HLOA
HLOA
https://doi.org/10.1007/s10462-023-10653-7
Abstract
This paper introduces HLOA, a novel metaheuristic optimization algorithm that mathemat-
ically mimics crypsis, skin darkening or lightening, blood-squirting, and move-to-escape
defense methods. In crypsis behavior, the lizard changes its color by becoming translu-
cent to avoid detection by its predators. The horned lizard can lighten or darken its skin,
depending on whether or not it needs to decrease or increase its solar thermal gain. The
skin darkening or lightening strategy is modeled by including the stimulating hormone
melanophore rate( 𝛼-MHS) that influences these skin color changes. Further, the move-
to-evasion strategy is also mathematically described. The horned lizard’s shooting blood
defense mechanism, described as a projectile motion, is also modeled. These strategies bal-
ance exploitation and exploration mechanisms for local and global search over the solution
space. HLOA performance is benchmarked with sixty-three optimization problems from
the literature, testbench problems provided in IEEE CEC- 2017 “Constrained Real-Param-
eter Optimization”, analyzed for dimensions 10, 30, 50, and 100, as well as testbench func-
tions from IEEE CEC-06 2019 “100-Digit Challenge”. Moreover, three real-world con-
straint optimization applications from IEEE CEC2020 and two engineering problems, the
multiple gravity assist optimization and the optimal power flow problem, are also studied.
Wilcoxon and Friedman statistics tests compare the HLOA algorithm results against ten
recent bio-inspired algorithms. Wilcoxon shows that HLOA provides the optimal solution
for most testbench functions more effectively than competing algorithms. At the same time,
the Friedman statistics test ranks the HLOA first, and the n-dimensional analysis shows
that it performs better on the constrained optimization problems for dimensions 50 and
100. The source code is free and available from https://www.mathworks.com/matlabcent
ral/fileexchange/159658-horned-lizard-optimization-algorithm-hloa.
13
Vol.:(0123456789)
59 Page 2 of 65 H. Peraza‑Vázquez et al.
1 Introduction
Optimization determines the optimal values of a problem’s variables to minimize (or maxi-
mize) an objective function. It can be represented in the following way:
Given a function f to minimize, where f ∶ ℝD → ℝ , with D as the dimension of the
problem (number of variables), sought a vector xo ∈ ℝD such that f (xo ) ⩽ f (x) ∀ x ∈ ℝD ,
while xo satisfying inequality and equality constraints, gp (x0 ) ⩽ 0 and, hq (x0 ) = 0 , with
p = 1, 2, .., P and, q = 1, 2, .., Q , where P and Q, are number of inequality and equal-
ity constraints, respectively. Additionally, it must be met that xil ⩽ xi ⩽ xiu , where
i = 1, 2, .., D and i-th variable varies in the interval [xil , xiu ].
Optimization problem-solving strategies are classified as Deterministic or Stochas-
tic. Deterministic methods are grouped as gradient-based or not gradient-based, where
both classifications show good performance for linear, convex, and simple optimization
tasks. Nevertheless, these methods don’t work in certain cases that involve complex
problems, objective functions that can’t be differentiated, search spaces that aren’t lin-
ear, problems that aren’t convex, and NP-hard problems. Given that many real-world
optimization problems are NP-hard, the scientific community frequently uses stochastic
methodologies such as metaheuristics instead of deterministic methods.
Some of the metaheuristics and their classification are depicted in Fig. 1 and
described as follows:
13
A novel metaheuristic inspired by horned lizard defense tactics Page 3 of 65 59
13
59 Page 4 of 65 H. Peraza‑Vázquez et al.
Since no algorithm can effectively and efficiently solve any optimization or instances of the
same problem (Joyce and Herrmann 2017), the scientific community keeps developing new
algorithms to solve challenging optimization problems that outperform or vie with those
already described in the literature.
A generic metaheuristic framework consists of four phases described below and
depicted in Fig. 2.
Phase 1: A set of initial population vectors are randomly generated. This population will
evolve with each iteration. Each vector represents the search agent, where the population
size can affect the algorithm’s performance.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 5 of 65 59
Phase 2: Fitness is the result of evaluating the entire population of the objective func-
tion of each vector. When minimizing, the population’s lowest fitness vector is best.
Phase 3: Here, it is required to incorporate mathematical functions recombining the
vectors. These functions can model the behavior of living beings or physical/chemical phe-
nomena as bio-inspired functions.
Phase 4: The vector with the best fitness is then compared to the fitness of the previously
recombined vectors in each iteration. If the number of iterations has not been met, stop condi-
tion, it returns to phase 2. Otherwise, the best fitness value reached is reported. The number
of iterations, known as generations, is a value defined before starting the algorithm that influ-
ences the algorithm’s performance in this evolutionary process.
Finally, every metaheuristic should have a good balance between the ability to explore
(diversify) and exploit (intensify) the search solution space. In other words, it should have
global and local search strategies to improve its performance.
This paper proposes a Horned Lizard Optimization Algorithm (HLOA) as a novel swarm-
based algorithm. This algorithm was inspired by how the horned lizard reptile conceals and
defends itself from predators. The contributions of this work can be briefed as follows:
• A novel bio-inspired optimization algorithm that encompasses all aspects of the Horned
Lizard’s behavior to defend himself from their predators. Four defense strategies include
crypsis behavior, skin darkening or lightening blood-Squirting, and move-to-escape.
Also, the alpha-melanophore stimulating hormone rate, which influences their skin color
change, is considered. These strategies could inspire other researchers to explore new
directions and applications in the bio-inspired algorithms field, leading to a proliferation of
related research.
• HLOA performance is evaluated in the following set of functions: IEEE CEC 2017 ”Con-
strained Real-Parameter Optimization” for 10-dimensional, 30-dimensional, 50-dimen-
sional, and 100-dimensional benchmark problems, IEEE CEC06-2019 "100-Digit Chal-
lenge" test functions, and sixty-three testbench functions from the literature. Furthermore,
three real-world constraint optimization applications from CEC2020 and two engineering
problems, multiple gravity assist optimization and the optimal power flow problem, were
also tested.
• When comparing the HLOA algorithm to other approaches, it allows the scientific com-
munity to understand the relative strengths and weaknesses of different techniques evalu-
ated with the same test instances.
• The algorithm is validated with Friedman tests, Wilcoxon tests, and convergence analy-
ses. The results are compared to those of ten recently developed bio-inspired metaheuristic
algorithms.
• The scientific community can access the HLOA’s Matlab source code to support this
study’s findings.
The remaining sections of this paper are structured as follows: The second section illustrates
the HLOA bio-inspiration, a detailed mathematical formulation, the time complexity, and the
pseudo-code. Then, the performance of the proposed approach is benchmarked with several
testbench functions, and their comparison with ten recent bio-inspired algorithms is presented
in the third section. In the fourth section, the algorithm’s results and discussion are presented.
The fifth section describes the application of HLOA to real-world optimization problems and
the constraint-handling technique employed. Finally, the paper summarizes the conclusions
and future work.
13
59 Page 6 of 65 H. Peraza‑Vázquez et al.
2.1 Biological fundamentals
As previously described, the lizard can defend itself by changing its colors to match its
surroundings. Additionally, it can lighten or darken its skin, depending on whether it needs
to increase or decrease its solar thermal gain. The rate of the lizard’s alpha-melanophore-
stimulating hormone (𝛼-MSH) is a factor in this rapid color change. Moreover, it can also
shoot a short stream of blood to defend against its prey. In this work, each of these lizards’
Fig. 3 Horned Lizard Phrynosoma. Photograph by Brdavids (published under a CC BY 2.0 license)
13
A novel metaheuristic inspired by horned lizard defense tactics Page 7 of 65 59
defense behaviors, described before, are mathematically modeled as part of the optimiza-
tion algorithm.
Crypsis is the process through which an organism can blend in with its surroundings by
imitating characteristics of the environment, such as color and texture, or even by becom-
ing translucent, making it difficult for predators or prey to detect or recognize them, see
Fig. 5. It is an adaptive behavior that helps organisms avoid detection, thus increasing their
chances of survival in the wild world (Ruxton et al. 2004). As the scope of this work is
based on the horned lizard, it is to be noted that its crypsis method is mathematically repre-
sented through color theory (Westland et al. 2012; Niall 2017).
On the other hand, The International Commission on Illumination (CIE) (Niall 2017)
standardized light sources by the amount of emitted energy, throughout the visible spec-
trum (400 to 700 nm), at each wavelength. In addition, the organization defined a color
evaluation system, e.g., L*a*b system for Cartesian coordinates and L*C*h system for
polar coordinates, to compute a color in a color space.
In the L*a*b system, L* indicates the luminosity, and a* and b* are the chromatic coor-
dinates, as shown below.
{
+a, indicates Red
a∗ =
{ −a, indicates Green (1)
∗ +b, indicates Yellow
b =
−b, indicates Blue
In the L*C*h system, L* defines lightness, C* specifies color intensity, and h* indi-
cates hue angle (an angular measurement). Hue moves in a circle around the "equator"
to describe the color family (red, yellow, green, and blue) and all the colors in between.
i.e., The numbers on the hue circle range from 0 to 360, starting with red at 0 degrees,
then moving counterclockwise through yellow, green, blue, then back to red. The L axis
describes the luminous intensity of the color. Comparing the value makes it possible to
classify colors as light or dark. Both color system representations are shown in Figs. 4 and
5.
The transformation of rectangular coordinates to polar coordinates can be seen in Eq. 2.
√
c∗ = a∗2 + b∗2
� ∗�
b (2)
h = arcTg ∗
a
c* and h values correspond to chroma (or saturation) and hue, respectively. The value of h
is the hue angle and is expressed in degrees ranging from 0 ◦ to 360◦ . The inverse formulas
are as follows:
a∗ = c∗ cos (h)
b∗ = c∗ sin(h) (3)
Without loss of generality, let the ordered pair (a∗p , b∗q ) and (a∗r , b∗s ) be any two colors, with
p ≠ q ≠ r ≠ s. So, any two new colors, e.g., colorVar1 and colorVar2, can be obtained with
the following arithmetic operations shown in Eq. 4
13
59 Page 8 of 65 H. Peraza‑Vázquez et al.
Fig. 5 Horned Lizard Crypsis. Photograph by Paul Asman and Jill Lenoble (published under a CC BY 2.0
license)
13
A novel metaheuristic inspired by horned lizard defense tactics Page 9 of 65 59
where the angles (hue) meets hp ≠ hq ≠ hr ≠ hs, and chroma c1 ≠ c2. Finally, c1 and c2 are
factorized as shown in Eq. 7.
[ ] [ ]
colorVar = c1 sin(hp ) − cos(hq ) ± c2 cos(hr ) − sin(hs ) (7)
→
Where x i (t + 1) is the new search agent position (horned lizard) in the solution search
→
space for the generation t + 1, x best (t) is the best search agent for the generation t; r1, r2, r3
and, r4 are integer random numbers generated between 1 and the utmost number of search
agents, with r1 ≠ r2 ≠ r3 ≠ r4; x r1 (t), x r2 (t), x r3 (t) and, x r4 (t) are the r1, r2, r3, r4-th search
→ → → →
The horned lizard can lighten or darken its skin, depending on whether or not it needs
to decrease or increase its solar thermal gain (Sherbrooke and Sherbrooke 1988). Thermal
energy obeys the same conservation laws as light energy (Burtt 1981). Therefore, it is the key
to the relationship between color and temperature. Thus, colors that reflect lighter repel more
heat. In this way, dark colors absorb more heat because they absorb more light energy (Burtt
1981). The color changes in the skin of the horned lizard are represented by Eqs. 9 and 10.
Equation 9 represents the lightning-skin strategy. Whereas, Eq. 10 represents the darkening-
skin strategy.
13
59 Page 10 of 65 H. Peraza‑Vázquez et al.
Table 1 The color palette used Name Color Hexadecimal Decimal Normalized
for lightening or darkening the
skin
Lightening1 E8E8E8 15263976 0.0
Lightening2 9398BF 9672895 0.4046661
Darkening1 763660 7747080 0.5440510
Darkening2 161617 1447447 1
(→ )
→ → 1 →
x worst (t) = x best (t) + Light1 sin x r1 (t) − x r2 (t)
2
(→ ) (9)
𝜎1
→
− (−1) Light2 sin x r3 (t) − x r4 (t)
2
(→ )
→ → 1 →
x worst (t) = x best (t) + Dark1 sin x r1 (t) − x r2 (t)
2
(→ ) (10)
𝜎1
→
− (−1) Dark2 sin x r3 (t) − x r4 (t)
2
Where Light1 and Light2 are random numbers generated between Lightening1 (0 value) and
Lighthening2 (0.4046661 value), using these normalized values taken from Table 1. Analo-
gously, Dark1 and Dark2 are random numbers generated between Darkening1 (0.5440510
value) and Darkening2(1 value), also using→the normalized →
values from Table 1.
In addition, for both Eqs., 9 and 10, x worst (t) and x best (t) are the worst and the best
search agent found, respectively. r1, r2 , r3 and, r4 are integer random numbers generated
≠ ≠ ≠
→ →
between
→
1 and
→
the utmost number of search agents, with r 1 r 2 r 3 r 4 ; x r1 (t) , x r2 (t),
x r3 (t) and, x r4 (t) are the r1, r2 , r3, r4-th search agent selected. Finally, 𝜎 is a binary value
obtained by algorithm 1. The skin color change strategy is shown in Algorithm 2.
