a - b = 4$i - 2 $j + 4k$
® ® ® ®
Now, let q is the acute angle between the diagonals a + b and a - b.
® ® ® ®
(a + b ) × (a - b )
\ cos q =
® ® ® ®
|a + b||a - b|
(2 $i - 2 $j ) × (4$i - 2 $j + 4k$ ) 8 + 4 1
= = =
8 16 + 4 + 16 2 2 ×6 2
p é p 1 ù
\ q= êQ cos =
4 ë 4 2 úû
® ® ® 1® ®
Q. 37 The values of k, for which | k a | < a | and k a + a is parallel to a
2
holds true are …… .
® ® ® 1® ®
Sol. We have,|k a| <|a| and ka + a is parallel to a .
2
® ® ® ®
\ |ka| <|a| Þ |k||a| <|a|
Þ |k| < 1 Þ -1 < k < 1
® 1® ® -1 ® 1 ®
Also, since ka + a is parallel to a , then we see that at k = , ka + a becomes a null
2 2 2
®
vector and then it will not be parallel to a .
® 1® ® -1
So, ka + a is parallel to a holds true when k Î] - 1, 1 [ k ¹ .
2 2
® ® ® ®
Q. 38 The value of the expression | a ´ b |2 + ( a × b)2 is …… .
® ® ® ® ® ® ® ®
Sol. |a ´ b|2 + (a × b )2 = |a|2|b|2 sin2 q + (a × b )2
® 2 ® 2 ® ®
= |a| |b| (1 - cos 2 q) + (a × b )2
® ® ® ® ® ®
= |a|2|b|2 - |a|2|b|2 cos 2 q + (a × b )2
® ® ® ® ® ®
= |a|2|b|2 - (a × b )2 + (a × b )2
® ® ® ® ® ®
|a ´ b|2 + (a × b )2 = |a|2|b|2
® ® ® ® ® ®
Q. 39 If | a ´ b |2 + | a × b |2 = 144 and | a | = 4, then | b | is equal to ……
K Thinking Process
® ® ® ® ® ®
We know that, | a ´ b | 2 + | a × a | 2 = | a | 2 | b | 2. So, we shall use this concept here to find
®
the value of | b | .
® ® ® ® ® ®
Sol. Q |a ´ b|2 + |a × b|2 = 144 = |a|2 ×| b|2
® ®
Þ |a| 2|b| 2 = 144
® 144 144
Þ |b| 2 = = =9
® 16
|a| 2
®
\ |b| = 3
® ® ® ®
Q. 40 If a is any non-zero vector, then ( a × $i ) × $i + ( a × $j) × $j + ( a × k$ ) k$ is equal
to ……
®
Sol. Let a = a1 $i + a2 $j + a3 k$
® ® ®
\ a × $i = a1, a × $j = a2 and a × k$ = a3
® ® ® ®
\ (a × $i ) $i + (a × $j )$j + (a × k$ )k$ = a1 $i + a2 $j + a3 k$ = a
True/False
® ® ® ®
Q. 41 If | a | = | b |, then necessarily it implies a = ± b.
Sol. True
® ® ® ®
If |a| = |b| Þ a = ± b
So, it is a true statement.
®
Q. 42 Position vector of a point P is a vector whose initial point is origin.
Sol. True
® ¾® ®
Since, P = OP = displacement of vector P from origin
® ® ® ® ® ®
Q. 43 If | a + b | = | a - b |, then the vectors a and b are orthogonal
Sol. True
® ® ® ®
Since, |a + b| = |a - b|
® ® ® ®
Þ |a + b|2 = |a - b|2
® ® ® ®
Þ 2|a||b| = - 2|a||b|
® ®
Þ 4|a||b| = 0
® ®
Þ |a || b | = 0
® ® ® ® ® ®
Hence, a and b are orthogonal. [Q a × b = |a|×|b|cos 90° = 0]
2 2
® ®2 ® ® ® ®
Q. 44 The formula ( a + b) = a + b + 2 a ´ b is valid for ®
®
b ®
a+ b
® ®
non-zero vectors a and b. ®
a
Sol. False
® ®2 ® ® ® ® ®
(a + b) = (a + b) × (a + b)
®
–b
a–
®
b
®2 ®2 ® ®
= a + b + 2a× b
® ®
Q. 45 If a and b are adjacent sides of a rhombus, then
® ®
a × b = 0.
Sol. False
® ® ® ® ® ®
If a × b = 0, then a × b = |a||b|cos 90°
® ®
Hence, angle between a and b is 90°, which is not possible in a rhombus.
Since, angle between adjacent sides in a rhombus is not equal to 90°.
11
Three Dimensional
Geometry
Short Answer Type Questions
®
Q. 1 Find the position vector of a point A in space such that OA is inclined
®
at 60° to OX and at 45° to OY and|OA| = 10 units.
® ®
Sol. Since, OA is inclined at 60° to OX and at 45° to OY. Let OA makes angle a with OZ.
\ cos 2 60° + cos 2 45° + cos 2 a = 1
2 2
æ 1ö æ 1 ö
Þ ç ÷ + ç ÷ + cos 2 a = 1 [Q l2 + m2 + n2 = 1]
è2 ø è 2ø
1 1
Þ + + cos 2 a = 1
4 2
æ 1 1ö
Þ cos 2 a = 1 - ç + ÷
è2 4ø
æ 6ö
Þ cos 2 a = 1 - ç ÷
è 8ø
1
Þ cos 2 a =
4
1
Þ cos a = = cos 60°
2
\ a = 60°
® ® æ1 1 $ 1$ö
\ OA = |OA| ç $i + j + k÷
è2 2 2 ø
æ1 1 $ 1$ö ®
= 10 ç $i + j + k÷ [Q |OA| = 10]
è2 2 2 ø
= 5 $i + 5 2 $j + 5 k$
Q. 2 Find the vector equation of the line which is parallel to the vector
3i - 2$j + 6k$ and which passes through the point (1, - 2, 3).
$
K Thinking Process
® ® ® ®
Here, we use the formula r = b + l a , where r is the equation of the line which passes
® ®
through b and parallel to a .
® ®
Sol. Let a = 3$i - 2 $j + 6 k$ and b = $i - 2 $j + 3 k$
®
So, vector equation of the line, which is parallel to the vector a = 3$i - 2 $j + 6 k$ and passes
® ® ® ®
through the vector b = $i - 2 $j + 3 k$ is r = b + la .
®
\ r = ($i - 2 $j + 3 k$ ) + l(3$i - 2 $j + 6 k$ )
Þ (x i + y j + z k ) - ( i - 2 j + 3 k ) = l (3$i - 2 $j + 6 k$ )
$ $ $ $ $ $
Þ (x - 1)$i + ( y + 2 )$j + ( z - 3) k$ = l(3$i - 2 $j + 6 k)$
x -1 y -2 z -3 x - 4 y -1
Q. 3 Show that the lines = = and = = z intersect.
2 3 4 5 2
Also, find their point of intersection.
K Thinking Process
If shortest distance between the lines is zero, then they intersect.
Sol. We have, x1 = 1, y1 = 2, z1 = 3 and a1 = 2, b1 = 3, c1 = 4
Also, x 2 = 4, y2 = 1, z2 = 0 and a2 = 5, b2 = 2, c 2 = 1
If two lines intersect, then shortest distance between them should be zero.
\ Shortest distance between two given lines
x 2 - x1 y2 - y1 z2 - z1
a1 b1 c1
a2 b2 c2
=
(b1c 2 - b2c 1)2 + (c1a 2 - c 2 a1 )2 + (a1b 2 - a 2 b1 )2
4 - 1 1- 2 0 - 3
2 3 4
5 2 1
=
(3 × 1 - 2 × 4)2 + (4 × 5 - 1× 2 )2 + (2 × 2 - 5 × 3)2
3 -1 -3
2 3 4
5 2 1
=
25 + 324 + 121
3(3 - 8) + 1(2 - 20) - 3(4 - 15)
=
470
-15 - 18 + 33 0
= = =0
470 470
Therefore, the given two lines are intersecting.
For finding their point of intersection for first line,
x -1 y-2 z- 3
= = =l
2 3 4
Þ x = 2 l + 1, y = 3l + 2 and z = 4l + 3
Since, the lines are intersecting. So, let us put these values in the equation of another line.
2 l + 1 - 4 3l + 2 - 1 4l + 3
Thus, = =
5 2 1
2 l - 3 3l + 1 4l + 3
Þ = =
5 2 1
2 l - 3 4l + 3
Þ =
5 1
Þ 2 l - 3 = 20l + 15
Þ 18l = - 18 = - 1
So, the required point of intersection is
x = 2 (-1) + 1 = - 1
y = 3 (-1) + 2 = - 1
z = 4 (-1) + 3 = - 1
Thus, the lines intersect at (-1, - 1, - 1.)
Q. 10 Find the equation of the plane through the points (2, 1, 0), (3, - 2, - 2)
and (3, 1, 7).
K Thinking Process
Here, apply the equation of the plane passing through the points (x1, y1, z 1) , (x2 , y2 , z2)
x - x1 y - y1 z - z 1
and (x3 , y3 , z3) is given by x2 - x1 y2 - y1 z2 - z 1 = 0.
x3 - x1 y3 - y1 z3 - z 1
Sol. We know that, the equation of a plane passing through three non-collinear points (x1, y1, z1 ),
(x 2 , y2 , z2 ) and (x 3 , y3 , z3 ) is
x - x1 y - y1 z - z1
x 2 - x1 y2 - y1 z2 - z1 = 0
x 3 - x1 y3 - y1 z3 - z1
x-2 y-1 z-0
Þ 3 - 2 -2 - 1 -2 - 0 = 0
3- 2 1 - 1 7 - 0
x-2 y-1 z
Þ 1 -3 -2 = 0
1 0 7
Þ (x - 2 )(-21 + 0) - ( y - 1)(7 + 2 ) + z(3) = 0
Þ - 21x + 42 - 9 y + 9 + 3 z = 0
Þ - 21x - 9 y + 3 z = - 51
\ 7 x + 3 y - z = 17
So, the required equation of plane is 7 x + 3 y - z = 17.
Q. 11 Find the equations of the two lines through the origin which intersect
x -3 y -3 z p
the line = = at angles of each.
