0% found this document useful (0 votes)
13 views7 pages

Xaxb XC Abc Abc Acb Acb: x3x5x7 - X 4 - (X 6)

The document contains a series of mathematical problems and solutions related to functions, domains, ranges, logarithms, and inequalities. Each problem presents multiple-choice answers, testing knowledge in algebra and calculus concepts. The content is structured as a quiz or examination format for evaluating mathematical understanding.

Uploaded by

aadm210909
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views7 pages

Xaxb XC Abc Abc Acb Acb: x3x5x7 - X 4 - (X 6)

The document contains a series of mathematical problems and solutions related to functions, domains, ranges, logarithms, and inequalities. Each problem presents multiple-choice answers, testing knowledge in algebra and calculus concepts. The content is structured as a quiz or examination format for evaluating mathematical understanding.

Uploaded by

aadm210909
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

( x − a)( x − b)

1. For real x , the function will assume all real values provided.
( x − c)
(a) a  b  c (b) a  b  c (c) a  c  b (d) a  c  b
2. Solution of 0 < |x-3|  5 is

(a) [-2, 8] (b) [-2,3) U (3,8] (c) [-2, 9) (d) none

( x − 3 )( x + 5 )( x − 7 )
3. Solution of  0 is
| x − 4 | (x + 6)

(a) (-6, -5] U [3,7] (b) [3,7]

(c) (-6, -5]  [3, 4)  (4,7] (d) none


4. If [x]2 – 5[x] + 6 = 0 (where [.] denotes the greatest integer function), then x belongs to

(a) [2,4) (b) [2,4) – {3} (c) {3} (d) {2}

5. The values of b and c for which the identity f (x + 1) – f(x) = 8x + 3 is satisfied, where f(x) = bx2 + cx +
d, are

(a) 4, 1 (b) 4, –1 (c) –1, 4 (d) none


6. If A contains 10 elements, then total number of functions defined from A to A is
(a) 10 (b) 210 (c) 10 10 (d) 210 − 1
x−| x |
7. If f (x ) = , then f (−1) =
| x|

(a) 1 (b) – 2 (c) 0 (d) 2


1 1
8. If f (x ) = + for x  2, then f (11) =
x + 2 2x − 4 x − 2 2x − 4
7 5 6 5
(a) (b) (c) (d)
6 6 7 7
1
9. Domain of the function is
2
x −1
(a) (−, − 1)  (1, ) (b) (−, − 1]  (1, ) (c) (−, − 1)  [1, ) (d) none
1
10. The domain of the function f (x ) = is
| x | −x

(a) R+ (b) R− (c) R0 (d) R

11. The domain of the function f (x ) = (2 − 2 x − x 2 ) is


(a) − 3  x  3 (b) − 1 − 3  x  −1 + 3 (c) −2  x  2 (d) none
12. If the domain of function f (x ) = x 2 − 6 x + 7 is (−, ) , then the range of function is
(a) (−, ) (b) [ − 2, ) (c) (−2, 3) (d) (−, − 2)

13. The domain of the function f (x ) = x − x 2 + 4+x + 4−x is


(a) [−4, ) (b) [−4, 4] (c) [0, 4 ] (d) [0, 1]
1+ x2
14. The range of is
x2

(a) (0, 1) (b) (1, ) (c) [0, 1] (d) [1, )


x+2
15. The range of the function f (x ) = is
| x + 2|

(a) {0, 1} (b) {– 1, 1} (c) R (d) R − {−2}

x2 + x + 2
16. Range of the function f (x ) = ; x  R is
x2 + x +1
(a) (1, ) (b) (1, 11 / 7) (c) (1, 7 / 3] (d) (1, 7 / 5]

17. The domain of the function log( x 2 − 6 x + 6) is


(a) (−, ) (b) (−,3 − 3 )  (3 + 3 , ) (c) (−, 1] [5, ) (d) [0, )
1
18. Find the value of x satisfying =2
4log2 x
(a) 4 (b) -4 (c) ±4 (d) -3
19. The domain of the function f (x ) = log 3 + x (x − 1) is 2