Notice that the worst search agent in the t iteration is replaced by the new one
obtained by the skin-darkening or skin-lightening strategy.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 11 of 65 59
2.2.3 Strategy 3: blood‑squirting
The Horned lizard fends off enemies by shooting blood from its eyes (Middendorf
2001). The shooting blood defense mechanism can be represented as a projectile
motion, depicted in Fig. 6. To obtain the equations of motion, we separate the projectile
motion into its two components, X-axis (horizontal) and Y-axis (vertical):
In the horizontal direction, the shot of blood describes a uniform line movement, so
its equation of motion will be given by:
t→
∫0
→ → → →
𝜐 = 𝜐0 + g dt = 𝜐0 + g t (11)
In the vertical direction, the shot of blood describes a uniformly accelerated rectilinear
motion, it is as follows:
t( )
∫0
→ → → → → → 1→
r = r0 + 𝜐o + g t dt = r0 + 𝜐o t + g t2 (12)
2
→
(13)
→
r0 =0
The vector equations, position, and velocity, are represented by Eqs. 14 and 15,
respectively.
→ ( )→
→ 1
𝜐 0 = 𝜐0 cos(𝛼)t j + (𝜐0 sin(𝛼))t − gt2 k (14)
2
( )→ ( )→
(15)
→ →
𝜐 = r = 𝜐0 cos(𝛼) j + 𝜐0 sin(𝛼) − gt k
13
59 Page 12 of 65 H. Peraza‑Vázquez et al.
[ ( ) ]
→ t →
x i (t + 1) = vo cos 𝛼 + 𝜀 x best (t)
Max_iter
[ ( ) ] (16)
𝛼t →
+ vo sin 𝛼 − − g + 𝜀 x i (t)
Max_iter
→
Where x i (t + 1) is the new search→
agent position (horned lizard) in the solution search
space for→the generation t + 1, x best (t) is the best search agent found, the current search
agent is x i (t), Max_iter represents the utmost number of iterations (generations), t is the
current iteration, v0 is set to 1 seg, 𝛼 is set to 𝜋2 , 𝜖 is set to 1E-6 and, g is the gravity of the
earth, 0.009807 km∕s2
2.2.4 Strategy 4: move‑to‑escape
In this strategy, the horned lizard performs a random fast move around the environment to
escape predators. Ruxton et al. (2004). A function that includes a local and global move-
ment is proposed for the mathematical modeling of this ( evasion
)→ strategy; it is described in
Eq. 17 and depicted in Fig. 7. In this equation walk 21 − 𝜀 x i (t) is a local motion around
→ →
x i (t), and adding x best (t) generates a displacement through the solution search space (the
global movement).
( )→
→ → 1
x i (t + 1) = x best (t) + walk − 𝜀 x i (t) (17)
2
→
Where x i (t + 1) is the new search
→
agent position (horned lizard) in the solution search
space for the generation t + 1, x best (t) is the best search agent for the generation t, walk is a
random number generated between -1 and 1, 𝜖 is a random number generated →
from a stand-
ard Cauchy distribution with the mean and 𝜎 set to 0 and 1, respectively. x i (t) is the current
i-th search agent in the t generation.
The horned lizard can lighten or darken its skin, depending on whether or not it needs to
decrease or increase its solar thermal gain. The rapid alteration in coloration observed
on the skin of horned lizards can be attributed to the influence of temperature on the
𝛼-melanophore stimulating hormone (𝛼-MSH). Additional information regarding
the study on hormone levels in horned lizards can be seen in Sherbrooke (1997). In
this research, the horned lizards’ 𝛼-melanophore rate value is defined in the following
equation:
Fitnessmax − Fitness(i)
melanophore(i) = (18)
Fitnessmax − Fitnessmin
Where Fitnessmin and Fitnessmax are the best and the worst fitness value in the current t gen-
eration, respectively, whereas fitness(i) is the current fitness value of the i-th search agent.
The melanophore(i) value vector obtained by computing Eq. 18 is normalized in the
interval of [0, 1]. A low 𝛼-MSH rate, less than 0.3, replaces search agents in Eq. 19, as
described in Algorithm 3.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 13 of 65 59
1
x�⃗i (t) = x�⃗best (t) + [�x⃗r1 (t) − (−1)𝜎 x�⃗r2 (t)] (19)
2
→ →
Where x i (t) is the current search agent, x best (t) is the best search agent found, r1 and r2
are integer random numbers generated between 1 and the utmost number of search agents,
with r1 ≠ r2, x r1 (t) and, x r2 (t), are the r1, r2-th search agent selected and, 𝜎 is a binary value
→ →
obtained by Algorithm 1
13
59 Page 14 of 65 H. Peraza‑Vázquez et al.
The HLOA’s time complexity analysis includes the analysis of the initialization of the
population, fitness evaluation, and updating search agents (lizards). The initialization of
the HLOA population is O(PopSize x D), where popSize is the number of search agents
(Lizards), and D is the dimension of the optimization problem (design variables number).
O(T) represents the time complexity of computing the fitness value, i.e. objective function
value. Thus, The amount of time required for the initial evaluation of fitness is bounded
by O(PopSize × O ( T )). Therefore, the HLOA main loop’s computational complexity is
O(MaxIteration x PopSize x (D+ O(T))), as summarized in Algorithm 4 (Fig. 8 ).
13
A novel metaheuristic inspired by horned lizard defense tactics Page 15 of 65 59
13
59 Page 16 of 65 H. Peraza‑Vázquez et al.
3 Experimental setup
The numerical efficiency and stability of the HLOA algorithm were evaluated by solving
63 classical benchmark optimization functions reported in the literature. Each of these
functions is described in Appendix A, Tables 30, 31, and 32, where Dim represents the
function’s dimension, Interval is the boundary of the search space for the function and, the
optimum value is fmin. The HLOA algorithm was compared with ten recent bio-inspired
algorithms as described below:
• Jumping Spider Optimization Algorithm (JSOA): The algorithm mimics the behavior
of the Arachnida Salticidade spiders in nature and mathematically models its hunting
strategies: search, persecution, and jumping skills to get the prey (Peraza-Vázquez et al.
2021).
• Black Widow Optimization Algorithm (BWOA): It is based on modeling different spi-
ders’ movement strategies for courtship-mating and the pheromone rate associated with
cannibalistic behavior in female spiders (Peña-Delgado et al. 2020).
• Coot Bird Algorithm (COOT): The Coot algorithm imitates two different modes of
movement of birds on the water surface (Naruei and Keynia 2021).
• Crystal Structure Algorithm (CSA): The algorithm is based on the principles underpin-
ning the natural occurrence of crystal structures forming from the addition of the basis
to the lattice points, which may be observed in the symmetrical arrangement of con-
stituents in crystalline minerals (Talatahari et al. 2021).
• Dingo Optimization Algorithm (DOA): The algorithm mimics the social behavior of
the Australian dingo dog. Its inspiration comes from the hunting strategies of dingoes
attacking by persecution, grouping tactics, and scavenging behavior (Peraza-Vázquez
et al. 2021).
• Enhanced Jaya Algorithm (EJAYA): The classic version of the Jaya algorithm has the
defect of easily getting trapped in local optima. This updated version uses the popula-
tion information more efficiently to improve its performance (Zhang et al. 2021).
• Rat Swarm Optimizer (RSO): The inspiration of this optimizer is the attacking and
chasing behaviors of rats in nature (Dhiman et al. 2021).
• Smell Agent Optimization (SAO): The algorithm is based on the relationships between a
smelling agent and an object evaporating a smell molecule (Salawudeen et al. 2021).
• Tunicate Swarm Algorithm (TSA): The algorithm imitates jet propulsion and swarm
behaviors of tunicates during the navigation and foraging process (Kaur et al. 2020).
• Wild Horse Optimizer (WHO): The algorithm is based on the social behavior of wild
horses, such as grazing, chasing, dominating, leading, and mating. The mathematical
model includes the representation of mares, foals, and stallions living in groups (Naruei
and Keynia 2021).
Each algorithm’s benchmark function was executed 30 times, with the population size and
number of iterations set to 30 and 200, respectively. Furthermore, the Wilcoxon signed-
rank test was used to compare their performance, and the ranking of each algorithm was
obtained by the Friedman test. It is to be noted that the three best-ranked algorithms deter-
mined by this selection are then evaluated on IEEE CEC 2017 and CEC 2019, as described
below.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 17 of 65 59
13
Table 4 Comparison of optimization results obtained for 63 benchmark functions
Algorithms HLOA JSOA BWOA
13
F1 − 8.88E-16 − 8.88E-16 0.00E+00 − 8.88E-16 − 8.88E-16 0.00E+00 − 8.88E-16 − 8.88E-16 0.00E+00
59 Page 18 of 65
F28 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15
F29 − 6.74E-01 − 6.74E-01 1.32E-16 − 6.74E-01 − 6.74E-01 3.57E-17 − 6.74E-01 − 6.74E-01 1.16E-09
F30 3.81E-20 5.28E-02 1.54E-01 4.99E-18 6.92E-03 3.79E-02 9.02E-12 7.52E-01 3.70E-01
F31 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00
F32 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00
F33 3.22E+01 3.46E+01 1.80E+00 3.20E+01 3.20E+01 1.08E-14 3.20E+01 3.20E+01 1.08E-14
F34 9.00E-01 9.00E-01 4.52E-16 9.00E-01 9.00E-01 4.52E-16 9.00E-01 9.00E-01 4.52E-16
F35 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F36 6.98E+02 1.29E+03 3.35E+02 1.66E+03 2.14E+03 1.48E+02 2.94E+03 4.35E+03 6.48E+02
F37 2.36E-05 8.12E-04 8.88E-04 1.08E-05 2.95E-04 3.31E-04 2.16E-05 4.44E-04 3.99E-04
F38 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F39 − 5.00E+00 − 1.95E+00 2.43E+00 0.00E+00 1.82E-38 6.19E-38 − 5.00E+00 − 1.67E-01 9.13E-01
F40 2.24E-02 2.68E+01 7.13E+00 1.07E-16 4.08E-01 1.11E+00 2.89E+01 2.90E+01 2.93E-02
A novel metaheuristic inspired by horned lizard defense tactics
F41 2.77E-53 1.43E-45 7.41E-45 0.00E+00 1.10E-37 5.37E-37 1.95E-117 4.36E-78 2.39E-77
F42 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F43 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F44 1.57E-03 1.57E-03 1.10E-06 1.57E-03 1.57E-03 6.92E-07 1.57E-03 1.57E-03 1.24E-06
F45 2.93E-01 2.93E-01 5.50E-10 2.93E-01 2.93E-01 3.93E-06 2.93E-01 2.93E-01 6.01E-06
F46 2.31E-51 5.23E-47 2.16E-46 0.00E+00 2.70E-39 4.38E-39 2.60E-136 4.26E-97 2.30E-96
F47 7.73E-57 2.02E-48 3.97E-48 0.00E+00 7.56E-40 2.61E-39 8.32E-125 9.58E-95 5.23E-94
F48 2.00E-58 2.80E-46 1.38E-45 0.00E+00 2.89E-39 1.11E-38 6.01E-126 2.20E-91 1.20E-90
F49 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.48E-297 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F50 3.90E+03 5.84E+03 1.02E+03 3.82E-04 3.04E+03 1.48E+03 7.10E+03 8.41E+03 5.64E+02
F51 − 4.45E+02 − 3.30E+02 1.07E+02 − 4.45E+02 − 4.41E+02 9.00E+00 − 1.96E+02 − 1.46E+02 9.58E+00
F52 − 3.86E+02 − 3.21E+02 4.09E+01 − 3.86E+02 − 3.66E+02 4.27E+01 − 2.22E+02 − 1.57E+02 1.81E+01
F53 − 3.19E+32 − 1.85E+31 6.25E+31 − 8.75E+33 − 4.23E+32 1.68E+33 − 5.94E+25 − 3.05E+24 1.10E+25
Page 19 of 65 59
13
Table 4 (continued)
Algorithms HLOA JSOA BWOA
13
F54 5.61E-104 1.97E-89 1.03E-88 0.00E+00 1.67E-67 4.30E-67 1.59E-242 2.98E-199 0.00E+00
59 Page 20 of 65
F55 − 1.03E+03 − 9.87E+02 1.94E+01 − 1.17E+03 − 8.23E+02 2.37E+02 − 7.46E+02 − 6.42E+02 5.21E+01
F56 1.55E-101 3.73E-88 2.04E-87 0.00E+00 2.23E-65 1.19E-64 4.78E-258 8.80E-197 0.00E+00
F57 4.20E-119 6.21E-106 3.37E-105 0.00E+00 4.17E-70 2.19E-69 4.29E-257 9.11E-192 0.00E+00
F58 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F59 4.29E-43 3.70E-07 1.88E-06 2.18E-34 9.39E-30 1.84E-29 5.39E-82 3.13E-18 1.72E-17
F60 3.51E-12 5.52E-12 3.61E-12 0.00E+00 3.51E-13 1.07E-12 3.51E-12 6.67E-08 2.38E-07
F61 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 1.00E+00 0.00E+00
F62 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 1.00E+00 0.00E+00
F63 9.30E-106 4.87E-90 2.66E-89 3.29E-72 1.26E-63 4.29E-63 7.42E-263 6.29E-194 0.00E+00
Algorithms
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.95E-14 5.17E-13 0.00E+00 0.00E+00 0.00E+00
F13 0.00E+00 2.50E-10 1.36E-09 2.29E-19 1.71E-08 8.51E-08 1.41E-06 1.98E-04 1.74E-04
F14 1.38E-87 1.57E-04 8.61E-04 4.17E-17 7.37E-12 2.40E-11 2.19E-05 5.39E-04 3.98E-04
F15 1.94E-174 3.79E-30 2.07E-29 2.78E-25 6.11E-09 3.32E-08 8.10E-18 1.20E-09 2.28E-09
F16 1.70E-03 9.71E-02 3.25E-01 1.13E-02 2.69E-01 6.96E-01 1.56E-01 4.35E-01 2.17E-01
F17 − 2.06E+00 − 2.06E+00 1.06E-08 − 2.06E+00 − 2.06E+00 4.74E-07 − 2.06E+00 − 2.06E+00 8.34E-07
F18 − 2.48E+04 − 2.48E+04 7.28E-03 − 2.48E+04 − 2.48E+04 1.49E-05 − 2.48E+04 − 2.48E+04 7.55E-01
F19 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 9.98E-01 1.16E-02 − 1.00E+00 − 1.00E+00 1.02E-12
F20 − 1.00E+00 − 1.00E+00 1.36E-08 − 1.00E+00 − 1.00E+00 8.48E-09 − 1.00E+00 − 1.00E+00 2.19E-04
F21 0.00E+00 1.44E-42 7.86E-42 1.69E-36 4.14E-23 2.18E-22 7.59E-25 2.51E-20 5.38E-20
F22 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 1.00E+00 2.31E-12 − 1.00E+00 − 1.00E+00 3.20E-10
F23 3.00E+00 3.00E+00 1.76E-07 3.00E+00 3.00E+00 6.38E-09 3.00E+00 3.00E+00 8.27E-04
A novel metaheuristic inspired by horned lizard defense tactics
F24 − 2.87E+00 − 2.87E+00 6.85E-16 − 2.87E+00 − 2.87E+00 3.67E-12 − 2.87E+00 − 2.87E+00 3.66E-07
F25 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.29E-08 1.61E-07 0.00E+00 2.26E-06 1.13E-05
F26 7.67E-02 4.20E-01 2.11E-01 5.57E-02 1.68E-01 7.15E-02 6.80E-02 1.50E-01 4.57E-02
F27 0.00E+00 6.39E-08 3.50E-07 4.22E-15 4.08E-05 1.85E-04 6.40E-05 1.55E-03 1.51E-03
F28 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15
F29 − 6.74E-01 − 6.74E-01 1.62E-06 − 6.74E-01 − 6.74E-01 3.29E-11 − 6.74E-01 − 6.74E-01 7.67E-08
F30 0.00E+00 2.47E-01 2.56E-01 2.47E-11 7.54E-03 3.88E-02 1.72E-05 3.30E-04 3.14E-04
F31 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00
F32 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00
F33 3.20E+01 3.20E+01 1.08E-14 3.25E+01 3.57E+01 1.62E+00 3.20E+01 3.20E+01 1.08E-14
F34 9.00E-01 9.00E-01 4.61E-16 9.00E-01 1.41E+00 1.16E+00 9.00E-01 9.00E-01 5.45E-06
F35 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Page 21 of 65 59
13
Table 4 (continued)
Algorithms
13
Best Ave. Std. Best Ave. Std. Best Ave. Std.