2 1 1 3
x -3 y-3 z
Sol. Given equation of the line is = = =l …(i)
2 1 1
Y¢ Q
(0, 0, 0)
O
X¢ X
Y (2l + 3, l + 3, l)
2 1 1
So, DR’s of the line are 2, 1, 1 and DC’s of the given line are , , .
6 6 16
p
Also, the required lines make angle with the given line.
3
From Eq. (i), x = (2 l + 3), y = (l + 3) and z = l
a1a2 + b1b 2 + c1c 2
Q cos q =
a1 + b12 + c12 a22 + b22 + c 22
2
p (4l + 6) + (l + 3) + (l)
\ cos =
3 6 (2 l + 3)2 + (l + 3)2 + l2
1 6l + 9
Þ =
2 6 (4l2 + 9 + 12 l + l2 + 9 + 6l + l2 )
6 6l + 9
Þ =
2 2
6l + 18l + 18
2
Þ 6 (l + 3l + 3) = 2 (6l + 9)
Þ 36 (l2 + 3l + 3) = 36(4l2 + 9 + 12 l)
Þ l2 + 3l + 3 = 4l2 + 9 + 12 l
Þ 3l2 + 9l + 6 = 0
Þ l2 + 3l + 2 = 0
Þ l(l + 2 ) + 1(l + 2 ) = 0
Þ (l + 1)(l + 2 ) = 0
\ l = - 1, -2
So, the DC’s are 1, 2, - 1 and -1, 1, - 2.
Also, both the required lines passes through origin.
x y z x y z
So, the equations of required lines are = = and = = .
1 2 -1 -1 1 -2
Q. 12 Find the angle between the lines whose direction cosines are given by
the equation l + m + n = 0 and l 2 + m2 - n2 = 0.
Sol. Eliminating n from both the equations, we have
l2 + m2 - (l - m)2 = 0
Þ l + m2 - l2 - m2 + 2 ml = 0
2
Þ 2 lm = 0
Þ lm = 0 Þ (- m - n) m = 0 [Q l = - m - n]
Þ (m + n) m = 0
Þ m= -n Þ m= 0
Þ l = 0, l = - n
Thus, Dr’s two lines are proportional to 0, -n, n and -n, 0, n i.e., 0, - 1, 1 and -1, 0, 1.
® ®
So, the vector parallel to these given lines are a = - $j + k$ and b = - $i + k$
®®
ab 1 1 1
Now, cos q = ® ®
= × Þ cos q =
|a||b| 2 2 2
p é p 1ù
\ q= êëQ cos 3 = 2 úû
3
Q. 15 Two systems of rectangular axis have the same origin. If a plane cuts
them at distances a, b, c and a¢ , b¢ , c ¢ , respectively from the origin,
1 1 1 1 1 1
then prove that 2 + 2 + 2 = 2 + 2 + 2 .
a b c a¢ b¢ c¢
Sol. Consider OX, OY , OZ and ox, oy, oz are two system of rectangular axes.
Let their corresponding equation of plane be
x y z
+ + =1 ...(i)
a b c
x y z
and + + =1 ...(ii)
a¢ b ¢ c ¢
Also, the length of perpendicular from origin to Eqs. (i) and (ii) must be same.
0 0 0 0 0 0
+ + -1 + + -1
\ a b c = a ¢ b ¢ c ¢
1 1 1 1 1 1
2
+ 2 + 2 2
+ 2 + 2
a b c a¢ b¢ c¢
1 1 1 1 1 1
Þ + + = + 2 + 2
a¢2 b ¢2 c ¢2 a2 b c
1 1 1 1 1 1
Þ + 2 + 2 = 2 + 2 + 2
a2 b c a¢ b¢ c¢
L
4–x= y =1–z
2 6 3
Q. 18 Find the length and the foot of perpendicular from the point æç 1, 3 , 2 ö÷
è 2 ø
to the plane 2x - 2 y + 4 z + 5 = 0.
Sol. Equation of the given plane is 2 x - 2 y + 4 z + 5 = 0 … (i)
®
Þ n = 2 $i - 2 $j + 4 k$
æ 3 ö ®
So, the equation of line through ç 1, , 2 ÷ and parallel to n is given by
è 2 ø
x -1 y - 3/2 z - 2
= = =l
2 -2 4
3
Þ x = 2 l + 1, y = - 2 l + and z = 4l + 2
2
If this point lies on the given plane, then
æ 3 ö
2 (2 l + 1) - 2 ç -2 l + ÷ + 4 (4l + 2 ) + 5 = 0 [using Eq. (i)]
è 2 ø
Þ 4l + 2 + 4l - 3 + 16l + 8 + 5 = 0
-1
Þ 24l = -12 Þ l =
2
\ Required foot of perpendicular
é æ -1 ö æ -1 ö 3 æ -1 ö ù æ 5 ö
= ê2 ´ ç ÷ + 1, - 2 ´ ç ÷ + , 4 ´ ç ÷ + 2 ú i.e., ç 0, , 0 ÷
ë è2 ø è2 ø 2 è2 ø û è 2 ø
2
æ 3 5ö
\ Required length of perpendicular = (1 - 0)2 + ç - ÷ + (2 - 0)2
è2 2 ø
= 1+ 1+ 4 = 6 units
Q. 19 Find the equation of the line passing through the point (3, 0, 1) and
parallel to the planes x + 2 y = 0 and 3 y - z = 0.
Sol. Equation of the two planes are x + 2 y = 0 and 3 y - z = 0.
® ®
Let n1 and n 2 are the normals to the two planes, respectively.
® ®
\ n1 = $i + 2 $j and n 2 = 3$j - k$
Since, required line is parallel to the given two planes.
$i $j k$
® ® ®
Therefore, b = n1 ´ n 2 = 1 2 0
0 3 -1
= $i (-2 ) - $j (-1) + k$ (3)
= - 2 $i + $j + 3 k$
So, the equation of the lines through the point (3, 0, 1) and parallel to the given two planes are
(x - 3) $i + ( y - 0)$j + ( z - 1) k$ + l (-2 $i + $j + 3 k$ )
Þ (x - 3) $i + y $j + ( z - 1) k$ + l (-2 $i + $j + 3 k$ )
Q. 20 Find the equation of the plane through the points (2, 1, – 1), (–1, 3, 4)
and perpendicular to the plane x– 2 y + 4 z = 10.
Sol. The equation of the plane passing through (2, 1, – 1) is
a (x – 2 ) + b ( y – 1) + c ( z + 1) = 0 ...(i)
Sicne, this passes through (–1, 3, 4).
\ a (–1 – 2 ) + b (3 – 1) + c (4 + 1) = 0
Þ – 3 a + 2 b + 5c = 0 ... (ii)
Since, the plane (i) is perpendicular to the plane x – 2 y + 4 z = 10.
\ 1× a – 2 × b + 4 × c = 0
Þ a – 2 b + 4c = 0 ...(iii)
On solving Eqs. (ii) and (iii), we get
a –b c
= = =l
8 + 10 –17 4
Þ a = 18 l, b = 17 l, c = 4l
From Eq. (i),
18 l (x - 2 ) + 17 l ( y – 1) + 4l ( z + 1) = 0
Þ 18x – 36 + 17 y – 17 + 4 z + 4 = 0
Þ 18x + 17 y + 4 z – 49 = 0
\ 18x + 17 y + 4 z = 49
0.
Since, the angle between the planes (i) and (ii) is a,
a× a + b× b + k × 0
\ cos a =
a + b 2 + k 2 a2 + b 2
2
a2 + b 2
=
a + b2 + k 2
2
(a2 + b 2 ) sin2 a
Þ k2 =
cos 2 a
k=± a2 + b 2 tan a
On putting this value in plane (iii), we get the equation of the plane as
ax + by + z a2 + b 2 tan a = 0
Q. 24 Find the equation of the plane through the intersection of the planes
® ®
r × ($i + 3$j) – 6 = 0 and r × (3$i – $j – 4 k$ ) = 0, whose perpendicular
distance from origin is unity.
® ®
Sol. We have, n1 = ($i + 3$j ), d1 = 6 and n 2 = (3$i – $j – 4 k$ ), d 2 = 0
® ® ®
Using the relation, r × (n1 + ln 2 ) = d1 + d 2 l
®
Þ r × [($i + 3$j ) + l (3$i – $j – 4k$ )] = 6 + 0 × l
®
Þ r ×[(1 + 3l)$i + (3 – l)$j + k$ (– 4l)] = 6 ...(i)
Q. 25 Show that the points ($i – $j + 3 k$ ) and 3 ($i + $j + k$ ) are equidistant from
®
the plane r × (5$i + 2$j – 7k$ ) + 9 = 0 and lies on opposite side of it.
Sol. To show that these given points ($i – $j + 3 k$ ) and 3($i + $j + k$ ) are equidistant from the plane
®
r × (5$i + 2 $j – 7k$ ) + 9 = 0, we first find out the mid- point of the points which is 2 $i + $j + 3 k$ .
®
On substituting r by the mid-point in plane, we get
LHS = (2 $i + $j + 3 k$ ) × (5$i + 2 $j - 7k$ ) + 9
= 10 + 2 – 21 + 9 = 0
= RHS
Hence, the two points lie on opposite sides of the plane are equidistant from the plane.
® ®
Q. 26 AB = 3 $i - $j + k$ and CD = - 3$i + 2$j + 4 k$ are two vectors. The position
vectors of the points A and C are 6$i + 7$j + 4 k$ and - 9$i + 2k, $
respectively. Find the position vector of a point P on the line AB and a
® ® ®
point Q on the line CD such that PQ is perpendicular to AB and CD
both.
® ®
Sol. We have, AB = 3 $i - $j + k$ and CD = - 3 $i + 2 $j + 4 k$
®
Also, the position vectors of A and C are 6$i + 7 $j + 4k$ and - 9$j + 2k$ , respectively. Since, PQ
® ®
is perpendicular to both AB and CD.
So, P and Q will be foot of perpendicular to both the lines through A and C.