(a) (−3, − 1)  (1, ) (b) [−3, − 1) [1, )


(c) (−3,−2)  (−2, − 1)  (1, ) (d) [−3, − 2)  (−2, − 1)  [1, ]
20. Logarithm of 32 4 to the base 2 2 is
5

(a) 3.6 (b) 5 (c) 5.6 (d) none


21. The number log 2 7 is
(a) An integer (b) A rational number (c) An irrational number (d) A prime number
22. If log 10 3 = 0.477 , the number of digits in 3 is 40

(a) 18 (b) 19 (c) 20 (d) 21


23. Which is the correct order for a given number  in increasing order
(a) log 2 , log 3 , log e , log10  (b) log10 , log 3 , log e , log 2 
(c) log10 , log e , log 2 , log 3  (d) log 3 , log e , log 2 , log10 
24. If log 0.3 (x − 1)  log 0.09 (x − 1), then x lies in the interval
(a) (2, ) (b) (– 2, –1) (c) (1, 2) (d) none
(l 2 + lm + m 2 ) (m 2 + nm + n 2 ) (n 2 + nl + l 2 )
 l   xm   xn 
25. For x  0,  xm 


 xn



 xl

 =
x     
(a) 1 (b) x (c) does not exist (d) none
1 1 1
26. If 2 x =4 =8 y z
and xyz = 288 , then + + =
2x 4y 8z
(a) 11/48 (b) 11/24 (c) 11/8 (d) 11/96
n +1 n −1
2 .3 + 7 .3
27. =
3 n + 2 − 2(1 / 3)1 −n
(a) 1 (b) 3 (c) –1 (d) 0
x +2 2−2 x
2 3
28. If   =  , then x=
3 2
(a) 1 (b) 3 (c) 4 (d) 0
( x 2 + 2) ( x 2 + 2)
29. The equation 4 − 9.2 + 8 = 0 has the solution
(a) x = 1 (b) x = −1 (c) x = 2 (d) x = − 2
30. The greatest number among 3 9 , 4 11 , 6 17 is
(a) 3 9 (b) 4 11 (c) 6
17 (d) cannot be determined
31. If x = 3 ( 2 + 1) − 3 ( 2 − 1); then x 3 + 3 x =
(a) 2 (b) 6 (c) 6x (d) none
32. If f(x) = log1 2 ( x − 2x + 2 ) , then domain of f(x) is
2