59 Page 22 of 65
F36 2.00E+03 2.98E+03 6.44E+02 3.93E+02 1.63E+03 5.49E+02 1.48E+03 2.20E+03 3.49E+02
F37 1.09E-04 6.61E-04 6.20E-04 8.20E-04 8.89E-03 6.02E-03 2.61E-06 2.62E-03 1.63E-03
F38 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.78E-02 9.74E-02 1.25E-12 6.34E-06 1.86E-05
F39 − 5.00E+00 − 7.97E-01 1.82E+00 − 4.69E+00 − 4.52E+00 1.06E-01 − 2.26E+00 − 7.24E-01 6.54E-01
F40 2.88E+01 2.89E+01 3.79E-02 2.83E+01 3.32E+01 1.03E+01 2.88E+01 2.88E+01 3.02E-02
F41 0.00E+00 3.33E-03 1.82E-02 4.12E-11 1.12E-01 1.14E-01 2.83E-06 3.50E-02 4.68E-02
F42 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.22E-17 8.94E-17 0.00E+00 0.00E+00 0.00E+00
F43 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.09E-14 1.14E-13 0.00E+00 0.00E+00 0.00E+00
F44 1.57E-03 1.59E-03 5.54E-05 1.57E-03 1.78E-03 5.08E-04 1.57E-03 1.57E-03 2.49E-06
F45 2.93E-01 2.93E-01 1.62E-05 2.93E-01 2.93E-01 2.17E-05 2.93E-01 2.93E-01 1.88E-06
F46 2.02E-93 1.07E-15 5.84E-15 1.90E-10 9.38E-05 2.13E-04 3.24E-07 4.24E-03 1.33E-02
F47 2.59E-126 1.18E-14 6.04E-14 2.05E-10 3.10E-05 8.85E-05 3.75E-08 2.45E-04 4.04E-04
F48 8.96E-86 1.13E-18 6.19E-18 1.63E-10 4.54E+20 2.48E+21 3.44E-07 2.83E-03 4.76E-03
F49 0.00E+00 1.86E-57 1.02E-56 2.55E-116 7.01E-64 2.67E-63 1.82E-110 1.53E-38 8.18E-38
F50 5.81E+03 7.78E+03 8.56E+02 4.25E+03 6.10E+03 9.03E+02 6.40E+03 7.71E+03 3.87E+02
F51 − 1.46E+02 − 1.15E+02 2.40E+01 − 2.49E+02 − 1.54E+02 3.78E+01 − 1.81E+02 − 1.48E+02 1.22E+01
F52 − 2.42E+02 − 1.60E+02 3.85E+01 − 1.93E+02 − 1.40E+02 2.12E+01 − 2.19E+02 − 1.65E+02 1.86E+01
F53 − 2.74E+26 − 9.29E+24 4.99E+25 − 3.45E+24 − 1.76E+23 6.41E+23 − 1.33E+25 − 6.57E+23 2.44E+24
F54 3.86E-153 4.26E-19 2.33E-18 5.89E-22 1.70E-11 8.58E-11 5.17E-17 9.36E-09 3.08E-08
F55 − 7.88E+02 − 7.22E+02 5.16E+01 − 1.07E+03 − 9.89E+02 5.48E+01 − 8.57E+02 − 8.10E+02 2.57E+01
F56 5.94E-226 1.83E-24 1.00E-23 5.36E-20 1.90E-09 6.99E-09 9.94E-13 2.99E-07 1.15E-06
F57 1.95E-272 4.08E-48 1.96E-47 3.86E-40 2.91E-23 1.24E-22 4.01E-28 3.52E-23 1.32E-22
F58 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F59 1.67E-107 1.63E-11 7.33E-11 5.31E-13 5.21E-05 1.53E-04 9.80E-11 1.30E-07 3.84E-07
H. Peraza‑Vázquez et al.
Table 4 (continued)
Algorithms
F60 0.00E+00 8.27E-09 2.44E-08 3.51E-12 7.50E-12 5.83E-12 3.51E-12 3.63E-12 2.23E-13
F61 − 1.00E+00 − 8.00E-01 6.09E-01 − 1.00E+00 − 3.05E-01 9.49E-01 − 1.00E+00 − 1.00E+00 1.13E-09
F62 − 1.00E+00 − 1.00E+00 5.96E-08 − 1.00E+00 − 6.43E-01 4.33E-01 − 1.00E+00 − 9.79E-01 5.12E-02
F63 1.58E-219 1.02E-23 5.57E-23 1.01E-26 4.42E-04 2.42E-03 5.58E-14 8.93E-09 2.43E-08
Algorithms
Best Ave Std Best Ave. Std. Best Ave. Std. Best Ave. Std. Best Ave. Std.
F1 3.46E+00 6.33E+00 1.73E+00 − 8.88E-16 − 8.88E-16 0.00E+00 4.34E-02 5.97E-01 1.33E+00 7.59E-05 2.13E+00 1.60E+00 8.18E-11 1.19E-08 2.21E-08
F2 − 2.00E+02 − 2.00E+02 1.09E-10 − 2.00E+02 − 2.00E+02 0.00E+00 − 2.00E+02 − 1.98E+02 3.26E+00 − 2.00E+02 − 2.00E+02 2.99E-14 − 2.00E+02 − 2.00E+02 0.00E+00
F3 − 1.86E+02 − 1.86E+02 8.67E-14 − 1.86E+02 − 1.86E+02 7.88E-09 − 1.86E+02 − 1.75E+02 2.76E+01 − 1.86E+02 − 1.86E+02 4.79E-04 − 1.86E+02 − 1.86E+02 8.67E-14
A novel metaheuristic inspired by horned lizard defense tactics
F4 − 4.59E+00 − 4.59E+00 2.86E-08 − 4.59E+00 − 4.59E+00 5.39E-04 − 4.59E+00 − 3.16E+00 1.45E+00 − 4.59E+00 − 4.27E+00 4.32E-01 − 4.59E+00 − 4.56E+00 1.61E-01
F5 − 1.08E+00 − 1.08E+00 4.12E-17 − 1.08E+00 − 1.08E+00 9.61E-05 − 1.08E+00 − 1.04E+00 3.75E-02 − 1.08E+00 − 1.08E+00 2.68E-10 − 1.08E+00 − 1.08E+00 0.00E+00
F6 0.00E+00 7.47E+00 4.83E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.08E+00 7.77E-01 1.28E+01 3.06E+01 7.49E+00 0.00E+00 0.00E+00 0.00E+00
F7 − 4.70E+09 − 9.99E+08 1.30E+09 − 1.13E+05 − 1.01E+04 2.37E+04 − 2.83E+13 − 1.40E+13 1.13E+13 − 1.35E+10 − 5.93E+08 2.46E+09 − 4.53E+11 − 6.24E+10 9.25E+10
F8 1.00E+00 1.00E+00 1.06E-12 1.00E+00 1.00E+00 0.00E+00 1.01E+00 5.54E+02 1.40E+03 1.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 0.00E+00
F9 1.07E-20 1.86E-14 3.60E-14 1.65E-03 6.75E-02 1.90E-01 1.61E-06 4.09E-03 5.01E-03 1.98E-09 1.49E-01 3.03E-01 0.00E+00 2.54E-02 1.39E-01
F10 − 1.07E+02 − 1.07E+02 5.59E-06 − 1.07E+02 − 1.07E+02 5.46E-01 − 1.07E+02 − 1.06E+02 2.23E+00 − 1.07E+02 − 1.04E+02 7.37E+00 − 1.07E+02 − 1.07E+02 4.71E-14
F11 0.00E+00 2.96E-16 1.26E-15 0.00E+00 0.00E+00 0.00E+00 1.04E-03 1.62E+01 4.48E+01 0.00E+00 1.71E-04 9.39E-04 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 4.63E-17 1.84E-16 0.00E+00 0.00E+00 0.00E+00 1.56E-03 3.05E+00 7.98E+00 0.00E+00 9.46E-02 1.10E-01 0.00E+00 0.00E+00 0.00E+00
F13 1.10E-23 6.45E-21 1.50E-20 1.13E-03 2.96E-02 2.69E-02 2.47E-06 8.70E-02 4.74E-01 2.37E-06 6.00E-01 2.96E+00 0.00E+00 2.10E-31 1.15E-30
F14 5.07E-25 5.37E-22 1.68E-21 4.44E-07 1.20E-03 1.46E-03 9.88E-06 1.13E-02 3.08E-02 1.74E-05 2.70E-04 2.72E-04 1.38E-87 1.05E-31 5.76E-31
F15 3.78E-01 1.66E+00 1.17E+00 0.00E+00 5.99E-115 1.11E-114 2.68E-04 1.21E-02 1.09E-02 1.97E-10 1.00E-08 1.90E-08 1.18E-21 2.20E-18 3.56E-18
F16 2.15E-02 9.85E-02 6.33E-02 2.08E-01 1.52E+00 7.87E-01 1.60E-01 1.24E+00 7.71E-01 5.42E-02 4.60E-01 2.21E-01 1.54E-04 1.24E-02 9.51E-03
F17 − 2.06E+00 − 2.06E+00 1.15E-08 − 2.06E+00 − 2.06E+00 4.97E-05 − 2.06E+00 − 2.06E+00 8.61E-04 − 2.06E+00 − 2.06E+00 6.07E-07 − 2.06E+00 − 2.06E+00 1.63E-14
Page 23 of 65 59
13
Table 4 (continued)
Algorithms
13
Best Ave Std Best Ave. Std. Best Ave. Std. Best Ave. Std. Best Ave. Std.