®
Now, equation of the line through A and parallel to the vector AB is,
®
r = (6$i + 7 $j + 4 k$ ) + l (3$i - $j + k$ )
®
and the line through C and parallel to the vector CD is given by
®
r = – 9$j + 2 k$ + m (– 3 $i + 2 $j + 4 k$ ) .. .(i)
®
Let r = (6$i + 7 $j + 4 k$ ) + l (3$i - $j + k$ )
®
and r = – 9$j + 2 k$ + m (– 3$i + 2 $j + 4 k$ ) ...(ii)
Let P (6 + 3l, 7 - l, 4 + l) is any point on the first line and Q be any point on second line is
given by (– 3 m , - 9 + 2m , 2 + 4m ).
®
\ PQ = (– 3m – 6 – 3 l) $i + (-9 + 2 m - 7 + l)$j + (2 + 4 m - 4 - l) k$
= (– 3m – 6 – 3l) $i + (2 m + l – 16)$j + (4 m - l – 2 ) k$
®
If PQ is perpendicular to the first line, then
3 (– 3m – 6 – 3l) – (2 m + l - 16) + (4 m – l - 2 ) = 0
Þ – 9 m – 18 – 9 l - 2m - l + 16 + 4m - l - 2 = 0
Þ - 7 m - 11l - 4 = 0 ...(iii)
®
If PQ is perpendicular to the second line, then
– 3 (– 3 m – 6 – 3l) + 2 (2m + l - 16) + 4 (4m – l - 2 ) = 0
Þ 9m + 18 + 9l + 4m + 2 l – 32 +16 m - 4l – 8 = 0
Þ 29 m + 7 l - 22 = 0 ...(iv)
On solving Eqs. (iii) and (iv), we get
- 49 m - 77 l - 28 = 0
Þ 319 m + 77 l - 242 = 0
Þ 270 m – 270 = 0
Þ m =1
Using m in Eq. (iii), we get
– 7 (1) – 11l – 4 = 0
Þ – 7 – 11l – 4 = 0
Þ – 11 – 11l = 0
Þ l= –1
®
\ PQ = [– 3 (1) – 6 – 3 (– 1)] $i + [2 (1) + (- 1) - 16] $j + [4(1) - (- 1) - 2 ] k$
= – 6$i - 15$j + 3 k$
Q. 27 Show that the straight lines whose direction cosines are given by
2l + 2m - n = 0 and mn + nl + lm = 0 are at right angles.
Sol. We have, 2l + 2m - n = 0 ...(i)
and mn + nl + lm = 0 ...(ii)
Eliminating m from the both equations, we get
n - 2l
m= [from Eq. (i)]
2
æ n - 2l ö æ n - 2l ö
Þ ç ÷ n + nl + l ç ÷=0
è 2 ø è 2 ø
2 2
n - 2 nl + 2 nl + nl - 2 l
Þ =0
2
2 2
Þ n + nl - 2 l = 0
Þ n2 + 2 nl - nl - 2 l2 = 0
Þ ( n + 2 l) ( n - l) = 0
Þ n = - 2l and n = l
-2 l - 2 l l - 2l
\ m= ,m =
2 2
-l
Þ m = - 2 l, m =
2
-l
Thus, the direction ratios of two lines are proportional to l, - 2 l, - 2 and l, , l.
2
-1
Þ 1, - 2, - 2 and 1, ,1
2
Þ 1, - 2, - 2 and 2, - 1, 2
® ®
Also, the vectors parallel to these lines are a = $i - 2 $j - 2 k$ and b = 2 $i - $j + 2 k$ ,
respectively.
® ®
a. b ($i - 2 $j - 2 k$ ) × (2 $i - $j + 2 k$ )
\ cos q = ® ® =
|a ||b| 3× 3
2 +2-4
= =0
9
p é p ù
\ q= êëQ cos 2 = 0úû
2
® 2
plane r æç $i + $j - k$ ö÷ = 1 from the origin is
3 6
Q. 31 The distance of the
è 7 7 7 ø
(a) 1 (b) 7
1
(c) (d) None of these
7
® æ2 3 6 ö
Sol. (a) The distance of the plane r ç $i + $j - k$ ÷ = 1 from the origin is 1.
è7 7 7 ø
® ®
[since, r × n = d is the form of above equation, where d represents the distance of
plane from the origin i.e., d = 1]
x -2 y -3 z -4
Q. 32 The sine of the angle between the straight line = =
3 4 5
and the plane 2x - 2 y + z = 5 is
10 4 2 3 2
(a) (b) (c) (d)
6 5 5 2 5 10
Sol. (d) We have, the equation of line as
x -2 y- 3 z- 4
= =
3 4 5
Now, the line passes through point (2, 3, 4) and having direction ratios (3, 4, 5).
Since, the line passes through point (2, 3, 4) and parallel to the vector (3$i + 4$j + 5 k$ ).
®
\ b = 3$i + 4$j + 5 k$
Also, the cartesian form of the given plane is 2 x - 2 y + z = 5.
Þ (x $i + y$j + zk$ ) (2 $i - 2 $j + k$ ) = 5
®
\ n = (2 $i - 2 $j + k$ )
® ®
|b . n| (3$i + 4$j + 5 k$ ) . (2 $i - 2 $j + k$ )
We know that, sin q = ® ®
=
|b| .|n| 32 + 42 + 52 × 4+ 4+1
|6 - 8 + 5| 3 1
= = =
50 × 3 15 2 5 2
2
sin q =
10
= $i (- 1 + 4) - $j (2 + 4) + k$ (4 + 2 )
= 3$i - 6$j + 6 k$
= 9 + 36 + 36 = 9 sq units
Q. 35 The locus represented by xy + yz = 0 is
(a) a pair of perpendicular lines
(b) a pair of parallel lines
(c) a pair of parallel planes
(d) a pair of perpendicular planes
Sol. (d) We have, xy + yz = 0
Þ xy = - yz
So, a pair of perpendicular planes.
Fillers
Q. 37 If a plane passes through the points (2, 0,0) (0, 3, 0) and (0, 0, 4) the
equation of plane is ......... .
Sol. We know that, equation of a the plane that cut the coordinate axes at (a, 0, 0) (0, b, 0) and
x y z
(0, 0, c) is + + = 1.
a b c
Hence, the equation of plane passes through the points (2, 0, 0), (0, 3, 0) and (0, 0, 4) is
x y z
+ + = 1.
2 3 4
Q. 40 The vector equation of the line through the points (3, 4, - 7) and (1, -1,
6) is ......... .
Sol. We know that, vector equation of a line passes through two points is represented by
® ® ® ®
r = a + l (b - a )
® ®
Here, r = x $i + y$j + 3k$ , a = 3$i + 4$j - 7k$
®
and b = $i - $j + 6k$
® ®
Þ ( b - a ) = - 2 $i - 5$j + 13k$
So, the required equation is
x $i + y$j + zk$ = 3$i + 4$j - 7k$ + l (-2 $i - 5$j + 13 k$ )
Þ (x - 3) $i + ( y - 4) $j + ( z + 7 ) k$ = l (-2 $i - 5$j + 13 k$ )
®
Q. 41 The cartesian equation of the plane r × ($i + $j - k$ ) = 2 is ......... .
®
Sol. We have, r × ($i + $j - k$ ) = 2
Þ (x $i + y$j + z k$ ) ×($i + $j - k$ ) = 2
Þ x + y- z=2
which is the required form
True/False
Q. 42 The unit vector normal to the plane x + 2 y + 3z - 6 = 0 is
1 $ 2 $ 3 $
i+ j+ k.
14 14 14
Sol. True
®
We have, n = $i + 2 $j + 3 k$
$i + 2 $j + 3 k$ $i 2 $j 3 k$
\ n$ = = + +
2
1 +2 + 32 2 14 14 14
Q. 43 The intercepts made by the plane 2x - 3 y + 5z + 4 = 0 on the
4 4
coordinate axis are - 2, and - .
3 5
Sol. True
We have, 2x - 3y + 5z + 4 = 0
Þ 2x - 3y + 5z = - 4
2x 3y 5z
Þ - + =1
-4 -4 -4
x y z
Þ + - =1
-2 4 4
3 5
x y z
Þ + + =1
-2 4 æ 4ö
ç- ÷
3 è 5ø
4 4
So, the intercepts are -2, and - .
3 5
®
Q. 44 The angle between the line r = (5$i - $j - 4 k$ ) + l (2$i - $j + k$ ) and the
®
æ 5 ö
plane r (3$i - 4 $j - k$ ) + 5 = 0 is sin -1 ç ÷.
è 2 91 ø
Sol. False
® ®
We have, b = 2 $i - $j + k$ and n = 3$i - 4$j - k$
Let q is the angle between line and plane.
® ®
|b × n| |(2 $i - $j + k$ ) × (3$i - 4$j - k$ )|
Then, sin q = ® ®
=
| b| ×|n| 6 × 26
|6 + 4 - 1| 9
= =
156 2 39
9
\ q = sin-1
2 39
® ®
Q. 45 The angle between the planes r (2$i - 3$j + k$ ) = 1 and r ($i - $j) = 4 is
æ -5 ö
cos -1 ç ÷.
è 58 ø
Sol. False
® ®
|n1 × n 2|
We know that, the angle between two planes is given by cos q = ® ®
|n1||n 2|
® ®
Here, n1 = (2 $i - 3$j + k$ ) and n 2 = ($i - $j )
|(2 $i - 3$j + k$ ) ($i - $j )|
\ cos q =
4 + 9 + 1 1+ 1
|2 + 3| 5
Þ cos q = =
14 × 2 2 7
æ 5 ö
\ q = cos -1 ç ÷
è2 7 ø
®
Q. 46 The line r = 2$i - 3$j - k$ + l ($i - $j + 2 k$ ) lies in the plane
®
r (3$i + $j - k$ ) + 2 = 0.
Sol. False
®
We have, r = 2 $i - 3$j - k$ + l ($i - $j + 2 k$ )
Þ (x $i + y$j + zk$ ) = $i (2 + l) + $j ( - 3 - l) + k$ (- 1 + 2 l)
Since, x = (2 + l), y = (- 3 - l) and z = (- 1 + 2l) are coordinates of general point which
should satisfy the equation of the given plane.