(a) R (b) {1} (c) R+ (d) {2}


33. If f(x) = logx2 x , then the domain of f(x) is
(a) R+ (b) R – {1} (c) R+ – {1} (d) none
x + e
2
34. If f(x) = n  2  , then range of f(x) is
 x +1 
(a) (0, 1) (b) [0, 1] (c) [0, 1) (d) (0, 1]
2
35. The value of x, satisfying the inequality log0.3(x + 8) > log0.39x, lies in
(a) 1 < x < 8 (b) 8 < x < 13 (c) x > 8 (d) none
36. The value of |logba + logab| where a and b are positive numbers is always
(a)  2 (b)  2 (c) = 2 (d) none
loga n − logb n
37. If a > 0, c > 0, b = ac , a  1, c  1, ac  1 and n > 0, then the value of is equal to
logb n − logc n
loga n logn a
(a) (b) (c) logca (d) none
logc n logn c
38. Values of x satisfying the equation log( 2x +3 ) ( 6x 2 + 23x + 21) = 4 − log( 3x +7 ) ( 4x 2 + 12x + 9 ) are
1 1 1 1
(a) −1, − (b) −2, − (c) −1, − (d) −2, −
3 4 4 3
 x 
6 log10  
39. Value of x, satisfying the equation aloga x. log10 a.loga 5 − 3  10  = 9log100 x +log4 2 is
5
(a) 50 (b) 100 (c) 150 (d) 200
1 1 1 1
40. + + + ....... + =
log2 n log3 n log4 n log43 n
logn 1
(a) (b) (c) log43! n (d) none
log(43!) log 43! n
loga ( logb a )
41. The value of is
logb ( loga b )
(a) logab (b) logba (c) − logab (d) none
42. The values of x, satisfying the equation 2logx a + logax a + 3loga2x a = 0  a > 0 are
(a) a−2, a−1 (b) a−1/2, a−1 (c) a−3, a−1 (d) a−4/3, a−1/2
1
(log 2 x − 2 )
43. The solutions of the equation x 2 = 16 are
1 1
(a)  2 2 (b) 4, − 2 (c) 16 , (d) 4 ,
4 16
1+ x
If f (x ) = log then f 
2x 
44. , 2
is equal to
1 − x  1 + x 
(a) [ f (x )]
2
(b) [ f (x )]3 (c) 2 f (x ) (d) 3 f (x )
45. The value of log 3 4 log 4 5 log 5 6 log 6 7 log 7 8 log 8 9 is
(a) 1 (b) 2 (c) 3 (d) 4
46. If x = log a (bc), y = log b (ca), z = log c (ab) , then which of the following is equal to 1
(a) x + y + z (b) (1 + x )−1 + (1 + y)−1 + (1 + z)−1
(c) xyz (d) none
The equation x3 / 4(log x) +log x −(5 / 4) = 2 has
2
47. 2 2

(a) at least one real solution (b) exactly three real solutions
(c) exactly one irrational solution (d) complex roots
48. The least value of the expression 2log10x – logx(0.10), for x  1, is
(a) 10 (b) -0.01 (c) 2 (d) none
49. The domain of the function (log05 x ) is –
(a) [ 1,  [ (b) ] 0,  [ (c) ] 0, 1] (d) ] 0.5, 1]
50. The domain of the definition of the function f ( x ) = log x − 4 ( 4 − x ) is −
(a) (− , − 4)  (4 , ) (b) (− , − 5) (c) (−, − 5)  (−5 , − 4) (d) (− , − 5)  (−4 , 4)
 x 
51. Domain of the function f ( x ) = log 1/ 3  2  is −
 x − 1
 1− 5   1+ 5 
(a) (−1, 0)  (1, ) (b) (− , − 1)  (0 , 1) (c)  , 1   ,  (d) none
 2   2 
   
log 0.3 ( x − 1)
52. The domain of the function f ( x) = is
x 2 − 3x − 18
(a) [2,6] (b) (2,6) (c) [2,6) (d) none
53. What is domain of logarithmic function
(a) ( 0,  ) (b) R (c) ( −,  ) (d) ( −, 0 )
54. If f ( x) = log x , g ( x) = x3 then f ( g (a)) + f ( g (b)) =
(a) f  g (a) + g (b) (b) 3 f (ab) (c) g ( f (ab)) (d) g ( f (a) + f (b))
2𝑥−1
55. The domain of the function f(x)=√−log 𝑥−4 (log 2 ) is
2 3+𝑥
(a) (-4, -3) ᴜ (4, ∞) (b) (-∞, -3) ᴜ (4, ∞) (c) (-∞, -4) ᴜ (3, ∞) (d) none
𝑥−5 3
56. The domain of the function 𝑓(𝑥)= log10 𝑥 2 −10𝑥+24 - √𝑥 + 5 is
(a) (-5, ∞) (b) (5, ∞) (c) (2,5) ᴜ (5, ∞) (d) (4,5) ᴜ (6, ∞)
57. The domain of the function f (x) = log x is equal to
2