59 Page 24 of 65
F18 − 2.48E+04 − 2.48E+04 6.43E-05 − 2.48E+04 − 2.48E+04 1.12E+00 − 2.48E+04 − 2.33E+04 2.24E+03 − 2.48E+04 − 2.31E+04 6.29E+03 − 2.48E+04 − 2.48E+04 9.38E-05
F19 − 1.00E+00 − 9.99E-01 2.79E-03 − 1.00E+00 − 1.00E+00 0.00E+00 − 9.98E-01 − 9.48E-01 3.99E-02 − 1.00E+00 − 9.43E-01 1.95E-02 − 1.00E+00 − 9.98E-01 1.16E-02
F20 − 1.00E+00 − 1.00E+00 7.55E-08 − 9.98E-01 − 9.23E-01 1.01E-01 − 1.00E+00 − 5.27E-01 4.93E-01 − 1.00E+00 − 6.00E-01 4.98E-01 − 1.00E+00 − 1.00E+00 0.00E+00
F21 4.95E-23 6.33E-15 3.21E-14 0.00E+00 1.42E-112 7.75E-112 5.65E-04 1.61E-01 2.23E-01 4.30E-57 2.86E-21 1.57E-20 1.68E-80 8.27E-67 2.50E-66
F22 − 1.00E+00 − 9.95E-01 4.29E-03 − 1.00E+00 − 1.00E+00 0.00E+00 − 1.00E+00 − 9.96E-01 4.30E-03 − 1.00E+00 − 1.00E+00 4.26E-10 − 1.00E+00 − 1.00E+00 0.00E+00
F23 3.00E+00 3.00E+00 5.45E-15 3.00E+00 3.00E+00 1.14E-03 3.00E+00 3.79E+00 1.68E+00 3.00E+00 1.11E+01 1.76E+01 3.00E+00 3.00E+00 2.30E-15
F24 − 2.87E+00 − 2.87E+00 5.89E-16 − 2.87E+00 − 2.87E+00 2.02E-04 − 2.87E+00 − 2.87E+00 3.61E-05 − 2.87E+00 − 2.84E+00 2.12E-01 − 2.87E+00 − 2.87E+00 4.74E-16
F25 1.24E+00 1.92E+00 5.09E-01 0.00E+00 0.00E+00 0.00E+00 7.07E-05 2.81E+00 5.39E+00 5.65E-07 1.91E-02 2.07E-02 0.00E+00 9.88E-14 2.76E-13
F26 8.42E-02 1.69E-01 6.14E-02 1.31E-01 2.99E-01 5.73E-02 1.25E-02 7.30E-02 4.34E-02 1.50E-01 3.44E-01 8.40E-02 3.87E-02 9.96E-02 5.56E-02
F27 9.93E-12 2.67E-06 7.05E-06 1.18E-04 9.37E-02 1.39E-01 6.90E-07 1.69E-02 3.03E-02 3.55E-05 9.06E-04 8.31E-04 0.00E+00 8.95E-15 2.92E-14
F28 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15 − 1.51E+01 − 1.51E+01 5.42E-15
F29 − 6.74E-01 − 6.74E-01 1.65E-14 − 6.74E-01 − 5.76E-01 1.46E-01 − 6.74E-01 − 5.99E-01 1.45E-01 − 6.74E-01 − 6.74E-01 3.40E-06 − 6.74E-01 − 6.74E-01 8.50E-17
F30 2.84E-15 3.80E-10 8.43E-10 3.30E-01 8.77E-01 1.92E-01 8.38E-07 9.56E-02 1.61E-01 2.65E-06 6.31E-05 6.95E-05 3.65E-30 1.13E-01 2.29E-01
F31 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00 2.02E+02 2.02E+02 0.00E+00
F32 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00
F33 3.22E+01 3.49E+01 1.48E+00 4.41E+01 4.41E+01 7.23E-15 3.20E+01 3.20E+01 1.08E-14 3.20E+01 3.20E+01 1.08E-14 3.21E+01 3.43E+01 1.59E+00
F34 1.38E+00 2.66E+00 5.77E-01 9.00E-01 2.69E+00 1.68E+00 1.05E+00 6.05E+00 3.02E+00 3.74E+00 4.78E+00 7.23E-01 9.00E-01 1.61E+00 6.48E-01
F35 5.78E-22 1.19E-07 4.00E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.82E-06 4.45E-06 1.74E-40 6.78E-29 2.31E-28 0.00E+00 0.00E+00 0.00E+00
F36 1.72E+05 3.47E+06 3.64E+06 3.03E+03 4.86E+03 8.15E+02 1.56E+03 3.29E+07 1.08E+08 2.76E+02 9.70E+02 3.83E+02 2.61E+02 9.15E+02 4.46E+02
F37 5.63E-02 1.78E-01 7.91E-02 7.75E-07 1.19E-03 1.50E-03 3.89E-03 5.64E-02 5.54E-02 5.58E-03 3.47E-02 2.15E-02 1.55E-04 3.30E-03 2.85E-03
F38 1.13E+02 1.55E+02 2.01E+01 0.00E+00 0.00E+00 0.00E+00 1.40E-01 7.88E+01 8.70E+01 1.53E+02 2.08E+02 3.49E+01 0.00E+00 1.65E-03 5.07E-03
F39 − 4.58E+00 − 4.24E+00 2.21E-01 − 5.00E+00 − 4.83E+00 9.12E-01 9.73E-03 1.12E-01 1.57E-01 − 5.00E+00 − 5.00E+00 2.64E-04 − 4.86E+00 − 4.52E+00 3.46E-01
F40 4.03E+01 9.37E+01 3.94E+01 2.88E+01 2.89E+01 8.82E-02 1.10E-01 5.76E+00 9.96E+00 2.71E+01 2.85E+01 6.19E-01 2.64E+01 6.06E+01 5.75E+01
F41 2.38E+00 3.43E+00 6.93E-01 0.00E+00 3.66E-02 4.90E-02 9.99E-02 1.44E+00 1.60E+00 3.00E-01 5.30E-01 1.18E-01 4.72E-05 1.02E-01 6.70E-02
F42 4.66E-15 1.69E-09 8.94E-09 0.00E+00 0.00E+00 0.00E+00 4.88E-07 3.79E-02 5.30E-02 0.00E+00 7.07E-04 8.81E-04 0.00E+00 0.00E+00 0.00E+00
F43 8.26E-14 1.05E-09 3.19E-09 0.00E+00 0.00E+00 0.00E+00 2.04E-07 4.80E-02 5.64E-02 0.00E+00 1.04E-04 5.72E-04 0.00E+00 0.00E+00 0.00E+00
H. Peraza‑Vázquez et al.
Table 4 (continued)
Algorithms
Best Ave Std Best Ave. Std. Best Ave. Std. Best Ave. Std. Best Ave. Std.
F44 1.57E-03 1.64E-03 1.41E-04 1.57E-03 1.57E-03 5.58E-06 1.58E-03 2.53E-02 3.67E-02 1.57E-03 1.57E-03 4.19E-06 1.57E-03 1.57E-03 4.33E-06
F45 2.93E-01 2.93E-01 3.37E-05 2.93E-01 2.93E-01 1.30E-05 2.93E-01 3.07E-01 2.21E-02 2.93E-01 2.93E-01 3.39E-06 2.93E-01 2.93E-01 6.15E-10
F46 1.98E+01 4.26E+01 1.56E+01 0.00E+00 9.23E-51 3.70E-50 2.87E-01 3.73E+01 7.69E+01 1.42E-04 1.03E-03 8.30E-04 1.16E-10 2.24E-08 2.79E-08
F47 9.69E+00 1.27E+01 1.96E+00 0.00E+00 4.82E-09 2.64E-08 1.80E-02 1.29E+00 3.04E+00 1.10E+00 6.49E+00 3.42E+00 1.35E-08 4.24E-06 7.24E-06
F48 2.11E+02 1.16E+15 6.32E+15 0.00E+00 1.20E-53 4.71E-53 4.20E-01 9.72E+18 3.41E+19 1.53E-04 1.17E-03 1.28E-03 4.46E-08 2.09E+02 2.96E+02
F49 7.83E-04 6.24E+00 1.73E+01 0.00E+00 0.00E+00 0.00E+00 6.16E-21 9.53E-11 3.49E-10 2.13E-28 3.36E-19 1.20E-18 4.37E-91 4.05E-62 2.22E-61
F50 6.75E+03 7.77E+03 4.93E+02 5.06E+03 7.34E+03 1.50E+03 2.04E+02 7.55E+03 3.21E+03 5.78E+03 6.85E+03 6.30E+02 2.87E+03 4.47E+03 6.56E+02
F51 − 1.49E+02 − 1.18E+02 1.27E+01 − 2.12E+02 − 1.63E+02 2.08E+01 − 4.45E+02 − 1.56E+02 8.59E+01 − 1.58E+02 − 1.33E+02 1.45E+01 − 3.09E+02 − 2.27E+02 2.59E+01
F52 − 1.55E+02 − 1.23E+02 1.50E+01 − 2.15E+02 − 1.72E+02 3.43E+01 − 3.81E+02 − 1.51E+02 7.23E+01 − 1.74E+02 − 1.38E+02 1.91E+01 − 2.31E+02 − 2.06E+02 1.73E+01
F53 − 4.55E+23 − 1.93E+22 8.32E+22 − 7.51E+27 − 6.48E+26 1.56E+27 − 2.36E+30 − 1.99E+29 5.72E+29 − 7.53E+24 − 7.21E+23 1.99E+24 − 1.23E+28 − 5.64E+26 2.27E+27
F54 5.31E-02 3.16E-01 3.43E-01 0.00E+00 4.27E-101 2.28E-100 1.25E-04 1.89E-02 3.05E-02 6.92E-11 9.60E-09 1.35E-08 6.56E-23 1.56E-17 7.72E-17
F55 − 1.05E+03 − 8.80E+02 9.92E+01 − 8.75E+02 − 6.58E+02 8.45E+01 − 1.17E+03 − 1.17E+03 5.52E-01 − 9.66E+02 − 8.51E+02 6.99E+01 − 1.08E+03 − 1.02E+03 3.34E+01
F56 3.42E+00 1.39E+01 7.97E+00 0.00E+00 1.95E-98 8.44E-98 1.35E-02 5.33E-01 5.58E-01 1.77E-08 5.70E-07 9.45E-07 4.29E-20 1.77E-16 4.32E-16
A novel metaheuristic inspired by horned lizard defense tactics
F57 7.83E-25 1.58E-21 3.32E-21 0.00E+00 6.44E-116 2.94E-115 1.04E-04 9.31E-03 1.85E-02 2.84E-55 5.97E-02 1.22E-01 1.74E-80 6.23E-67 3.00E-66
F58 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.08E-02 1.51E-01 0.00E+00 4.62E-22 1.92E-21 0.00E+00 0.00E+00 0.00E+00
F59 1.21E-03 3.54E-01 9.14E-01 0.00E+00 6.38E-18 2.85E-17 6.49E-05 7.06E-03 1.24E-02 8.12E-03 2.11E+02 9.93E+02 4.91E-21 1.02E-11 5.03E-11
F60 7.39E-12 1.06E-11 1.66E-12 0.00E+00 1.93E-10 4.12E-10 3.55E-12 4.30E-08 1.25E-07 6.47E-09 2.74E-07 6.78E-07 1.48E-11 2.18E-11 3.32E-12
F61 9.95E-01 9.95E-01 3.39E-16 − 1.00E+00 4.63E-01 8.97E-01 9.95E-01 9.96E-01 4.76E-04 9.97E-01 9.98E-01 2.33E-04 − 1.00E+00 − 8.67E-01 5.06E-01
F62 5.62E-13 3.27E-12 2.48E-12 − 1.00E+00 − 2.00E-01 4.07E-01 1.43E-16 2.15E-14 5.00E-14 4.30E-13 8.97E-13 6.89E-13 − 9.97E-01 − 4.19E-01 3.99E-01
F63 3.53E+01 8.73E+01 3.98E+01 0.00E+00 1.18E-100 6.46E-100 1.02E+00 6.25E+01 7.92E+01 1.02E-03 2.10E-02 3.43E-02 1.73E-11 1.38E-06 3.46E-06
Page 25 of 65 59
13
59 Page 26 of 65 H. Peraza‑Vázquez et al.
IEEE CEC-06 2019 Testbech Functions: The “100-Digit Challenge” testbench functions
from IEEE CEC-06 2019 are described in Table 3.
The entire parameter settings for each algorithm are shown in Table 2. All experiments
were conducted on a standard desktop computer with the following specifications: Intel
core i7-10750 H CPU, 2.60 GHz, 32 GB RAM, Linux Kubuntu 20.04 LTS operating sys-
tem, and implemented in MATLAB R2021b.