\ [(2 + l) $i + (- 3 - l) $j + (2 l - 1) k$ ] × [$i + $j - k$ ] = 2
Þ (2 + l) - 3 - l - 2 l + 1 = 2
Þ - 2l = 2
Þ l= -1
®
\ r = (2 - 1) $i + (- 3 + 1) $j + (- 2 - 1) k$
= $i - 2 $j - 3 k$
Again, from the equation of the plane
®
r × (3$i + $j - k$ ) + 2 = 0
Þ ($i - 2 $j - 3 k$ ) (3$i + $j - k$ ) + 2 = 0
Þ (3 - 2 + 3) + 2 = 0
Þ 6¹0
which is not true.
®
So, the line r = 2 $i - 3$j - k$ + l ($i - $j + 2 k$ ) does not lie in a plane.
x -5 y +4 z -6
Q. 47 The vector equation of the line = = is
3 7 2
®
r = 5$i - 4 $j + 6 k$ + l (3$i + 7$j + 2 k$ )
Sol. True
We have, x = 5, y = - 4, z = 6
and a = 3, b = 7, c = 2
®
\ r = (5$i - 4$j + 6 k$ ) + l (3$i + 7 $j + 2 k$ )
(0, 6) C
B (2, 2)
(3, 0)
O
X¢ X
(0, 0) A (2, 0)
x=2
Y¢
2x + y = 6
Corner points Corresponding value of Z
(0, 0) 0
(2, 0) 22
(2, 2) 36
(0, 6) 42 ¬ Maximum
Hence, the maximum value of Z is 42 at (0, 6).
(0, 1) B
O A
X¢ X
(0, 0) (1, 0)
(x
+
y=
1)
Y¢
C B
(0, 2) (3, 2) y = 2
A
X¢ X
O (0, 0) (3, 0)
x=3
Y¢
The shaded region as shown in the figure as OABC is bounded and the coordinates of
corner points are (0, 0), (3, 0), (3, 2) and (0, 2), respectively.
Corner points Corresponding value of Z
(0, 0) 0
(3, 0) 33
(3, 2) 47 ¬ Maximum
(0, 2) 14
(0, 7)
B
(3, 4)
C
(0, 2)
A
X¢ X
(–3, 0) (0, 0) (0, 7)
2x – 3y+6=0 x+y=7
Y¢
Shaded region shown as OABC is bounded and coordinates of its corner points are (0, 0),
(7, 0), (3, 4) and (0, 2), respectively.
x+
2 y=
D 76
E
X
O A C
2x + y=104
Sol. As clear from the graph, corner points are O, A, E and D with coordinates (0, 0), (52, 0),
(144, 16) and (0, 38), respectively. Also, given region is bounded.
Here, Z = 3x + 4 y
Q 2 x + y = 104 and 2 x + 4 y = 152
Þ -3 y = - 48
Þ y = 16and x = 44
B (3, 4)
C (0, 2)
O (0, 0) A (7, 0)
Sol. The shaded region is bounded and has coordinates of corner points as (0, 0), (7, 0), (3, 4)
and (0, 2). Also, Z = 5x + 7 y.
Corner points Corresponding value of Z
(0, 0) 0
(7, 0) 35
(3, 4) 43 ¬ Maximum
(0, 2) 14
Hence, the maximum value of Z is 43 at (3, 4).
Q. 7 The feasible region for a LPP is shown in following figure. Find the
minimum value of Z = 11x + 7 y.
Y
(0, 5)
(2, 3)
(3, 2)
x+ X
O
x+
3y =
y=
9
Sol. 5
From the figure, it is clear that feasible region is bounded with coordinates of corner points
as (0, 3), (3, 2) and (0, 5). Here, Z = 11x + 7 y.
Q x + 3 y = 9 and x + y = 5
Þ 2y = 4
\ y = 2 and x = ,3
So, intersection points of x + y = 5 and x + 3 y = 9 is (3, 2).
Q. 9 The feasible region for a LPP is shown in the following figure. Evaluate
Z = 4x + y at each of the corner points of this region. Find the
minimum value of Z, if it exists.
Y
x+2y=4
X
O
x+
y=
3
Sol. From the shaded region, it is clear that feasible region is unbounded with the corner points
A (4, 0), B (2, 1) and C (0, 3).
Also, we have Z = 4 x + y.
[since, x + 2 y = 4 and x + y = 3Þ y = 1and x = 2]
Y
, 3)
C (0
B (2, 1)
X¢ X
O 3 ,0 A (4,
4 0)
x+ x+2
y= y=4
3
y¢
4 x+
y=3
Now, we see that 3 is the smallest value of Z at the corner point (0, 3). Note that here we
see that, the region is unbounded, therefore 3 may or may not be the minimum value of Z.
To decide this issue, we graph the inequality 4x + y < 3 and check whether the resulting
open half plan has no point in common with feasible region otherwise, Z has no minimum
value.
From the shown graph above, it is clear that there is no point in common with feasible
region and hence Z has minimum value 3 at (0, 3).
3 , 15
Q
2 4
3 , 24
P 3
13 13 7, 4
R 2
18, 2
S
7 7
Sol. From the shaded bounded region, it is clear that the coordinates of corner points are
æ 3 24 ö æ 18 2 ö æ 7 3 ö æ 3 15 ö
ç , ÷, ç , ÷, ç , ÷ and ç , ÷.
è 13 13 ø è 7 7 ø è 2 4 ø è2 4 ø
Also, we have to determine maximum and minimum value of Z = x + 2 y.
(0, 20)
(0, 6)
D
C (6, 3)
(0, 5)
28, 4
B
3 3
(15, 0)
O (0, 0) A (10, 0) x+3y=15
(12, 0)
x+2y=12
2x+y=20
Corner points Corresponding value of Z = 50 x + 60y
(0, 0) 0
(10, 0) 500
æ 28 4 ö 1400 240 1640
+ = = 546.66 ¬ Maximum
ç , ÷
è 3 3ø 3 3 3
(6 , 3 ) 480
(0 , 5 ) 300
Since, the manufacturer is required to produce two types of circuits A and B and it is clear
that parts of resistor, transistor and capacitor cannot be in fraction, so the required
maximum profit is 480 where circuits of type A is 6 and circuits of type B is 3.
(0, 15)
x)
=
5)
(y
,
(5
30, 30
7 7 5x 2x
+ +
2y y=
= 15
30
(0, 1800)
(0, 450)
(1080, 180)
x+4y=1800
O (0, 0) (1200, 0) (1800, 0)
3x+2y=3600
Q. 19 Refer to question 14. How many sweaters of each type should the company
make in a day to get a maximum profit? What is the maximum profit?
Sol. Referring to solution 14, we have maximise Z =200x + 120 y
subject to x + y £ 300, 3x + y £ 600, x - y ³ - 100, x ³ 0, y ³ 0.
On solving x + y = 300 and 3x + y = 600, we get
x = 150, y = 150
On solving x - y = - 100 and x + y = 300, we get
x = 100, y = 200
(0, 600)
(0, 300)
(100, 200)
(150, 150)
(0, 100)
(–100, 0)
(0, 0) (200, 0) (300, 0)
x – y=–100 x+y=300
3x+y=600
From the shaded feasible region it is clear that coordinates of corner points are (0, 0),
(200, 0), (150, 150), (100, 200) and (0, 100).
Q. 20 Refer to question 15. Determine the maximum distance that the man
can travel.
Sol. Referring to solution 15, we have
(0, 80)
(0, 40)
300, 80
7 7
(60, 0)
(0, 0) (50, 0)
2x+3y=120
8x+5y=400
Maximise Z = x + y, subject to
2 x + 3 y £ 120, 8x + 5 y £ 400, x ³ 0,y ³ 0
On solving, we get
8x + 5 y = 400 and 2 x + 3 y = 120, we get
300 80
x= , y=
7 7
From the shaded feasible region, it is clear that coordinates of corner points are (0, 0),
æ 300 80 ö
(50, 0), ç , ÷ and (0, 40).
è 7 7 ø
(0, 9)
(0, 4)
28 , 15
(0, 2) 11 11
(8, 0)
(0, 0) (3, 0) (6, 0) x+4y=8
2x+3y=12
3x+y=9
Maximise Z = x + y subject to,
x + 4 y £ 8, 2 x + 3 y £ 12, 3x + y £ 9, x ³ 0, y ³ 0.
On solving x + 4 y = 8 and 3x + y = 9, we get
28 15
x = , y= .
11 11
From the feasible region, it is clear that coordinates of corner points are (0, 0), (3, 0),
æ 28 15 ö
ç , ÷ and (0, 2).
è 11 11 ø
(0, 80)
(0, 45)
(25, 30)
(75, 0)
(40, 0)
2x+y=80 3x+5y=225
(0, 7)
(1, 6)
C
(0, 4)
(0, 200) D
(0, 160)
(0, 124)
(32, 120)
C
(0, 120)
(80, 60)
B
A
O (80, 0) (128, 0)(155, 0) 160
,0
3x+4y=480
5x+2y=400 5x+4y=640 4x+5y=620
Corner points Value of Z = 12000 x + 15000y
(160, 0) 160 ´ 12000 = 1920000
(80, 60) (80 ´ 12 + 60 ´ 15 ) ´ 1000 = 1860000 ¬ Minimum
(32, 120) (32 ´ 12 + 120 ´ 15 ) ´ 1000 = 2184000
(0, 200) 0 + 200 ´ 15000 = 3000000
From the above table, it is clear that for given unbounded region the minimum value of Z
may or may not be 1860000.
Now, for deciding this, we graph the inequality
12000x + 15000 y < 1860000
Þ 4x + 5 y < 620
and check whether the resulting open half plane has points in common with feasible region
or not.
Thus, as shown in the figure, it has no common points so, Z = 12000x + 15000 y
has minimum value 1860000.
So, number of days factory I should be operated is 80 and number of days factory II should
be operated is 60 for the minimum cost and satisfying the given constraints.
(0, 4) (12, 6)
=4
(0, 0) (6, 0)
– 3x+y
x–2y=0
– 3x+4y=16
3x – 4y=12 (0, – 6)
x – y=6
From the shown graph, for the feasible region, we see that it is unbounded and coordinates
of corner points are (0, 0), (12, 6) and (0, 4).