(a) R − 0 (b) ( 0, ) (c) R (d) none


58. The domain of real valued function f (x) = loge |loge X | is
(a) (1,+ ) (b) ( 0, ) (c) ( e ,  ) (d) none

59. log 7 log 7 7( 7 7 ) =


(a) 3log 2 7 (b) 1 − 3log3 7 (c) 1 − 3log 7 2 (d) none
60. If A = log 2 log 2 log 4 256 + 2 log 2
2, then A is equal to
(a) 2 (b) 3 (c) 5 (d) 7
61. If log x : log y : log z = ( y − z):( z − x) : ( x − y) then
(a) x y . y z .z x = 1 (b) x x y y z z = 1 (c) x
x y
y z z =1 (d) none

62. The solution of the equation log 7 log 5 ( x 2 + 5 + x ) = 0


(a) x = 2 (b) x = 3 (c) x = 4 (d) x = −2
63. If a, b, c are distinct positive numbers, each different from 1, such that
[logb a logc a − log a a] + [log a b logc b − logb b] + [log a c logb c − log c c] = 0, then abc =
(a) 1 (b) 2 (c) 3 (d) none
1 1
64. If +  x, then x be
log3  log 4 
(a) 2 (b) 3 (c) 3.5 (d) 

1
65. If  log 0.1 x  2 then........
2
1 1 1
(a) The maximum value of x is (b) x lies between and
10 100 10
1 1 1
(c) x does not lie between and (d) The minimum value of x is
100 10 100
x+2
66. The set of real values of x for which log 0.2  1 is
x
 5 5 
(a)  −, −   (0, +) (b)  , +   (c) (−, − 2)  (0, + ) (d) none
 2 2 
67. The set of real values of x satisfying log1/2 ( x 2 − 6 x + 12)  −2 is
(a) ( −, 2 (b) [2, 4] (c)  4, + ) (d) none
68. Logarithm of 32 5 4 to the base 2 2 is
(a) 3.6 (b) 5 (c) 5.6 (d) none
15
69. The value of is
10 + 20 + 40 − 5 − 80

(a) 5 (5 + 2 ) (b) 5 (2 + 2 ) (c) 5 (1 + 2 ) (d) 5 (3 + 2 )


70. The rationalizing factor of a1 / 3 + a−1 / 3 is
(a) a1 / 3 − a −1 / 3 (b) a 2 / 3 + a −2 / 3 (c) a 2 / 3 − a −2 / 3 (d) a 2 / 3 + a −2 / 3 − 1

71. (3 + 5 ) is equal to
1
(a) 5 +1 (b) 3+ 2 (c) ( 5 + 1) / 2 (d) ( 5 + 1)
2

72. [10 − (24 ) − (40 ) + (60 )] =

(a) 5+ 3+ 2 (b) 5+ 3− 2 (c) 5− 3+ 2 (d) 2+ 3− 5

73. 4
(17 + 12 2 ) =

(a) 2 +1 (b) 21 / 4 ( 2 + 1) (c) 2 2 +1 (d) none


74. 3
(61 − 46 5 ) =

(a) 1 − 2 5 (b) 1− 5 (c) 2− 5 (d) none


75. The equation (x + 1) − (x − 1) = (4 x − 1) , x  R has

(a) One solution (b) Two solution (c) Four solution (d) No solution
76. The remainder obtained when the polynomial x 64
+ x + 1 is divided by
27
(x + 1) is
(a) 1 (b) – 1 (c) 2 (d) – 2
  1
77. If a = log1/ 2 0.125 and b = log3   then
 24 − 17 
(a) a> 0, b > 0 (b) a < 0, b < 0 (c) a > 0, b < 0 (d) a < 0, b > 0

78. The value of x, satisfying 34log9 ( x+1) = 22log2 x + 3 , is

(a) x = 0 (b) x = 1 (c) x = 2 (d) x = 3

f ( x) − 5
79. Let f : R → R be a function defined by f ( x + 1) = x  R then which of the following
f ( x) − 3
statements is /are true?
(a) f (2008) = f (2004) (b) f (2006) = f (2010) (c) f (2006) = f (2002) (d) f (2006) = f (2018)

x 2 + 14 x + 9
80. If x is real, then value of the expression lies between
x 2 + 2x + 3
(a) 5 and 4 (b) 5 and – 4 (c) – 5 and 4 (d) none
81. Range of the function f (x) = x − x 2
is