This section presents the computational results of HLOA on benchmark optimization prob-
lems. The comparison results are shown in Table 4, displaying the best, mean, and stand-
ard deviation values. Moreover, Figs. 9, 10, and 11 summarize the convergence graphs of
all functions versus all algorithms chosen for this investigation. To analyze the significant
differences between the results of the proposed HLOA and the other algorithms, a non-
parametric Wilcoxon Signed-rank test with a significance level of %5 was conducted. This
trial determines the significance level of two algorithms. An algorithm is statistically sig-
nificant if the calculated p-value is less than 0.05. Table 5 summarizes the result of this
test. Furthermore, the eleven algorithms were ranked by computing the Friedman test for
63 benchmark functions. Friedman test ranks the algorithms according to their average
performance and generates a ranking score, where a lower value indicates a better per-
formance. The results are shown in Table 6. According to the statistical data presented
in Table 4, the Horned Lizard Optimization Algorithm (HLOA) can achieve exceptional
outcomes. Among the 63 benchmark functions, there are unimodal and multimodal func-
tions to test the algorithm’s capabilities related to the exploitation and exploration in the
solution space. A more reliable way to compare the performance of algorithms when
solving benchmark functions is through statistical tests. The results of the Wilcoxon rank-
sum test, in Table 5, indicate that HLOA outperformed the following algorithms: Black
13
Table 6 Friedman test of all compared algorithms for 63 functions
HLOA JSOA BWOA DOA COOT CSA EJAYA RSO SAO TSA WHO
Sum of ranks 248.22 250.11 313.74 340.2 411.39 381.78 475.65 364.14 560.07 529.2 291.06
A novel metaheuristic inspired by horned lizard defense tactics
Mean of ranks 3.94 3.97 4.98 5.4 6.53 6.06 7.55 5.78 8.89 8.4 4.62
Overall ranks 1 2 4 5 8 7 9 6 11 10 3
The bold number in a table indicates the order of the ranked algorithms by the Freidman test
Page 27 of 65 59
13
Table 7 IEEE CEC 2017 Benchmarks “Constrained Real-Parameter Optimization” results for Dimension 10, from the best ranked algorithms
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
13
59 Page 28 of 65
C01 7.72e+0 9.46e+1 9.06e+1 1.20e+3 3.73e+3 2.27e+3 7.11e+2 3.28e+3 1.94e+3 9.05e−2 6.15e+0 6.87e+0
C02 9.38e+0 9.02e+1 7.10e+1 1.04e+3 4.49e+3 2.89e+3 1.04e+3 3.88e+3 3.02e+3 1.26e−2 5.28e+0 8.46e+0
C03 1.91e+3 1.11e+4 7.00e+3 2.02e+3 7.21e+3 3.00e+3 1.36e+3 8.91e+3 4.68e+3 6.06e+2 4.44e+3 2.35e+3
C04 6.49e+1 9.24e+1 2.15e+1 7.71e+1 1.12e+2 1.78e+1 8.69e+1 1.19e+2 2.04e+1 1.90e+1 4.32e+1 1.14e+1
C05 1.65e+1 9.47e+4 2.45e+5 9.70e+2 6.52e+6 2.04e+7 7.08e+2 8.07e+6 3.23e+7 5.56e−1 9.79e+0 1.26e+1
C06 2.86e+2 1.01e+4 1.32e+4 1.06e+3 4.56e+4 4.41e+4 7.28e+2 3.05e+4 3.47e+4 1.22e+2 1.82e+3 1.52e+3
C07 -8.01e+1 2.36e+6 6.34e+6 -6.63e+1 9.84e+7 8.12e+7 -1.45e+2 5.70e+7 5.96e+7 -1.62e+2 -4.72e+1 4.71e+1
C08 1.55e+3 7.87e+5 1.16e+6 1.66e+6 1.90e+7 1.22e+7 3.98e+6 4.09e+7 3.26e+7 7.51e−2 1.88e+3 5.76e+3
C09 1.30e+0 4.92e+2 1.23e+3 4.09e+0 1.31e+6 2.96e+6 1.28e+1 6.08e+5 1.62e+6 -1.82e−2 7.54e+1 3.36e+2
C10 2.91e+3 1.52e+6 4.25e+6 1.82e+10 1.33e+11 1.08e+11 4.62e+9 1.84e+11 1.87e+11 9.63e−4 5.44e+0 2.52e+1
C11 4.92e+2 9.56e+5 2.09e+6 1.09e+7 7.54e+7 3.81e+7 1.98e+6 4.91e+7 3.37e+7 2.96e+1 2.81e+6 1.08e+7
C12 8.24e+0 3.38e+1 2.03e+1 1.34e+9 6.64e+9 5.11e+9 4.68e+8 4.47e+9 4.35e+9 3.99e+0 5.24e+0 4.68e+0
C13 9.80e+3 2.46e+7 4.79e+7 1.18e+8 8.49e+9 5.87e+9 2.03e+8 4.32e+9 3.01e+9 3.89e−3 5.60e+1 1.25e+2
C14 3.32e+0 2.67e+3 7.22e+3 3.81e+8 1.10e+10 8.91e+9 1.49e+8 7.78e+9 8.73e+9 2.38e+0 2.90e+0 3.02e−1
C15 1.18e+1 1.70e+1 3.12e+0 3.27e+8 3.71e+9 3.49e+9 1.49e+1 2.26e+9 3.37e+9 5.50e+0 1.06e+1 2.80e+0
C16 5.03e+1 6.60e+1 1.04e+1 5.65e+1 2.71e+9 3.65e+9 5.03e+1 1.64e+9 3.71e+9 1.26e+1 2.28e+1 6.82e+0
C17 7.99e+10 2.89e+11 1.29e+11 3.82e+10 3.82e+10 2.33e−5 3.82e+10 3.82e+10 2.33e−5 8.79e+10 2.75e+11 1.34e+11
C18 5.74e+6 5.98e+11 2.26e+12 3.35e+16 2.11e+19 2.90e+19 2.86e+13 1.03e+19 2.16e+19 3.13e+1 1.69e+7 6.51e+7
C19 1.77e+11 1.78e+11 2.34e+8 1.78e+11 1.78e+11 1.56e+8 1.77e+11 1.78e+11 1.81e+8 1.76e+11 1.77e+11 3.78e+8
C20 5.48e−1 1.83e+0 4.86e−1 8.71e−1 1.98e+0 4.23e−1 8.17e−1 1.72e+0 4.17e−1 5.86e−1 1.15e+0 2.51e−1
C21 2.40e+1 1.63e+6 7.08e+6 3.56e+9 6.16e+10 4.01e+10 2.17e+9 4.63e+10 4.63e+10 3.99e+0 9.13e+0 8.03e+0
C22 1.22e+5 1.09e+8 1.51e+8 3.95e+9 6.19e+10 4.57e+10 9.30e+7 3.65e+10 3.08e+10 9.50e+0 3.38e+4 8.24e+4
C23 3.60e+0 5.25e+5 1.24e+6 4.36e+9 9.42e+10 8.44e+10 1.65e+9 7.94e+10 8.32e+10 2.73e+0 3.25e+0 2.52e−1
C24 1.18e+1 1.67e+1 2.43e+0 5.76e+8 3.24e+10 2.53e+10 9.72e+8 3.84e+10 4.03e+10 8.64e+0 1.17e+1 2.26e+0
C25 4.40e+1 7.04e+1 1.08e+1 4.53e+8 4.13e+10 3.46e+10 4.57e+7 3.19e+10 3.51e+10 1.88e+1 3.80e+1 1.26e+1
H. Peraza‑Vázquez et al.
Table 7 (continued)
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
C26 1.21e+5 2.04e+5 2.28e+5 7.62e+9 7.21e+10 3.92e+10 3.40e+8 2.78e+10 2.23e+10 1.21e+5 1.21e+5 4.08e−2
C27 1.67e+7 1.76e+14 3.33e+14 2.98e+17 1.89e+21 3.17e+21 1.54e+18 2.21e+21 3.95e+21 9.80e+1 3.04e+14 9.02e+14
C28 1.78e+11 1.78e+11 1.50e+8 1.78e+11 1.78e+11 1.54e+8 1.77e+11 1.78e+11 1.96e+8 1.77e+11 1.78e+11 2.41e+8
A novel metaheuristic inspired by horned lizard defense tactics
Page 29 of 65 59
13
Table 8 IEEE CEC 2017 Benchmarks “Constrained Real-Parameter Optimization” results for Dimension 30, from the best ranked algorithms
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
13
59 Page 30 of 65
C01 3.72e+3 6.69e+3 1.75e+3 1.18e+4 2.69e+4 1.19e+4 1.41e+4 2.85e+4 1.03e+4 2.27e+3 6.03e+3 3.18e+3
C02 3.17e+3 5.74e+3 1.73e+3 1.22e+4 2.72e+4 1.04e+4 1.43e+4 5.06e+4 4.59e+4 1.21e+3 4.50e+3 1.81e+3
C03 5.44e+4 2.37e+5 1.10e+5 5.52e+4 2.54e+5 1.22e+5 8.97e+4 2.17e+5 1.10e+5 2.92e+4 6.22e+4 2.73e+4
C04 3.23e+2 3.95e+2 3.58e+1 3.86e+2 4.28e+2 2.36e+1 3.73e+2 4.31e+2 3.05e+1 1.48e+2 2.22e+2 4.94e+1
C05 3.26e+4 4.85e+5 1.14e+6 2.67e+5 2.10e+6 5.12e+6 9.99e+4 9.44e+6 2.58e+7 1.14e+2 2.16e+4 1.14e+5
C06 1.75e+3 2.73e+4 3.74e+4 2.11e+3 1.16e+5 1.34e+5 2.45e+3 7.87e+4 9.28e+4 3.02e+3 8.70e+3 3.60e+3
C07 -7.52e+1 6.85e+8 6.36e+8 8.47e+8 3.81e+9 1.49e+9 1.96e+9 4.42e+9 1.21e+9 -3.11e+2 2.86e+7 7.00e+7
C08 3.44e+7 9.76e+7 4.17e+7 1.20e+8 1.07e+9 8.94e+8 6.21e+8 6.86e+9 8.43e+9 7.91e+7 2.24e+9 3.69e+9
C09 1.55e+6 7.20e+8 1.69e+9 8.73e+9 1.20e+11 8.65e+10 8.11e+8 4.02e+10 5.34e+10 3.06e+0 1.05e+6 5.73e+6
C10 2.35e+9 8.71e+10 7.74e+10 3.27e+12 6.31e+12 3.34e+12 2.92e+12 2.17e+13 1.21e+13 2.39e+9 6.02e+10 7.11e+10
C11 1.47e+7 1.96e+8 1.44e+8 1.42e+9 2.91e+9 7.20e+8 1.00e+9 2.36e+9 8.47e+8 2.01e+6 1.81e+8 2.96e+8
C12 2.78e+6 4.83e+7 6.62e+7 9.08e+10 2.16e+11 6.04e+10 9.00e+10 2.10e+11 5.66e+10 5.29e+4 4.50e+7 1.03e+8
C13 3.84e+8 2.71e+9 3.01e+9 1.05e+11 2.15e+11 5.43e+10 9.15e+10 2.19e+11 5.87e+10 1.88e+7 2.91e+8 7.16e+8
C14 8.75e+6 1.37e+8 1.32e+8 1.06e+11 3.83e+11 1.14e+11 1.90e+11 4.24e+11 1.04e+11 2.40e+5 3.21e+7 5.75e+7
C15 1.81e+1 2.30e+1 3.84e+0 4.63e+10 1.33e+11 4.38e+10 1.34e+10 1.24e+11 5.00e+10 1.49e+1 2.57e+1 6.99e+0
C16 1.95e+2 2.26e+2 1.52e+1 4.76e+10 1.35e+11 4.23e+10 6.17e+10 1.40e+11 4.34e+10 1.07e+2 1.56e+2 2.03e+1
C17 2.41e+12 5.62e+12 1.71e+12 3.54e+11 3.54e+11 0.00e+0 3.54e+11 3.54e+11 0.00e+0 2.28e+12 5.76e+12 1.60e+12
C18 2.05e+13 1.59e+16 4.11e+16 5.42e+20 1.62e+21 6.13e+20 5.65e+20 1.46e+21 5.59e+20 3.31e+12 1.76e+16 6.51e+16
C19 1.85e+12 1.85e+12 8.56e+8 1.85e+12 1.85e+12 5.41e+8 1.85e+12 1.85e+12 7.97e+8 1.84e+12 1.84e+12 1.87e+9
C20 6.37e+0 8.49e+0 9.15e−1 7.11e+0 9.44e+0 8.31e−1 7.26e+0 8.83e+0 8.06e−1 5.81e+0 7.22e+0 6.22e−1
C21 1.97e+8 3.89e+9 3.61e+9 1.84e+12 4.84e+12 1.59e+12 1.99e+12 3.69e+12 1.29e+12 1.07e+8 4.57e+9 6.01e+9
C22 2.81e+9 1.59e+10 9.78e+9 1.77e+12 4.45e+12 1.57e+12 9.45e+11 4.03e+12 1.95e+12 3.36e+8 9.56e+9 9.97e+9
C23 3.49e+8 7.73e+9 5.94e+9 2.16e+12 8.54e+12 3.37e+12 2.78e+12 6.70e+12 2.64e+12 1.89e+8 4.01e+9 5.20e+9
C24 1.81e+1 8.73e+7 3.38e+8 1.44e+12 3.72e+12 1.21e+12 1.21e+12 3.80e+12 1.38e+12 1.81e+1 1.91e+8 8.86e+8
C25 1.95e+2 1.13e+8 4.24e+8 4.73e+11 4.04e+12 1.79e+12 1.30e+12 3.23e+12 1.31e+12 1.76e+2 2.23e+9 8.59e+9