(0, 8) (6, 8)
(6, 5)
(0, 0)
X
(5, 0)
(a) (0, 0) (b) (0, 8) (c) (5, 0) (d) (4, 10)
Sol. (b)
Corner points Corresponding value of Z = 3 x - 4 y
(0, 0) 0
(5, 0) 15¬ Maximum
(6, 5) -2
(6, 8) -14
(4, 10) -28
(0, 8) -32¬ Minimum
Hence, the minimum of Z occurs at (0, 8) and its minimum value is (-32).
Q. 30 The feasible region for an LPP is shown in the following figure. Let
F = 3x -4 y be the objective function. Maximum value of F is
(12, 6)
(0, 4)
(12, 0)
(a) 0 (b) 8 (c) 12 (d) -18
Sol. (c) The feasible region as shown in the figure, has objective function F = 3x - 4 y.
Q. 37 In the feasible region for a LPP is ..., then the optimal value of the
objective function Z = ax + by may or may not exist.
Sol. If the feasible region for a LPP is unbounded, then the optimal value of the objective
function Z = ax + by may or may not exist.
Q. 3 The probability that atleast one of the two events A and B occurs is 0.6.
If A and B occur simultaneously with probability 0.3, evaluate
P ( A) + P (B).
Sol. We know that, A È B denotes the occurrence of atleast one of A and B and A Ç B denotes
the occurrence of both A and B, simultaneously.
Thus, P ( A È B) = 0.6 and P ( A Ç B) = 0. 3
Also, P ( A È B) = P ( A) + P (B) - P ( A Ç B)
Þ 0. 6 = P ( A) + P (B) - 0. 3
Þ P ( A) + P (B) = 0. 9
Þ [1 - P ( A)] + [1 - P (B)] = 0. 9 [Q P ( A) = 1 - P ( A) and P (B) = 1 - P (B) ]
Þ P ( A) + P (B) = 2 - 0. 9 = 11
.
Q. 4 A bag contains 5 red marbles and 3 black marbles. Three marbles are
drawn one by one without replacement. What is the probability that
atleast one of the three marbles drawn be black, if the first marble is
red?
Sol. Let R = {5 red marbles} and B = {3 black marbles}
For atleast one of the three marbles drawn be black, if the first marble is red, then the
following three conditions will be followed
(i) Second ball is black and third is red (E1 ).
(ii) Second ball is black and third is also black (E 2 ).
(iii) Second ball is red and third is black (E3 ).
5 3 4 60 5
\ P (E1 ) = P (R1 ) × P (B1 / R1 ) × P (R 2 / R1B1 ) = × × = =
8 7 6 336 28
5 3 2 30 5
P (E2 ) = P (R1 ) × P (B1 / R 1 ) × P (B 2 / R1B1 ) = × × = =
8 7 6 336 56
5 4 3 60 5
and P (E3 ) = P (R1 ) × P (R 2 / R1 ) × P (B1 / R1R 2 ) = × × = =
8 7 6 336 28
5 5 5
\ P (E ) = P (E1 ) + P (E2 ) + P (E3 ) = + +
28 56 28
10 + 5 + 10 25
= =
56 56
Q. 5 Two dice are thrown together and the total score is noted. The events E,
F and G are ‘a total of 4’, ‘a total of 9 or more’ and ‘a total divisible by 5’,
respectively. Calculate P (E ), P (F ) and P (G) and decide which pairs of
events, if any are independent.
Sol. Two dice are thrown together i.e., sample space (S ) = 36 Þ n(S ) = 36
E = A total of 4 = {(2, 2), (3, 1), (1, 3)}
Þ n (E ) = 3
F = A total of 9 or more
= {(3, 6), (6, 3), (4, 5), (4, 6), (5, 4), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6)}
Þ n(F ) = 10
G = a total divisible by 5 = {(1, 4), (4, 1), (2, 3), (3, 2), (4, 6), (6, 4), (5, 5)}
Þ n(G ) = 7
Here, (E Ç F ) = f and (E Ç G ) = f
Also, (F Ç G ) = {(4, 6), (6, 4), (5, 5)}
Þ n(F Ç G ) = 3 and (E Ç F Ç G ) = f
n(E ) 3 1
\ P(E ) = = =
n(S ) 36 12
n(F ) 10 5
P (F ) = = =
n(S ) 36 18
n(G ) 7
P (G ) = =
n(S ) 36
3 1
P (F Ç G ) = =
36 12
5 7 35
and P (F ) × P (G ) = × =
18 36 648
Here, we see that P (F Ç G ) ¹ P (F ) × P (G )
[since, only F and G have common events, so only F and G are used here]
Hence, there is no pair which is independent.
Q. 6 Explain why the experiment of tossing a coin three times is said to have
Binomial distribution.
Sol. We know that, a random variable X taking values 0, 1, 2, ..., n is said to have a binomial
distribution with parameters n and P, if its probability distribution is given by
P ( X = r ) = nC r pr q n - r
where, q = 1- p
and r = 0, 1, 2, ..., n
Similarly, in an experiment of tossing a coin three times, we have n = 3 and random variable
1 1
X can take values r = 0, 1, 2 and 3 with p = and q =
2 2
X 0 1 2 3
3 3 3 2 3 2 3 3
P (X ) C0 q C1 Pq C2 P q C3 P
So, we see that in the experiment of tossing a coin three times, we have random variable X
1
which can take values 0, 1, 2 and 3 with parameters n = 3 and P = .
2
Therefore, it is said to have a Binomial distribution.
Þ P1 + P2 + P3 + P4 = 1
Þ k + k2 + 2 k2 + k = 1
Þ 3 k2 + 2 k - 1 = 0
2
Þ 3 k + 3k - k - 1 = 0
Þ 3 k(k + 1) - 1(k + 1) = 0
Þ (3 k - 1) (k + 1) = 0
Þ k = 1/ 3 Þ k = - 1
Since, k is ³ 0 Þ k = 1 / 3
n
(ii) Mean of the distribution (m ) = E( X ) = S x i Pi
i = 1i
= 0. 5(k ) + 1 (k 2 ) + 1. 5(2 k 2 ) + 2 (k ) = 4k 2 + 2. 5k
1 1 éQ k = 1 ù
= 4 × + 2. 5 ×
9 3 êë 3 úû
4 + 7. 5 23
= =
9 18
Q. 11 Prove that
(i) P (A) = P (A Ç B) + P (A Ç B)
(ii) P (A È B) = P (A Ç B) + P (A Ç B) + P (A Ç B)
Sol. (i) Q P ( A) = P ( A Ç B) + P ( A Ç B)
\ RHS = P ( A Ç B) + P ( A Ç B)
= P ( A) × P (B) + P ( A) × P (B)
= P ( A)[P (B) + P (B)]
= P ( A)[P (B) + 1 - P (B)] [Q P (B) = 1 - P (B) ]
= P ( A) = LHS Hence proved.
(ii) Q P ( A È B) = P ( A Ç B) + P ( A Ç B) + P ( A Ç B)
\ RHS = P ( A) × P (B) + P ( A) × P (B) + P ( A) × P (B)
= P ( A) × P (B) + P ( A) × [1 - P(B)] + [1 - P ( A)] P (B)
= P ( A) × P (B) + P ( A) - P ( A) × P (B) + P (B) - P ( A) × P (B)
= P ( A) + P (B) - P ( A) × P (B)
= P ( A) + P (B) - P ( A Ç B)
= P ( A È B) = LHS Hence proved.
Q. 14 Three dice are thrown at the same time. Find the probability of getting
three two’s, if it is known that the sum of the numbers on the dice
was six.
Sol. On a throw of three dice, we have sample space [n(S )] = 63 = 216
Let E1 is the event when the sum of numbers on the dice was six and E2 is the event when
three two’s occurs.
Þ E1 = {(1, 1, 4), (1, 2, 3), (1, 3, 2), (1, 4, 1), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2),
(3, 2, 1), (4, 1, 1)}
Þ n(E1 ) = 10 and E2 = {2, 2, 2}
Þ n ( E2 ) = 1
Also, (E1 Ç E2 ) = 1
P × (E1 Ç E2 ) 1 / 216 1
\ P (E2 / E1 ) = = =
P(E1 ) 10 / 216 10
Q. 15 Suppose 10000 tickets are sold in a lottery each for ` 1. First prize is
of ` 3000 and the second prize is of ` 2000. There are three third
prizes of ` 500 each. If you buy one ticket, then what is your
expectation?
Thinking Process
Take X is the random variable for the prize, so at X = 0, 500, 2000 and 3000, get P (X) for
each X and then use the formula of E (X) = SX P (X) to get the answer.
Sol. Let X is the random variable for the prize.
X 0 500 2000 3000
9995 3 1 1
P(X)
10000 10000 10000 10000
Since, E ( X ) = SX P ( X )
9995 1500 2000 3000
\ E( X ) = 0 ´ + + +
10000 10000 10000 10000
1500 + 2000 + 3000
=
10000
6500 13
= = = ` 0.65
10000 20
Q. 17 Bag I contains 3 black and 2 white balls, bag II contains 2 black and 4
white balls. A bag and a ball is selected at random. Determine the
probability of selecting a black ball.
Sol. Bag I = {3B, 2W }, Bag II = {2 B, 4W }
Let E1 = Event that bag I is selected
E2 = Event that bag II is selected
and E = Event that a black ball is selected
1 3 2 1
Þ P (E1 ) = 1 / 2, P (E2 ) = , P (E / E1 ) = , P (E / E2 ) = =
2 5 6 3
\ P (E ) = P (E1 ) × P (E / E1 ) + P (E2 ) × P (E / E2 )
1 3 1 2 3 2
= × + × = +
2 5 2 6 10 12
18 + 10 28 7
= = =
60 60 15
Q. 18 A box has 5 blue and 4 red balls. One ball is drawn at random and not
replaced. Its colour is also not noted. Then, another ball is drawn at
random. What is the probability of second ball being blue?
Sol. A box = {5 blue, 4 red}
Let E1 is the event that first ball drawn is blue, E2 is the event that first ball drawn is red and E
is the event that second ball drawn is blue.
\ P (E ) = P (E1 ) × P (E / E1 ) + P (E2 ) × P (E/E2 )
5 4 4 5 20 20 40 5
= × + × = + = =
9 8 9 8 72 72 72 9
Q. 21 If ten coins are tossed, then what is the probability of getting atleast
8 heads?