(a) (0,1) (b) R − [ 0, 1] (c) R − [ 0, 1/ 2 ] (d) [ 0, 1/ 2 ]

82. Range of the function f (x) = 9x − 3x + 1 is

(a) [3 / 4, ) (b) [0, ) (c) [3 / 4, 3 / 2] (d) [1, )

x2 − 2 x + 4
83. If f ( x) = , x  R then range of function is
x2 + 2 x + 4

 1 1 
(a) [– 3, 3] (b)  − ,  (c) (3, + ) (d)  , 3
 3 3 

84. Solutions of inequality x2 + x+ | x | +1  0 is

(a) (1,2) (b) (0,1) (c) no solution (d) none

85. Solution of x 2 + 3x + x 2 − 2  0 is

 2
(a) ( −,1) (b) ( 0,1) (c)  −, −  (d) none
 3

86. What is the domain of the f ( x) = x

(a) ( 0,  ) (b) ( −, 0 ) (c) real number (d) none

87. What the domain of f ( x ) = 2005

(a) real number (b) (−,0) (c) (0, 2005) (d) (2005,0)

88. What is domain of logarithmic function


(a) ( 0,  ) (b) R (c) ( −,  ) (d) ( −, 0 )

1
89. What is the range of is
x
(a) R − 0 (b) 0 (c) R − 1 (d) R − 

90. What is the value [x]+[-x] =……. if x is not an integer


(a) -1 (b) 1 (c) 0 (d) ±1

91. What is the domain of f ( x) = x − 2 + 2009 x − 3

(a)  2,  ) (b)  2,3 (c) ( −, 2 (d) (2,3)

𝑥−[𝑥]
92. Let 𝑓(𝑥)=1+𝑥−[𝑥] x ϵ R, then the range of 𝑓 is

(a) [0,1] (b) [0,1/2] (c) [0,1/2) (d) (0,1)


1
93. Let 𝑓(𝑥) = 𝑥 2 +4 and 𝑔(𝑥) = , then
√𝑥−1

(a) dom (𝑓+ 𝑔) = (0, ∞) ̴ (0,1) (b) range 𝑓∩range 𝑔 = [4 ∞)


(c) range g= (0, ∞) (d) range 𝑓ᴜ range 𝑔 = (0, ∞)
𝑥−5 3
94. The domain of the function 𝑓(𝑥)= log10 𝑥 2 −10𝑥+24 - √𝑥 + 5 is

(a) (-5, ∞) (b) (5, ∞) (c) (2,5) ᴜ (5, ∞) (d) (4,5) ᴜ (6, ∞)

 x −5
95. If f ( x ) =   is a real valued function, its domain is
 3− x 
(a)  x : x  3 or x  5 (b) 3 < 𝑥 ≤ 5 (c) 3 ≤ 𝑥 < 5 (d) 3 < 𝑥 < 5
96. If f is a function such that f (0) = 2, f (1) = 3 , f ( x + 2) = 2 f ( x) − f ( x + 1) , then f (5) is
(a) -7 (b) -3 (c) 7 (d) 13
97. Given, y = sgn( x) , then
(a) | x |= x sgn( x) (b) sgn(sgn( x)) = sgn( x) (c) x =| x | sgn( x) (d) all of (a), (b), (c)

98. If f : R → R, g : R → R, be two given functions, then 2 min.  f ( x ) − g ( x ) ,0 =

(a) f ( x ) + g ( x ) − |g ( x ) − f ( x )| (b) f ( x ) + g ( x ) + |g ( x ) − f ( x )|
(c) f ( x ) − g ( x ) + |g ( x ) − f ( x )| (d) f ( x ) − g ( x ) − |g ( x ) − f ( x )|

You might also like