H. Peraza‑Vázquez et al.
Table 8 (continued)
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
C26 1.15e+8 3.26e+9 2.24e+9 1.14e+12 3.95e+12 1.75e+12 1.76e+12 4.11e+12 1.58e+12 8.23e+6 3.64e+9 5.13e+9
C27 6.24e+16 2.01e+19 3.14e+19 1.50e+23 1.88e+24 1.47e+24 6.83e+22 9.30e+23 8.05e+23 5.38e+15 4.86e+19 1.29e+20
C28 1.85e+12 1.85e+12 7.62e+8 1.85e+12 1.85e+12 6.30e+8 1.85e+12 1.85e+12 7.19e+8 1.85e+12 1.85e+12 8.13e+8
A novel metaheuristic inspired by horned lizard defense tactics
Page 31 of 65 59
13
Table 9 IEEE CEC 2017 Benchmarks “Constrained Real-Parameter Optimization” results for Dimension 50, from the best ranked algorithms
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
13
59 Page 32 of 65
C01 1.40e+4 2.09e+4 3.73e+3 3.90e+4 1.10e+5 4.31e+4 3.64e+4 1.14e+5 6.50e+4 1.41e+4 2.63e+4 8.64e+3
C02 1.23e+4 2.61e+4 3.04e+4 4.39e+4 1.53e+5 8.01e+4 4.02e+4 1.27e+5 8.43e+4 9.65e+3 1.77e+4 4.40e+3
C03 1.77e+5 9.63e+5 5.38e+5 2.45e+5 9.23e+5 6.32e+5 1.69e+5 6.87e+5 4.39e+5 7.11e+4 1.58e+5 5.95e+4
C04 6.61e+2 7.28e+2 4.51e+1 7.39e+2 7.81e+2 2.56e+1 7.09e+2 7.85e+2 3.76e+1 3.44e+2 5.33e+2 9.98e+1
C05 2.65e+5 6.17e+6 1.98e+7 4.61e+5 4.54e+7 7.29e+7 3.27e+5 5.36e+7 8.84e+7 3.74e+3 2.18e+5 5.12e+5
C06 2.57e+3 2.65e+4 4.24e+4 6.73e+3 1.57e+5 1.88e+5 3.20e+3 1.12e+5 1.28e+5 5.89e+3 1.46e+4 4.98e+3
C07 1.11e+9 4.43e+9 1.79e+9 2.45e+9 1.15e+10 5.72e+9 9.45e+9 1.71e+10 3.77e+9 -2.28e+2 9.22e+8 7.92e+8
C08 2.20e+8 7.06e+8 2.98e+8 8.94e+8 6.45e+9 7.02e+9 1.74e+9 3.14e+10 3.68e+10 5.71e+8 5.77e+10 7.21e+10
C09 2.61e+8 7.34e+10 1.18e+11 2.28e+11 9.82e+11 3.79e+11 1.45e+11 8.18e+11 4.61e+11 7.83e+2 1.29e+7 4.93e+7
C10 8.61e+11 2.45e+12 1.09e+12 2.00e+13 7.84e+13 5.55e+13 1.64e+13 8.19e+13 5.33e+13 7.12e+11 3.27e+12 2.49e+12
C11 3.50e+8 1.72e+9 8.56e+8 6.23e+9 9.23e+9 1.42e+9 4.67e+9 7.96e+9 1.68e+9 7.67e+7 2.89e+9 4.87e+9
C12 4.30e+8 1.67e+9 1.07e+9 5.71e+11 8.04e+11 9.41e+10 5.11e+11 7.70e+11 1.10e+11 2.73e+8 5.91e+9 6.48e+9
C13 4.70e+9 3.77e+10 3.81e+10 4.83e+11 8.56e+11 1.37e+11 4.52e+11 7.88e+11 1.47e+11 2.65e+9 1.46e+10 1.12e+10
C14 9.97e+8 4.73e+9 4.28e+9 8.43e+11 1.57e+12 2.51e+11 9.22e+11 1.53e+12 2.62e+11 5.33e+8 1.90e+10 2.13e+10
C15 2.12e+1 2.58e+1 4.57e+0 3.08e+11 5.45e+11 1.19e+11 2.72e+11 5.16e+11 1.09e+11 2.12e+1 2.37e+8 8.65e+8
C16 3.39e+2 3.88e+2 2.29e+1 3.17e+11 5.44e+11 9.80e+10 3.34e+11 5.33e+11 9.96e+10 2.40e+2 4.57e+8 2.50e+9
C17 8.83e+12 2.02e+13 3.86e+12 1.04e+12 1.04e+12 7.45e−4 1.04e+12 1.04e+12 7.45e−4 1.21e+13 1.94e+13 4.24e+12
C18 1.70e+16 1.83e+18 1.91e+18 3.96e+21 7.29e+21 1.43e+21 3.60e+21 6.47e+21 1.61e+21 3.91e+17 4.77e+19 7.98e+19
C19 5.28e+12 5.28e+12 2.20e+9 5.28e+12 5.28e+12 9.79e+8 5.28e+12 5.28e+12 1.28e+9 5.26e+12 5.27e+12 4.34e+9
C20 1.40e+1 1.66e+1 1.37e+0 1.61e+1 1.78e+1 8.23e−1 1.50e+1 1.73e+1 1.08e+0 1.29e+1 1.45e+1 9.36e−1
C21 5.04e+9 6.52e+10 4.37e+10 6.93e+12 1.04e+13 1.75e+12 5.03e+12 9.95e+12 1.88e+12 9.92e+9 1.58e+11 1.31e+11
C22 2.59e+10 1.82e+11 1.42e+11 5.31e+12 1.08e+13 1.94e+12 6.11e+12 9.88e+12 1.75e+12 1.75e+10 3.65e+11 6.20e+11
C23 2.04e+10 1.05e+11 6.55e+10 1.26e+13 2.04e+13 4.39e+12 1.27e+13 2.06e+13 3.42e+12 4.62e+10 3.50e+11 3.20e+11
C24 1.81e+1 8.70e+9 1.70e+10 4.46e+12 9.09e+12 1.86e+12 4.93e+12 8.89e+12 2.24e+12 2.75e+1 7.44e+10 1.05e+11
C25 3.77e+2 7.08e+9 1.26e+10 5.98e+12 9.49e+12 1.71e+12 5.36e+12 8.83e+12 2.02e+12 4.96e+8 8.49e+10 1.20e+11
H. Peraza‑Vázquez et al.
Table 9 (continued)
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
C26 6.33e+9 4.62e+10 3.65e+10 5.91e+12 9.97e+12 2.03e+12 5.93e+12 1.01e+13 1.96e+12 9.95e+9 1.60e+11 1.53e+11
C27 2.63e+19 5.81e+20 5.24e+20 7.36e+23 3.46e+24 1.57e+24 1.30e+24 3.53e+24 1.57e+24 5.14e+18 4.43e+21 8.06e+21
C28 5.28e+12 5.28e+12 1.69e+9 5.28e+12 5.28e+12 1.07e+9 5.28e+12 5.28e+12 9.14e+8 5.28e+12 5.28e+12 1.75e+9
A novel metaheuristic inspired by horned lizard defense tactics
Page 33 of 65 59
13
Table 10 IEEE CEC 2017 Benchmarks “Constrained Real-Parameter Optimization” results for Dimension 100, from the best ranked algorithms
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
13
59 Page 34 of 65
C01 6.61e+4 1.04e+5 1.60e+4 1.93e+5 4.70e+5 1.49e+5 2.08e+5 4.13e+5 1.60e+5 6.03e+4 1.29e+5 4.16e+4
C02 6.58e+4 1.38e+5 7.54e+4 2.12e+5 5.57e+5 1.69e+5 1.96e+5 5.16e+5 2.16e+5 5.52e+4 1.06e+5 4.06e+4
C03 7.89e+5 1.85e+6 8.11e+5 6.25e+5 2.03e+6 9.76e+5 4.19e+5 2.11e+6 1.04e+6 2.32e+5 5.86e+5 2.05e+5
C04 1.45e+3 1.60e+3 6.44e+1 1.56e+3 1.65e+3 4.91e+1 1.62e+3 1.69e+3 4.14e+1 1.05e+3 1.35e+3 2.08e+2
C05 1.28e+6 3.63e+6 1.12e+7 1.27e+6 7.04e+6 1.94e+7 1.14e+6 2.38e+7 4.91e+7 1.85e+5 2.25e+6 2.29e+6
C06 4.67e+3 4.08e+4 4.67e+4 9.12e+3 3.65e+5 2.35e+5 2.40e+4 3.23e+5 2.88e+5 8.15e+3 2.24e+4 7.67e+3
C07 2.58e+10 4.54e+10 8.84e+9 2.20e+10 3.89e+10 1.76e+10 6.88e+10 9.78e+10 1.11e+10 6.51e+9 2.30e+10 9.30e+9
C08 6.52e+9 1.35e+10 4.33e+9 1.63e+10 7.68e+10 6.90e+10 4.76e+10 3.52e+11 3.43e+11 3.44e+10 1.77e+12 1.85e+12
C09 3.41e+11 1.49e+12 8.02e+11 2.66e+12 4.91e+12 1.13e+12 1.66e+12 4.70e+12 1.22e+12 1.05e+8 9.62e+9 2.19e+10
C10 3.03e+13 4.85e+13 1.27e+13 1.27e+14 5.33e+14 5.85e+14 1.43e+14 5.94e+14 4.02e+14 4.39e+13 9.76e+13 3.81e+13
C11 8.92e+9 2.21e+10 6.07e+9 3.67e+10 4.55e+10 3.95e+9 2.67e+10 4.23e+10 5.26e+9 5.56e+9 1.77e+11 5.01e+11
C12 5.89e+10 1.55e+11 5.12e+10 4.86e+12 5.73e+12 3.66e+11 4.37e+12 5.59e+12 5.33e+11 2.11e+11 9.13e+11 4.67e+11
C13 1.17e+11 6.00e+11 3.10e+11 5.21e+12 5.95e+12 3.13e+11 5.07e+12 5.95e+12 4.08e+11 3.64e+11 9.67e+11 7.79e+11
C14 1.20e+11 3.52e+11 1.30e+11 9.59e+12 1.13e+13 7.21e+11 8.25e+12 1.13e+13 9.15e+11 3.50e+11 1.57e+12 8.26e+11
C15 2.43e+1 2.31e+10 4.93e+10 3.35e+12 4.24e+12 4.15e+11 3.42e+12 4.27e+12 3.89e+11 2.45e+10 4.56e+11 4.14e+11
C16 7.23e+2 9.18e+9 2.08e+10 3.46e+12 4.37e+12 3.33e+11 3.07e+12 4.20e+12 4.43e+11 1.45e+10 3.82e+11 3.03e+11
C17 8.19e+13 1.12e+14 1.25e+13 6.47e+12 6.47e+12 4.97e−3 6.47e+12 6.47e+12 4.97e−3 7.32e+13 1.05e+14 1.44e+13
C18 1.48e+20 1.09e+21 1.06e+21 9.07e+22 1.13e+23 9.26e+21 7.68e+22 1.07e+23 1.33e+22 1.46e+21 3.04e+22 4.68e+22
C19 2.16e+13 2.16e+13 5.19e+9 2.16e+13 2.16e+13 2.71e+9 2.16e+13 2.16e+13 2.09e+9 2.15e+13 2.15e+13 1.54e+10
C20 3.40e+1 3.80e+1 1.87e+0 3.59e+1 3.96e+1 1.66e+0 3.56e+1 3.92e+1 1.50e+0 3.31e+1 3.51e+1 1.01e+0
C21 8.33e+11 2.65e+12 7.64e+11 5.08e+13 6.53e+13 6.33e+12 4.35e+13 6.16e+13 7.05e+12 2.77e+12 1.00e+13 4.51e+12
C22 1.71e+12 3.86e+12 1.35e+12 4.48e+13 6.36e+13 8.99e+12 4.82e+13 6.49e+13 6.47e+12 3.71e+12 1.11e+13 1.05e+13
C23 1.60e+12 5.50e+12 1.58e+12 9.85e+13 1.29e+14 1.27e+13 7.72e+13 1.23e+14 1.52e+13 5.15e+12 2.08e+13 1.53e+13
C24 8.69e+11 2.04e+12 8.04e+11 3.94e+13 5.91e+13 7.27e+12 3.48e+13 5.58e+13 8.28e+12 2.27e+12 9.30e+12 7.58e+12
C25 7.96e+11 1.90e+12 8.51e+11 4.17e+13 5.79e+13 6.56e+12 4.60e+13 5.98e+13 5.55e+12 2.57e+12 8.76e+12 4.06e+12
H. Peraza‑Vázquez et al.
Table 10 (continued)
Function HLOA JSOA BWOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
C26 1.19e+12 2.73e+12 1.13e+12 4.67e+13 6.31e+13 6.59e+12 4.55e+13 6.12e+13 6.98e+12 3.49e+12 9.78e+12 5.82e+12
C27 3.99e+22 1.25e+23 6.64e+22 1.66e+25 3.05e+25 5.20e+24 9.92e+24 2.57e+25 7.40e+24 8.53e+22 1.33e+24 1.36e+24
C28 2.16e+13 2.16e+13 2.68e+9 2.16e+13 2.16e+13 2.10e+9 2.16e+13 2.16e+13 2.21e+9 2.16e+13 2.16e+13 2.52e+9
A novel metaheuristic inspired by horned lizard defense tactics
Page 35 of 65 59
13
59 Page 36 of 65 H. Peraza‑Vázquez et al.
Table 11 Statistical results of Wilcoxon signed-rank test for IEEE CEC 2017 benchmark functions at
Dimension 10, with a significance level of %5
HLOA vs JSOA HLOA vs BWOA HLOA vs WHO
The bold numbers in the table indicate a significant difference between the two related Algorithms where
HLOA was outstanding
The bold number in a table indicates the order of the ranked algo-
rithms by the Freidman test
Table 13 Statistical results of Wilcoxon signed-rank test for IEEE CEC 2017 benchmark functions at
Dimension 30, with a significance level of %5
HLOA vs JSOA HLOA vs BWOA HLOA vs WHO
The bold numbers in the table indicate a significant difference between the two related Algorithms where
HLOA was outstanding
13
A novel metaheuristic inspired by horned lizard defense tactics Page 37 of 65 59
The bold number in a table indicates the order of the ranked algo-
rithms by the Freidman test
Table 15 Statistical results of Wilcoxon signed-rank test for IEEE CEC 2017 benchmark functions at
Dimension 50, with a significance level of %5
HLOA vs JSOA HLOA vs BWOA HLOA vs WHO
The bold numbers in the table indicate a significant difference between the two related Algorithms where
HLOA was outstanding
For 30-dimensional problems, the Wilcoxon rank-sum test in Table 13 shows that
HLOA outperformed the JSOA and BWOA algorithms. Meanwhile, there are no signifi-
cant differences with WHO. Whereas, in Table 14 "Friedman test" ranks HLOA in second
place.