Thinking Process
For getting atleast 8 heads, take random variable X for getting head on tossing a coin.
So, get sum of P (8), P (9) and P (10) to get the answer.
Sol. In this case, we have to find out the probability of getting atleast 8 heads. Let X is the
random variable for getting a head.
Here, n = 10 , r ³ 8,
1 1
i.e., r = 8, 9, 10, p = , q =
2 2
We know that, P ( X = r ) = nC r pr q n - r
\ P ( X = r ) = P (r = 8) + P (r = 9) + P (r = 10)
8 10 - 8 9 10 - 9 10 10 - 10
1 1 1 1 1 1
= C 8 æç ö÷ æç ö÷
10
+ 10C 9 æç ö÷ æç ö÷ + C10 æç ö÷ æç ö÷
10
è2 ø è2 ø è2 ø è2 ø è2 ø è2 ø
10! æ 1 ö10 10! æ 1 ö10
10
10! æ 1 ö
= ç ÷ + ç ÷ + ç ÷
8!2 ! è 2 ø 9!1! è 2 ø 0!10! è 2 ø
10
10 ´ 9
= æç ö÷ é
1
+ 10 + 1ù
è 2 ø êë 2 úû
1 10 1 7
= æç ö÷ × 56 = 7 3 × 56 =
è2 ø 2 ×2 128
1
Q. 27 A biased die is such that P (4) = and other scores being equally
10
likely. The die is tossed twice. If X is the ‘number of fours seen’, then
find the variance of the random variable X .
Sol. Since, X = Number of fours seen
On tossing two die, X = 0, 1, 2.
1 9
Also, P( 4 ) = and P( not 4) =
10 10
9 9 81
So, P ( X = 0) = P(not 4) × P(not 4) = × =
10 10 100
9 1 1 9 18
P ( X = 1) = P(not 4) × P(4) + P(4) × P(not 4) = × + × =
10 10 10 10 100
P ( X = 2 ) = P( 4 ) × P( 4 ) = 1 × 1 = 1
10 10 100
Thus, we get following table
X 0 1 2
P(X) 81 18 1
100 100 100
XP(X) 0 18/100 2/100
X 2 P (X ) 0 18/100 4/100
\ Var ( X ) = E ( X 2 ) - [E ( X )]2 = SX 2 P ( X ) - [S XP ( X )]2
18 4 ù é 18 2 ù2
= é0 + + - 0+ +
ëê 100 100 ûú êë 100 100 ûú
22 20 ö 2 11 1
= - æç ÷ = -
100 è 100 ø 50 25
11 - 2 9 18
= = = = 018
.
50 50 100
Q. 28 A die is thrown three times. Let X be the ‘number of twos seen’, find
the expectation of X.
Sol. We have, X = number of twos seen
So, on throwing a die three times, we will have X = 0, 1, 2, 3.
5 5 5 125
\ P ( X = 0) = P(not 2) × P(not 2) × P(not 2) = × × =
6 6 6 216
P ( X = 1) = P( (not 2) × P(not 2) × P( 2 ) + P(not 2) × P( 2 ) × P(not 2) + P( 2 ) × P(not 2) × P(not 2)
5 5 1 5 1 5 1 5 5 25 3 25
= × + × × + × × = × =
6 6 6 6 6 6 6 6 6 36 6 72
P ( X = 2 ) = P(not 2) × P( 2 ) × P( 2 ) + P( 2 ) × P( 2 ) × P(not 2) + P( 2 ) × P(not 2) + P( 2 )
5 1 1 1 1 5 1 5 1
=
× × + × × + × ×
6 6 6 6 6 6 6 6 6
1 é 15 ù 15
= × =
36 êë 6 úû 216
1 1 1 1
P ( X = 3) = P( 2 ) × P( 2 ) × P( 2 ) = × × =
6 6 6 216
125 25 15 1
We know that, E( X ) = SX P( X ) = 0 × + 1× +2× + 3×
216 72 216 216
75 + 30 + 3 108 1
= = =
216 216 2
1
Q. 29 Two biased dice are thrown together. For the first die P(6) = , the
2
2
other scores being equally likely while for the second die P(1) = and
5
the other scores are equally likely. Find the probability distribution of
‘the number of one’s seen’.
1 1
Sol. For first die, P(6) = and P(6¢) =
2 2
1
Þ P(1) + P(2 ) + P(3) + P(4) + P(5) =
2
1 9
Þ P(1) = and P(1¢) = [Q P(1) = P(2 ) = P(3) = P(4) = P(5)]
10 10
2 2 3
For second die, P(1) = and P(1¢) = 1 - =
5 5 5
Let X = Number of one’s seen
9 3 27
For X = 0, P ( X = 0) = P(1¢) × P(1¢) = × = = 0.54
10 5 50
9 2 1 3
P ( X = 1) = P(1¢) × P(1¢) + P(1¢) × P(1¢) = × + ×
10 5 10 5
18 3 21
= + = = 0.42
50 50 50
1 2 2
P ( X = 2 ) = P(1) × P(1) = × = = 0. 04
10 5 50
Hence, the required probability distribution is as below
X 0 1 2
P (X) 0.54 0.42 0.04
Y 0 1 2 3
1 3 2 1
P (Y)
5 10 5 10
Prove that E (Y 2 ) = 2E ( X ).
Sol. X 0 1 2 3
1 2 1 1
P (X)
5 5 5 5
Y 0 1 2 3
1 3 2 1
P (Y) 5 10 5 10
Since, we have to prove that, E (Y 2 ) = 2 E ( X )
\ E( X ) = S X P ( X )
1 2 1 1 7
= 0 × + 1× + 2 × + 3 × =
5 5 5 5 5
14
Þ 2 E( X ) = ...(i)
5
E (Y )2 = SY 2 P (Y )
1 3 2 1
= 0×+ 1× + 4× + 9×
5 10 5 10
3 8 9 28 14
= + + = =
10 5 10 10 5
2 14
Þ E (Y ) = ...(ii)
5
From Eqs. (i) and (ii),
E(Y 2 ) = 2 E( X ) Hence proved.
Q. 31 A factory produces bulbs. The probability that any one bulb is
1
defective is and they are packed in 10 boxes. From a single box,
50
find the probability that
(i) none of the bulbs is defective.
(ii) exactly two bulbs are defective.
(iii) more than 8 bulbs work properly
Sol. Let X is the random variable which denotes that a bulb is defective.
1 49
Also, n = 10, p = and q = and P ( X = r ) = nC r pr q n - r
50 50
(i) None of the bulbs is defective i.e., r = 0
1 0 49 10 - 0 æ 49 ö10
\ p( X = r ) = P( 0 ) = 10C 0 æç ö÷ æç ö÷ =ç ÷
è 50 ø è 50 ø è 50 ø
(ii) Exactly two bulbs are defective i.e., r = 2
1 2 49 8
\ P ( X = r ) = P( 2 ) = 10
C 2 æç ö÷ æç ö÷
è 50 ø è 50 ø
2 8 10
10! æ 1 ö æ 49 ö æ 1 ö 8
= ç ÷ × ç ÷ = 45 ´ ç ÷ ´ (49)
8!2 ! è 50 ø è 50 ø è 50 ø
(iii) More than 8 bulbs work properly i.e., there is less than 2 bulbs which are defective.
So, r < 2 Þ r = 0, 1
\ P ( X = r ) = P (r < 2 ) = P (0) + P (1)
0 10 - 0 10 -1
1 49 1 1 49
= C 0 æç ö÷ æç ö÷
10
+ C1 æç ö÷ æç ö÷
10
è 50 ø è 50 ø è 50 ø è 50 ø
10
49 10! 1 æ 49 ö 9
= æç ö÷ + × ×ç ÷
è ø
50 1! 9! 50 è 50 ø
10 9 9
49 1 æ 49 ö 49 49 1 ö
= æç ö÷ + × ç ÷ = æç ö÷ æç + ÷
è 50 ø 5 è 50 ø è 50 ø è 50 5 ø
49 9 59 59 (49)9
= æç ö÷ æç ö÷ =
è 50 ø è 50 ø (50)10
Q. 32 Suppose you have two coins which appear identical in your pocket.
You know that, one is fair and one is 2 headed. If you take one out,
toss it and get a head, what is the probability that it was a fair coin?
Sol. Let E1 = Event that fair coin is drawn
E2 = Event that 2 headed coin is drawn
E = Event that tossed coin get a head
\ P (E1 ) = 1 / 2, P (E2 ) = 1 / 2, P (E / E1 ) = 1 / 2 and P (E / E2 ) = 1
P (E1 ) × P(E / E1 )
Now, using Baye’s theorem P (E1 / E ) =
P (E1 ) × P (E / E1 ) + P (E2 ) × P (E / E2 )
1 1 1 1
×
2 2 4 1
= = = 4 =
1 1 1 1 1 3 3
× + ×1 +
2 2 2 4 2 4
Q. 33 Suppose that 6% of the people with blood group O are left handed and
10% of those with other blood groups are left handed, 30% of the
people have blood group O. If a left handed person is selected at
random, what is the probability that he/she will have blood group O?
Sol. Other than
Blood group ‘O’ blood group ‘O’
I. Number of people 30 % 70 %
Percentage of left
II. 6% 10 %
handed people
E1 = Event that the person selected is of blood group O
E2 = Event that the person selected is of other than blood group O
(E3 ) = Event that selected person is left handed
\ P (E1 ) = 0. 30, P (E2 ) = 070
.
P (E3 / E1 ) = 0.06 and P (E3 / E2 ) = 010 .
P (E1 ) × P (E3 / E1 )
By using Baye’s theorem, P (E1 / E3 ) =
P (E1 ) × P (E3 / E1 ) + P (E2 ) × P (E3 / E2 )
0. 30 ´ 0.06
=
0. 30 × 0.06 + 070
. × 010
.
0.0180
=
0. 0180 + 0. 0700
0. 0180 180 9
= = =
0.0880 880 44
Q. 39 Two dice are tossed. Find whether the following two events A and B
are independent A = {(x, y) : x + y = 11} and B = {(x, y): x ¹ 5}, where
(x, y) denotes a typical sample point.