According to the results presented in Table 15, it can be observed that in the case
of 50-dimensional problems, the HLOA algorithm demonstrated superior performance
compared to the JSOA and BWOA algorithms, as indicated by the Wilcoxon rank-sum
test. In contrast, there are no substantial disparities with the WHO. In comparison, the
Friedman test assigns the highest rank to HLOA. See Table 16.
In the context of 100-dimensional problems, the Wilcoxon rank-sum test in Table 17
shows that HLOA outperformed all algorithms. Meanwhile, the Friedman test has deter-
mined that HLOA holds the highest rank, as seen in Table 18.
Additionally, the computational results of HLOA on benchmark functions from CEC-
06 2019 “The 100-Digit Challenge” problems are shown in Table 19, displaying the best,
mean, and standard deviation values. Furthermore, Fig. 12 summarizes the convergence
graphs of all functions versus the best-ranked algorithms. To analyze the significant differ-
ences between the results, Wilcoxon Signed-rank test with a significance level of %5 was
carried out. Table 20 summarizes the result of this test and indicates that HLOA outper-
formed Black Widow Optimization Algorithm (BWOA). Meanwhile, there are no signifi-
cant differences between HLOA with the Jumping Spider Optimization Algorithm (JSOA)
and Wild Horse Optimizer (WHO).
The bold number in a table indicates the order of the ranked algo-
rithms by the Freidman test
13
59 Page 38 of 65 H. Peraza‑Vázquez et al.
Table 17 Statistical results of Wilcoxon signed-rank test for IEEE CEC 2017 benchmark functions at
Dimension 100, with a significance level of %5
HLOA vs JSOA HLOA vs BWOA HLOA vs WHO
The bold numbers in the table indicate a significant difference between the two related Algorithms where
HLOA was outstanding
The bold number in a table indicates the order of the ranked algo-
rithms by the Freidman test
5 Real‑world applications
In this section, the capabilities of the HLOA were tested by solving five optimization prob-
lems, which are three Real-World Single Objective Bound Constrained Numerical Optimi-
zation problems taken from the CEC 2020 special session (Kumar et al. 2020), the Multi-
ple Gravity Assist (MGA) problems provided by the European Space Agency (ESA) [89]
and the Optimal Power Flow Problem. For all engineering problems solved, HLOA was
compared against the three best-ranked algorithms calculated from the Friedman test, see
Table 6.
5.1 Constraint handling
The Penalization of Constraints method was used for constraint handling. The mathemati-
cal formulation of this method is described in Eq. 20 and taken from Peraza-Vázquez et al.
(2021).
if MCV( x ) ≤ 0
{ → →
→ f ( x ),
F( x ) = → (20)
fmax + MCV( x ), otherwise.
→
Where f ( x ) is the fitness function value of a feasible solution (a solution that does not
violate constraints), whereas
→
fmax is the fitness function value of the worst solution in the
population, and MCV( x ) is the Mean Constraint Violation (Peraza-Vázquez et al. 2021)
represented in Eq. 21.
p m
∑ ∑
Gi (x→ ) + Hj (x→ )
i=1 j=1 (21)
MCV(x→ ) =
p+m
13
Table 19 IEEE CEC-C06 2019 Benchmarks ‘‘The 100-Digit Challenge:” results
Algorithms
Function HLOA BWOA JSOA WHO
Best Ave Std Best Ave Std Best Ave Std Best Ave Std
CEC-1 -4.441E-16 -4.441E-16 0.000E+00 4.238E+04 1.704E+05 2.671E+05 -4.441E-16 -4.441E-16 0.000E+00 2.593E-10 1.720E-08 4.305E-08
CEC-2 -2.000E+02 -2.000E+02 0.000E+00 1.735E+01 1.787E+01 4.941E-01 -2.000E+02 -2.000E+02 0.000E+00 -2.000E+02 -2.000E+02 0.000E+00
CEC-3 -1.864E+02 -1.864E+02 8.672E-14 1.270E+01 1.270E+01 1.218E-03 -1.864E+02 -1.864E+02 8.672E-14 -1.864E+02 -1.864E+02 8.672E-14
CEC-4 -4.590E+00 -4.502E+00 2.687E-01 2.377E+03 8.875E+03 5.894E+03 -4.590E+00 -4.561E+00 1.608E-01 -4.590E+00 -4.561E+00 1.608E-01
A novel metaheuristic inspired by horned lizard defense tactics
CEC-5 -1.077E+00 -1.077E+00 2.220E-16 1.764E+00 3.122E+00 8.127E-01 -1.077E+00 -1.077E+00 1.797E-16 -1.077E+00 -1.077E+00 0.000E+00
CEC-6 0.000E+00 0.000E+00 0.000E+00 8.312E+00 1.120E+01 1.216E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CEC-7 -2.835E+13 -1.755E+13 1.196E+13 4.019E+02 9.562E+02 3.151E+02 -2.835E+13 -2.592E+13 7.524E+12 -4.755E+11 -7.761E+10 1.036E+11
CEC-8 1.000E+00 1.000E+00 0.000E+00 5.289E+00 6.361E+00 4.656E-01 1.000E+00 1.000E+00 0.000E+00 1.000E+00 1.000E+00 0.000E+00
CEC-9 1.553E-21 7.621E-02 2.325E-01 2.285E+02 1.207E+03 8.101E+02 2.301E-20 3.273E-17 1.072E-16 0.000E+00 9.244E-34 5.063E-33
CEC-10 -1.068E+02 -1.035E+02 7.374E+00 2.021E+01 2.049E+01 1.340E-01 -1.068E+02 -1.022E+02 8.369E+00 -1.068E+02 -1.061E+02 3.552E+00
Page 39 of 65 59
13
59 Page 40 of 65 H. Peraza‑Vázquez et al.
Fig. 9 Convergence curves of the best-ranked algorithms by Friendam test. From F1 to F20, functions
shown in Appendix A
Fig. 10 Convergence curves of the best-ranked algorithms by Friendam test. From F21 to F42, functions
shown in Appendix A
13
A novel metaheuristic inspired by horned lizard defense tactics Page 41 of 65 59
Fig. 11 Convergence curves of the best-ranked algorithms by Friendam test. From F43 to F63, functions
shown in Appendix A
13
59 Page 42 of 65 H. Peraza‑Vázquez et al.
→ →
Here, the MCV( x ) is the mean sum of the inequalities (Gi ( x )) and the equalities ( Hj ( x ) )
→
constraints, depicted by Eq. 22 and 23, respectively. Notice that the inequality gi ( x ) and
→
→
equality hj ( x ) constraints only have a value, the punishment if the constraint is violated.
0, if gi ( x ) ≤ 0
{ →
→
Gi ( ) =
x → (22)
gi ( x ), otherwise.
if |hj ( x )| − 𝛿 ≤ 0
{ →
→ 0,
Hj ( x ) = → (23)
|hj ( x )|, otherwise
This non-convex constrained optimization problem has three decision variables with
three inequality constraints (Kumar et→al. 2020) as described in Eq. 24. The best-known
feasible objective function value is f ( x ) = 1.0765430833.
→
Minimize f ( x ) = −0.7x3 + 5(0.5 − x1 )2 + 0.8
g1 ( x ) = −e(x1 −0.2) − x2 ≤ 0
→
Subject to
g2 ( x ) = x2 + 1.1x3 ≤ −1.0 (24)
→
g3 ( x ) = x1 − x3 ≤ 0.2
→
In Table 21, the comparison results show that HLOA, JSOA, BWOA, and WHO
reported feasible and competitive solutions, as seen in the convergence graph in Fig. 13.
The HLOA difference with the best-known feasible objective function value for all algo-
rithms is 1.17347E-05.
This problem has seven decision variables and nine inequality constraints with non-linear-
ities in real and binary variables (Kumar et al. 2020). The mathematical→
representation is
shown in Eq. 25. The best-known feasible objective function value is f ( x ) = 2.9248305537
.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 43 of 65 59
→
Minimize f ( x ) = (1 − x1 )2 + (2 − x2 )2 + (3 − x3 )2 + (1 − x4 )2 +
(1 − x5 )2 + (1 − x6 )2 − ln(1 + x7 )
g 1 ( x ) = x1 + x2 + x3 + x 4 + x 5 + x6 ≤ 5
→
Subject to
g2 ( x ) = x1 2 + x2 2 + x3 2 + x6 2 ≤ 5.5
→
g3 ( x ) = x1 + x4 ≤ 1.2
→
g4 ( x ) = x2 + x5 ≤ 1.8
→
g5 ( x ) = x3 + x6 ≤ 2.5 (25)
→
g6 ( x ) = x1 + x7 ≤ 1.2
→
with bounds 0 ≤ x1 , x2 , x3 ≤ 1,
x4 , x5 , x6 , x7 ∈ {0, 1}
In Table 22, the comparison results show that all algorithms reported feasible and com-
petitive solutions, as seen in the convergence graph in Fig. 14. Note that the HLOA and
BWOA have the most competitive values, whilst HLOA difference to the best-know feasi-
ble objective function value is 1.11E-04.
13
59 Page 44 of 65 H. Peraza‑Vázquez et al.
This problem stated in Eq. 26, have fourteen decision variables and fifteen inequal-
ity constraints formulated and a non-linear inequality-constrained optimization problem
→
(Kumar et al. 2020). Where the best-known feasible objective function value is f ( x ) =
3.22130008E-02.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 45 of 65 59
→
f ( x ) = 63098.88x2 x4 x12 + 5441.5x22 x12 + 115055.5x21.664 x6 + 6172.27x22 x6
+63098.88x1 x3 x11 + 5441.5x12 x11 + 115055.5x11.664 x5 + 6172.27x12 x5 +
Minimize 140.53x1 x11 + 281.29x3 x11 + 70.26x12 + 281.29x32 +
−1 2
14437x81.8812 x12
0.3424
x10 x14 x1 x7 x9−1 +
20470.2x72.893 x11
0.316 2
x1
g1 ( x ) = 1.524x7−1 ≤ 1
→
Subject to
g2 ( x ) = 1.524x8−1 ≤ 1
→
= 0.07789x1 − 2x7−1 x9 ≤ 1
→
g3 ( x )
≤1
→
g4 ( x ) = 7.05305x9−1 x12 x10 x8−1 x2−1 x14
−1
x14 ≤ 1
→
−1
g5 ( x ) = 0.0833x13
x12 x8 x10 ≤ 1
→
−1 2.1195 2.1195 −1 0.2 −1
g6 ( x ) = 47.136x20.333 x10 x12 − 1.333x8 x13 + 62.08x13
≤1
→
g7 ( x ) = 0.04771x10 x81.8812 x12
0.3424
≤1
→
g8 ( x ) = 0.0488x9 x71.893 x11
0.316
g9 ( x ) = 0.0099x1 x3−1 ≤ 1
→
g13 ( x ) = 2x9−1 ≤ 1
→
≤1
→
−1
g14 ( x ) = 2x10
≤1
→
−1
0.001 ≤ xi ≤ 5, i = 1, 2, .., 14
g1 ( x ) = x12 x11
with bounds
(26)
In Table 23, the comparison results show that HLOA and JSOA algorithms reported
feasible solutions, whereas BWOA and WHO results are infeasible, as seen in the con-
vergence graph, see Fig. 15. Note that the HLOA algorithm is ranked as the first-best
obtained solution, and the difference with the best-known feasible objective function value
is improved by -9.93E-04.
The Multiple Gravity Assist (MGA) problem is a straightforward benchmark for evaluat-
ing global optimization techniques in Space Mission Design-related challenges. The math-
ematical representation is a finite-dimension global optimization problem with nonlinear
constraints. For an interplanetary probe powered by a chemical propulsion engine to travel
from the Earth to another planet or asteroid, the best potential trajectory must be found.