Sol. We have, A = {(x, y) : x + y = 11} and B = {(x, y): x ¹ 5}
\ A = {(5, 6), (6, 5 )}, B = {(1,1), (1,2), (1,3), (1,4), (1,5) (1,6), (2,1), (2,2), (2,3), (2,4),
(2,5) (2,6), (3,1), (3,2), (3,3), (3,4), (3,5) (3,6), (4,1), (4,2), (4,3), (4,4), (4,5) (4,6),
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
Þ n( A) = 2, n(B) = 30 and n( A Ç B) = 1
2 1 30 5
\ P( A) = = and P (B) = =
36 18 36 6
5 1
Þ P ( A) × P (B) = and P ( A Ç B) = ¹ P ( A) × P (B)
108 36
So, A and B are not independent.
Q. 45 There are two bags, one of which contains 3 black and 4 white balls
while the other contains 4 black and 3 white balls. A die is thrown. If
it shows up 1 or 3, a ball is taken from the Ist bag but it shows up any
other number, a ball is chosen from the II bag. Find the probability of
choosing a black ball.
Sol. Since, Bag I = {3 black, 4 white balls}, Bag II = {4 black, 3 white balls}
Let E1 be the event that bag I is selected and E2 be the event that bag II is selected.
Let E3 be the event that black ball is chosen.
1 1 1 1 2
\ P (E1 ) = + = and P (E2 ) = 1 - =
6 6 3 3 3
3 4
and P (E3 / E1 ) = and P (E3 / E2 ) =
7 7
\ P (E3 ) = P (E1 ) ×P (E3 / E1 ) + P (E2 ) × P (E3 / E2 )
1 3 2 4 11
= × + × =
3 7 3 7 21
Q. 46 There are three urns containing 2 white and 3 black balls, 3 white and
2 black balls and 4 white and 1 black balls, respectively. There is an
equal probability of each urn being chosen. A ball is drawn at random
from the chosen urn and it is found to be white. Find the probability
that the ball drawn was from the second urn.
Sol. Let U1 = {2 white, 3 black balls }
U 2 = {3 white, 2 black balls}
and U 3 = {4 white, 1 black balls}
1
\ P (U1 ) = P (U 2 ) = P (U 3 ) =
3
Let E1 be the event that a ball is chosen from urn U1, E 2 be the event that a ball is chosen
from urn U 2 and E3 be the event that a ball is chosen from urn U 3 .
Also, P (E1 ) = P (E2 ) = P (E3 ) = 1 / 3
Now, let E be the event that white ball is drawn.
2 3 4
\ P (E / E1 ) = , P (E / E2 ) = , P (E / E3 ) =
5 5 5
P ( E2 ) × P ( E / E2 )
Now, P ( E2 / E ) =
P (E1 ) × P (E / E1 ) + P (E2 ) × P (E / E2 ) + P (E3 ) × P (E / E3 )
1 3
×
= 3 5
1 2 1 3 1 4
× + × + ×
3 5 3 5 3 5
3
15 3 1
= = =
2 3 4 9 3
+ +
15 15 15
Calculate
(i) the value of A, if E ( X ) = 2. 94.
(ii) variance of X.
1 2 12 2 A 3 A 5 A
Sol. (i) We have, S XP ( X ) = + + + + +
2 5 25 10 25 25
25 + 20 + 24 + 10 A + 6 A + 10 A 69 + 26 A
= =
50 50
Since, E ( X ) = S XP ( X )
69 + 26 A
Þ 2. 94 =
50
Þ 26 A = 50 ´ 2. 94 - 69
147 - 69 78
Þ A= = =3
26 26
(ii) We know that,
Var( X ) = E ( X 2 ) - [E ( X )]2
= S X 2 P ( X ) - [ SXP ( X )]2
1 4 48 4 A 2 9 A 2 25 A 2
= + + + + + - [E ( X )]2
2 5 25 10 25 25
25 + 40 + 96 + 20 A 2 + 18 A 2 + 50 A 2
= - [E ( X )]2
50
161 + 88 A 2 161 + 88 ´ (3)2
= - [E ( X )]2 = - [E ( X )]2 [Q A = 3]
50 50
953
= - [2. 94]2 [Q E ( X ) = 2. 94]
50
= 19. 0600 - 8. 6436 = 10.4164
Q. 51 The probability distribution of a random variable x is given as under
ì kx 2 , x = 1, 2, 3
ï
P(X = x) = í2kx, x = 4 , 5, 6
ï0 , otherwise
î
where, k is a constant. Calculate
(i) E ( X ) (ii) E (3 X 2 ) (iii) P ( X ³ 4)
Sol. X 1 2 3 4 5 6 Otherwise
P (X ) k 4k 9k 8k 10k 12k 0
We know that, S Pi = 1
1
Þ 44k = 1 Þ k =
44
\ SXP ( X ) = k + 8k + 27 k + 32 k + 50k + 72 k + 0
1 95
= 190k = 190 ´ =
44 22
95
(i) So, E ( X ) = SXP ( X ) = = 4. 32
22
2 2
(ii) Also, E ( X ) = SX P ( X ) = k + 16 k + 81k + 128k + 250 k + 432 k
1 éQ k = 1 ù
= 908 k = 908 ´
44 êë 44 úû
= 20. 636 = 20. 64 (approx)
\ E (3 X 2 ) = 3 E ( X 2 ) = 3 ´ 20. 64 = 61. 92 = 61. 9
(iii) P ( X ³ 4) = P ( X = 4) + P ( X = 5) + P ( X = 6)
1 15
= 8k + 10k + 12 k = 30k = 30 × =
44 22
Q. 55 There are 5 cards numbered 1 to 5, one number on one card. Two cards
are drawn at random without replacement. Let X denotes the sum of
the numbers on two cards drawn. Find the mean and variance of X .
Sol. Here, S = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (1, 4), (4, 1), (1, 5), (5, 1), (2, 4), (4, 2),
(2, 5), (5, 2), (3, 4), (4, 3), (3, 5), (5, 3), (5, 4), (4, 5)}.
Þ n(S ) = 20
Let random variable be X which denotes the sum of the numbers on two cards drawn.
\ X = 3, 4, 5, 6, 7, 8, 9
2 1
At X = 3, P ( X ) = =
20 10
2 1
At X = 4, P ( X ) = =
20 10
4 1
At X = 5, P ( X ) = =
20 5
4 1
At X = 6, P ( X ) = =
20 5
4 1
At X = 7, P ( X ) = =
20 5
2 1
At X = 8, P ( X ) = =
20 10
2 1
At X = 9, P ( X ) = =
20 10
3 4 5 6 7 8 9
\ Mean, E ( X ) = SX P ( X ) = + + + + + +
10 10 5 5 5 10 10
3 + 4 + 10 + 12 + 14 + 8 + 9
= =6
10
9 16 25 36 49 64 81
Also, SX 2 P ( X ) = + + + + + +
10 10 5 5 5 10 10
9 + 16 + 50 + 72 + 98 + 64 + 81
= = 39
10
\ Var( X ) = SX 2 P ( X ) - [SXP ( X )]2
= 39 - (6)2 = 39 - 36 = 3
Objective Type Questions
Q. 56 If P (A)= 4 and P ( A Ç B) = 7
, then P (B / A) is equal to
5 10
1 1 7 17
(a) (b) (c) (d)
10 8 8 20
4 7
Sol. (c) Q P ( A) = , P ( A Ç B) =
5 10
P ( A Ç B) 7 / 10 7
\ P (B / A) = = =
P ( A) 4/ 5 8
7 17
Q. 57 If P ( A Ç B) = and P (B) = , then P ( A / B) equals to
10 20
14 17 7 1
(a) (b) (c) (d)
17 20 8 8
7 17
Sol. (a) Here, P ( A Ç B) = and P (B) =
10 20
P ( A Ç B) 7 / 10 14
\ P ( A / B) = = =
P (B) 17 / 20 17
3 2 3
Q. 58 If P ( A) = , P (B) = and P ( A È B) = , then P (B / A ) + P ( A / B)
10 5 5
equals to
1 1 5 7
(a) (b) (c) (d)
4 3 12 12
3 2 3
Sol. (d) Here, P( A) = , P(B) and P ( A È B) =
10 5 5
P (B Ç A) P ( A Ç B)
P (B / A) + P ( A / B) = +
P ( A) P (B)
P ( A) + P (B) - P ( A È B) P ( A) + P (B) - P ( A È B)
= +
P( A) P (B)
éQ P ( A È B) = P ( A) + P (B) - P ( A Ç B)ù
ê i .e., P( A Ç B) = P( A) + P(B) - P( A È B) ú
ë û
3 2 3 3 2 3
+ - + -
= 10 5 5 + 10 5 5
3 2
10 5
1 1
10 10 1 1 7
= + = + =
3 2 3 4 12
10 5
2 3 1
Q. 59 If P ( A) = , P (B) = and P ( A Ç B) = , then P ( A¢ / B¢ ) × P (B¢ / A¢ ) is
5 10 5
equal to
5 5 25
(a) (b) (c) (d) 1
6 7 42
2 3 1
Sol. (c) Here, P( A) = , P (B) = and P( A Ç B) =
5 10 5
P ( A¢ Ç B¢) 1 - P ( A È B)
P ( A¢/ B¢) = =
P (B¢) 1 - P (B)
1 - [P ( A) + P (B) - P ( A Ç B)]
=
1 - P (B)
2 3 1
1 - æç + - ö÷
= è 5 10 5 ø
3
1-
10
4+ 3-2ö
1 - æç
1
÷ 1-
è 10 ø 2 5
= = =
7 7 7
10 10
P (B¢ Ç A¢) 1 - P ( A È B)
and P (B¢/ A¢) = =
P ( A ¢) 1 - P( A)
1
1-
= 2 = 1/ 2 = 5 éQ P ( A È B) = 1 ù
2 3/ 5 6 êë 2 úû
1-
5
5 5 25
\ P ( A¢/ B¢) × P (B¢/ A¢) = × =
7 6 42
1 1
Q. 60 If A and B are two events such that P ( A) = , P (B) = and
2 3
1
P ( A / B) = , then P ( A¢ Ç B¢ ) equals to
4
1 3
(a) (b)
12 4
1 3
(c) (d)
4 16
1 1 1
Sol. (c) Here, P( A) = , P(B) = and P( A / B) =
2 3 4
P( A Ç B)
Q P ( A / B) =
P (B)
1 1 1
Þ P ( A Ç B) = P ( A / B) × P (B) = × =
4 3 12
Now, P ( A¢ Ç B¢) = 1 - P ( A È B)
= 1 - [P ( A) + P (B) - P ( A Ç B)]
1 1 1ù 6 + 4 - 1ù
= 1- é + - = 1- é
êë 2 3 12 úû êë 12 úû
9 3 1
= 1- = =
12 12 4
Q. 61 If P ( A) = 0.4, P (B) = 0. 8 and P (B / A) = 0.6, then P ( A È B ) is equal to
(a) 0.24 (b) 0.3
(c) 0.48 (d) 0.96
Sol. (d) Here, P( A) = 0.4, P(B) = 0.8 and P( A / B) = 0.6
P (B Ç A)
Q P (B / A) =
P( A)
Þ P (B Ç A) = P (B / A) × P ( A)
= 0. 6 ´ 0. 4 = 0.24
Q P ( A È B ) = P ( A) + P (B) - P ( A Ç B)
= 0.4 + 0. 8 - 0.24
= 12
. - 0.24 = 0. 96
3 1
Q. 64 If A and B are two events such that P (B) = , P ( A / B) = and
5 2
4
P ( A È B) = , then P ( A) equals to
5
3 1 1 3
(a) (b) (c) (d)
10 5 2 5
3 1 4
Sol. (c) Here, P(B) = , P( A / B) = and P( A È B) =
5 2 5
P ( A Ç B)
Q P ( A / B) =
P (B)
1 P ( A Ç B)
Þ =
2 3/ 5
3 1 3
Þ P ( A Ç B) = ´ =
5 2 10
and P ( A È B) = P ( A) + P (B) - P ( A Ç B)
4 3 3
Þ = P( A) + -
5 5 10
4 3 3 8-6+ 3 1
\ P( A) = - + = =
5 5 10 10 2
3 1 4
Q. 66 If P (B) = , P ( A / B) = and P ( A È B) = , then
5 2 5
P ( A È B)¢ + P ( A¢ È B) is equal to
1 4 1
(a) (b) (c) (d) 1
5 5 2
3 1
Sol. (d) Here, P (B) = , P ( A / B) =
5 2
4
and P ( A È B) =
5
P ( A Ç B)
Since, P ( A / B) =
P (B)
Þ P ( A Ç B) = P ( A / B) × P (B)
1 3 3
= ´ =
2 5 10
Also, P ( A È B) = P ( A) + P (B) - P ( A Ç B)
4 3 3 1
Þ P( A) = - + =
5 5 10 2
4 1
\ P ( A È B)¢ = 1 - P ( A È B) = 1 - =
5 5
and P ( A ¢ È B) = 1 - P ( A - B) = 1 - P ( A Ç B¢)
= 1 - P ( A) × P (B¢)
1 2 4
= 1- × =
2 5 5
1 4 5
Þ P ( A È B)¢ + P ( A ¢ È B) = + = = 1
5 5 5
7 9 4
Q. 67 If P ( A) = , P (B) = and P ( A Ç B) = , then P ( A ¢ / B) is equal to
13 13 13
6 4 4 5
(a) (b) (c) (d)
13 13 9 9
7 9 4
Sol. (d) Here, P( A) = , P(B) = and P( A Ç B) =
13 13 13
P ( A ¢ Ç B) P (B) - P ( A Ç B)
\ P ( A ¢ / B) = =
P (B) P (B)
9 4 5
-
13 5
= 13 13 = =
9 9 9
13 13
3 4
Q. 69 If A and B are two independent events with P ( A) = and P (B) = ,
5 9
then P ( A ¢ Ç B ¢) equals to
4 8 1 2
(a) (b) (c) (d)
15 45 3 9
Sol. (d) P ( A ¢ Ç B¢) = 1 - P ( A È B)
= 1 - [P ( A) + P (B) - P ( A Ç B )]
3 4 3 4
= 1- é + - ´ ù [QP ( A Ç B) = P ( A) × P (B)]
êë 5 9 5 9 úû
27 + 20 - 12 ù
= 1- é
35 10 2
= 1- = =
êë 45 úû 45 45 9
Q. 79 A box contains 3 orange balls, 3 green balls and 2 blue balls. Three
balls are drawn at random from the box without replacement. The
probability of drawing 2 green balls and one blue ball is
3 2 1 167
(a) (b) (c) (d)
28 21 28 168
Sol. (a) Probability of drawing 2 green balls and one blue ball
= PG × PG × PB + PB × PG × PG + PG × PB × PG
3 2 2 2 3 2 3 2 2
= × × + × × + × ×
8 7 6 8 7 6 8 7 6
1 1 1 3
= + + =
28 28 28 28
Q. 82 Two dice are thrown. If it is known that the sum of numbers on the
dice was less than 6, the probability of getting a sum 3, is
1 5 1 2
(a) (b) (c) (d)
18 18 5 5
Sol. (c) Let E1 = Event that the sum of numbers on the dice was less than 6
and E2 = Event that the sum of numbers on the dice is 3
\ E1 = {(1, 4), (4, 1), (2, 3), (3, 2 ), (2, 2 ), (1, 3), (3, 1), (1, 2 ), (2, 1), (1, 1}
)
Þ n(E1 ) = 10
and E2 = {(1, 2 ), (2, 1)} Þ n(E2 ) = 2
2 1
\ Required probability = =
10 5
Q. 84 If two cards are drawn from a well shuffled deck of 52 playing cards
with replacement, then the probability that both cards are queens, is
1 1 1 1 1 1 1 4
(a) × (b) + (c) × (d) ×
13 13 13 13 13 17 13 51
4 4 1 1
Sol. (a) Required probability = × = ´ [with replacement]
52 52 13 13
The value of k is
(a) 8 (b) 16 (c) 32 (d) 48
Sol. (c) We know that, SP ( X ) = 1
5 7 9 11
Þ + + + =1
k k k k
32
Þ =1
k
\ k = 32
E ( X ) is equal to
(a) 0 (b) -1 (c) -2 (d) -1.8
Sol. (d) E ( X ) = SX P ( X )
= - 4 ´ (01. ) + (-3 ´ 0.2 ) + (-2 ´ 0. 3) + (-1 ´ 0.2 ) + (0 ´ 0.2 )
= - 0.4 - 0.6 - 0.6 - 0.2 = - 1. 8
Q. 89 For the following probability distribution.
X 1 2 3 4
1 1 3 2
P(X)
10 5 10 5
E ( X 2 ) is equal to
(a) 3 (b) 5 (c) 7 (d) 10
2 2 1 1 3 2
Sol. (d) E ( X ) = SX P ( X ) = 1 × + 4 × + 9× + 16 ×
10 5 10 5
1 4 27 32
= + + +
10 5 10 5
1 + 8 + 27 + 64
= = 10
10
1
Here, P (E / E1 ) = 1, P (E / E2 ) =
20
P (E1 Ç E ) P (E1 ) × P (E / E1 )
\ P (E1 / E ) = =
P (E ) P (E1 ) × P (E / E1 ) + P (E2 ) P (E / E2 )
1
´1
12 1 / 12 120 10
= = = =
1 1 1 10 + 3 12 ´ 13 13
´1+ ´
12 2 20 120
Q. 93 If a box has 100 pens of which 10 are defective, then what is the
probability that out of a sample of 5 pens drawn one by one with
replacement atmost one is defective?
5 4
æ9ö 1æ 9 ö
(a) ç ÷ (b) ç ÷
è10 ø 2 è10 ø
4 5 4
1æ 9 ö æ9ö 1æ 9 ö
(c) ç ÷ (d) ç ÷ + ç ÷
2 è10 ø è10 ø 2 è10 ø
10 1 9
Sol. (d) Here, n = 5, p = = and q =
100 10 10
r £1
Þ r = 0, 1
Also, P ( X = r ) = nC r pr q n - r
\ P ( X = r ) = P (r = 0) + P (r = 1)
1 0 9 5
1 4
1 9
= 5C 0 æç ö÷ æç ö÷ + 5C1 æç ö÷ æç ö÷
è 10 ø è 10 ø è 10 ø è 10 ø
9 5 1 æ 9 ö4
= æç ö÷ + 5 × ×ç ÷
è 10 ø 10 è 10 ø
5 4
9 1 9
= æç ö÷ + æç ö÷
è 10 ø 2 è 10 ø
True/False
Q. 94 If P (A) > 0 and P (B) > 0. Then, A and B can be both mutually
exclusive and independent.
Sol. False
A B
(A¢ È B)
Fillers
1
Q. 104 If A and B are two events such that P (A / B) = p, P (A) = p, P (B) =
3
5
and P (A È B) = , then p is equal to ......... .
9
1 5
Sol. Here, P ( A) = p, P (B) = and P ( A È B) =
3 9
P ( A Ç B) p
Q P ( A / B) = = p Þ P ( A Ç B) =
P (B) 3
and P ( A È B) = P ( A) + P (B) - P ( A Ç B)
5 1 p 5 1 2p
Þ = p+ - Þ - =
9 3 3 9 3 3
5 - 3 2p 2 3 1
Þ = Þ p= ´ =
9 3 9 2 3
2 5
Q. 105 If A and B are such that P (A¢ È B¢ ) = and P (A È B) = , then
3 9
P (A ¢) + P (B¢) is equal to ......... .
2 5
Sol. Here, P ( A ¢ È B¢) = and P ( A È B) =
3 9
P ( A ¢ È B¢) = 1 - P ( A Ç B)
2
Þ = 1 - P ( A Ç B)
3
2 1
Þ P ( A Ç B) = 1 - =
3 3
Q P ( A ¢) + P (B¢) = 1 - P ( A) + 1 - P (B)
U
= 2 - [P ( A) + P (B)]
= 2 - [P ( A È B) + P ( A Ç B)]
A B
5 + 3ö
= 2 - æç + ö÷ = 2 - æç
5 1
÷
è 9 3ø è 9 ø
18 - 8 10
= =
9 9