The MGA mathematical approach can be found in Zuo et al. (2016); Wagner and Wie
(2015). Where the European Space Agency (ESA) raises an MGA issue with the Cassini
spacecraft trajectory design problem [89]. The objective of this mission is to reach Saturn
and get captured by its gravity into an orbit having pericenter radius rp set to 108950 km,
and eccentricity fixed to 0.98. The lower and upper variable bounds are shown in Table 24.
13
59 Page 46 of 65 H. Peraza‑Vázquez et al.
Fig. 15 Convergence graph of the Optimal Design of an Industrial Refrigeration System. The dotted lines
represent an infeasible solution shown by an algorithm
13
A novel metaheuristic inspired by horned lizard defense tactics Page 47 of 65 59
Table 24 Lower and Upper State Variable Lower Bounds Upper Bounds Units
Bounds of variables
x(1) t0 -1000 0 MJD2000∗
x(2) T1 30 400 days
x(3) T2 100 470 days
x(4) T3 30 400 days
x(5) T4 400 2000 days
x(6) T5 1000 6000 days
The Constraints of the various fly-by pericenters are shown in Table 25. The planetary
fly-by sequence and→more details can be found in [89]. The best-known feasible objective
function value is f ( x ) = 4.9307.
The comparison results in Table 26 show that HLOA, JSOA, BWOA, and WHO
reported feasible solutions. The HLOA and WHO showed competitive results, whereas
BWOA was outstanding, as seen in the convergence graph in Fig. 16. The HLOA differ-
ence with the best-known feasible objective function value is 4.26E-01.
The optimal power flow (OPF) is a non-linear optimization problem that combines an opti-
mization function with the power flow problem to calculate the operating conditions of a
power system network subjected to practical and physical constraints (Nucci et al. 2021;
Huneault and Galiana 1991), OPF mathematical formulation can be described as follows:
Minimize J(x, u),
Subjected to g(x, u) = 0, (27)
and h(x, u) ≤ 0
Where J(x, u) is the objective function, g(x, u) is the set of equality constraints, while
h(x, u) are the inequality constraints. The set of control variables u, defined in Eq. 28,
is PG , active power generation at the PV buses; VG , voltage magnitude; QC , shunt Volt-
Amperes Reactive (VAR) compensator; T transformer tap settings. Subindices NG, NC,
and NT are the number of generators, the number of regulating transformers, and the VAR
compensators, respectively.
13
59 Page 48 of 65 H. Peraza‑Vázquez et al.
[ ]
uT = PG2 ⋯ PGNG , VG1 ⋯ VGNG , QC1 ⋯ QCNC , T1 ⋯ TNT (28)
Where subindices NL and nl are the numbers of load buses and transmission lines,
respectively.
The real and reactive power equality constraints taken from the power flow equations are
defined in Eq. 30 and 31.
NB
∑ [ ]
PGi − PDi − Vi Vj Gij cos(𝜃ij ) + Bij sin(𝜃ij ) = 0 (30)
j=1
NB
∑ [ ]
QGi − QDi − Vi Vj Gij sin(𝜃ij ) + Bij cos(𝜃ij ) = 0 (31)
j=1
13
A novel metaheuristic inspired by horned lizard defense tactics Page 49 of 65 59
Where PG and QG are the active and reactive power generation, whereas PD and QD are the
active and reactive load demand, NB is the number of buses, Gij and Bij are the conductance
and susceptance between bus i and j of the admittance matrix Yij = Gij + jBij . The inequal-
ity constraints of the OPF formulation [?], summarized in Table 27, are defined in Eq. 32
to 35. Where Eq. 32 represent the generator constraints; Eq. 33 represent the transformer
constraints; Eq. 34 define the shunt VAR compensator constraints; and Eq. 35 represent the
security constraints.
Pmin , i = 1, ⋯ , NG (32)
≤ QGi ≤
G i G i
Qmin
Gi Qmax
Gi , i = 1, ⋯ , NG
13
59 Page 50 of 65 H. Peraza‑Vázquez et al.
Ci ≤ QGCi ≤ QCi , i = 1, ⋯ , NG
Qmin (34)
max
The Black Widow Optimization (BWOA), Jumping Spider Optimization (JSOA), and
Wild Horse Optimizer (WHO) algorithms previously ranked by the Friedman test, see
Table 6, are contrasted against the Horned Lizard optimization algorithm (HLOA) to
solve the Optimal Power Flow problem for the IEEE-30 bus test system. The IEEE test
system, depicted in Fig. 17, consists of six generators placed at nodes 1, 2, 5, 8, 11, and
13
A novel metaheuristic inspired by horned lizard defense tactics Page 51 of 65 59
13, highlighted in red color, four transformers located in lines 11, 12, 15, and 36, high-
lighted in blue color and nine reactive compensators at nodes 17, 20, 21, 23, 24 and 29
highlighted in yellow. Line and node numbering is depicted in green and black color,
respectively. Three cases of studies are conducted, the minimization of generation fuel
cost and the minimization of active and reactive power transmission losses. In the first
case, the objective function represents the total fuel of the six generator units, and it is
defined as follows:
NG
∑
J= fi ($∕h) (36)
i=1
NB NB NB
∑ ∑ ∑
J= Qi = PQi − QDi (38)
i=1 i=1 i=1
13
59 Page 52 of 65 H. Peraza‑Vázquez et al.
6 Conclusion
13
A novel metaheuristic inspired by horned lizard defense tactics Page 53 of 65 59
On the other hand, currently under development for future work is an improved version
of the HLOA algorithm to solve for multi-objective and many-objective optimization.
Moreover, efforts are focused on hyper-parameter optimization of convolutional neural
networks for medical applications.
13
59 Page 54 of 65 H. Peraza‑Vázquez et al.
Additional tables are shown in this section (See Tables 29, 30, 31, 32 and 33 ).
13
Table 30 Description of the Testbench Functions. From F1 to F21
ID Function Dim Interval fmin
n
� ∑ ∑n
F1 f (x) = −a.exp(−b n1 i=1 xi2 ) − exp( d1 i=1 cos(c ⋅ xi )) + a + exp(1) 30 [−32, 32] 0
� √ �
F2 f (x, y) = −200e −0.2 x2 + y2 2 [−32, 32] −200
� √ �
F3 f (x, y) = −200e −0.2 x2 + y2 + 5e(cos (3x) + sin (3y)) 2 [−32, 32] −195.629028238419
∑d−1 � � �
F4 2
f (x) = i=1 (e−0.2 xi2 +xi+1 + 3 cos(2xi ) + sin(2xi+1 ) ) 2 [−35, 35] −4.590101633799122
x
F5 f (x, y) = cos(x) sin(x) − 2 x ∈ [−1, 1] −2.02181
x2 +1
y ∈ [−1, 2]
∑n
F6 f (x) = i=1 xi sin(xi + 0.1xi ) 30 [0, 10] 0
∏n � � √
F7 f (x) = i=1 sin xi ⋅ xi 30 [0, 10] 2.808n
F8 f (x, y) = x2 + y2 + xy + sin(x) + cos(y) 2 [−500, 500] 1
F9 f (x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2 )2 + (2.625 − x + xy3 )2 2 [−4.5, 4.5] 0
F10 f (x, y) = sin (x)e(1 − cos(y))2 )
+ cos(y)e((1 − sin(x))2 )
+ (x − y)2 2 [−6.28, 6.28] −106.764537
( ) ( )
[−100, 100]
A novel metaheuristic inspired by horned lizard defense tactics
F11 f (x) = x12 + 2x22 − 0.3 cos 3𝜋x1 − 0.4 cos 4𝜋x2 + 0.7 2 0
( )[ ( )]
F12 f (x) = x12 + 2x22 − 0.3 cos 3𝜋x1 cos 4𝜋x2 + 0.3 2 [−100, 100] 0
F13 f (x, y) = (x + 2y − 7)2 + (2x + y − 5)2 2 [−10, 10] 0
2 2
F14 f (x, y) = (x + 10)2 + (y + 10)2 + e−x −y 2 [−20, 0] e−200
� 2 � � �
F15 ∑n−1 � � xi+1 + 1 � � x2 + 1
i
30 [−1, 4] 0
2
f (x) = i=1 xi2 + xi+1
√
F16 f (x) = 100 |x2 − 0.01x12 | +0.01 x1 + 10 2 x1 ∈ [−15, 5] 0
x2 ∈ [−5, 3]
√
F17 x2 +y2 2 [−10, 10] −2.06261218
f(x, y) = −0.0001( sin(x) sin(y) exp ( 100 − 𝜋 ) + 1 )0.1
F18 f (x, y) = 105 x2 + y2 − (x2 + y2 )2 + 10−5 (x2 + y2 )4 2 [−20, 20] −24771.09375
√
F19 1+cos(12 x2 +y2 ) 2 [−5.2, 5.2] −1
f (x, y) = − (0.5 x2 +y2 +2)
( )
Page 55 of 65 59
13
Table 30 (continued)
ID Function Dim Interval fmin
13
F20 2
F21 f (x, y) = x2 + y2 + 25(sin2 (x) + sin2 (y)) 2 [−5, 5] 0
59 Page 56 of 65
H. Peraza‑Vázquez et al.
Table 31 Description of the Testbench Functions. From F22 to F42
ID Function Dim Interval fmin
∑n 2
F22 f (x) = −exp(−0.5 i=1 xi )
30 [−1, 1] −1
( )2 ( ) ( )2 ( )
F23 f (x) = [1 + x1 + x2 + 1 19 − 14x1 + 3x12 − 14x2 + 6x1 x2 + 3x22 ][30 + 2x1 − 3x2 18 − 32x1 + 12x12 + 48x2 − 36x1 x2 + 27x22 ] 2 [−2, 2] 3
F24 sin(10𝜋x) 1 [−0.5, 2.5] −0.8690
f (x) = 2x
+ (x − 1)4
F25 ∑n xi2 ∏n x 30 [−600, 600] 0
f (x) = 1 + i=1 4000 − i=1 cos( √i )
i
�� �2 �𝛼 � ∑d �
F26 1 1 1 10 [−2, 2] 0
f (x) = �x�2 − d + d 2
�x�2 + i=1 xi + 2
13
59 Page 58 of 65 H. Peraza‑Vázquez et al.
i=1
∑n ∑n ∑n
F63 f (x) = 2
i=1 xi + ( i=1 0.5ixi )2 + ( i=1 0.5ixi )4 30 [−5, 10] 0
13
A novel metaheuristic inspired by horned lizard defense tactics Page 59 of 65 59
13
59 Page 60 of 65 H. Peraza‑Vázquez et al.
Table 33 (continued)
Problem/search range Type of objective Number of constraints
E I
Details of 28 test problems. D is the number of decision variables, I is the number of inequality constraints,
and E is the number of equality constraints
Acknowledgements This project was supported by Instituto Politécnico Nacional (IPN) through grant SIP−
no. 20221568 and SIP−no. 20231424. Also, by CONAHCyT (Mexican Council of Humanities, Science,
and Technology) through grant no. CF-2023-I-342
Author Contributions Conceptualization, H.P.-V.; methodology, H.P.-V.; software, H.P.-V.; validation, N.S.,
M.M-T. and A.B.M.-C.; formal analysis, M.M-T. and A.P.-D.; investigation, N.S. and A.B.M.-C.; resources,
H.P.-V.; data curation, M.M-T. and N.S.; writing-original draft preparation, H.P.-V.; writing-review and edit-
ing, H.P.-V., A.P.-D. and M-M-T.; visualization, N.S. and A.B.M.-C.; supervision, H.P.-V. and A.P.-D.; pro-
ject administration, H.P.-V.; funding acquisition, H.P.-V. and A.B.M-C.
Funding This project was supported by Instituto Politécnico Nacional (IPN) through grant SIP−no.
20221568 and SIP−no. 20231424. Also, by CONAHCyT (Mexican Council of Humanities, Science, and
Technology) through grant no. CF-2023-I-342
Code availability The source code used to support the findings of this study has been deposited in the Math-
Works repository at ((link provided if the manuscript is accepted)).
Declarations
Conflict of interest The authors declare that they have no conflict of interest.
Consent for publication All authors have read and agreed to the published version of the manuscript.
13
A novel metaheuristic inspired by horned lizard defense tactics Page 61 of 65 59
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References
Abdel-Basset M, Mohamed R, Azeem SAA, Jameel M, Abouhawwash M (2023) Kepler optimization
algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl-
Based Syst 268:110454. https://doi.org/10.1016/J.KNOSYS.2023.110454
Abdelhamid AA, Towfek SK, Khodadadi N, Alhussan AA, Khafaga DS, Eid MM, Ibrahim A (2023)
Waterwheel plant algorithm: a novel metaheuristic optimization method. Processes 11:1502.
https://doi.org/10.3390/PR11051502
Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S (2022) Mountain gazelle optimizer:
a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw
174:103282. https://doi.org/10.1016/J.ADVENGSOFT.2022.103282
Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA (2016) Electromagnetic field opti-
mization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22.
https://doi.org/10.1016/J.SWEVO.2015.07.002
Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH (2021) The arithmetic optimization algo-
rithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/J.CMA.2020.113609
Ahmad MF, Isa NAM, Lim WH, Ang KM (2022) Differential evolution: a recent review based on state-
of-the-art works. Alex Eng J 61:3831–3872. https://doi.org/10.1016/J.AEJ.2021.09.013
Ahmadi-Javid A (2011) Anarchic society optimization: A human-inspired method. 2011 IEEE Congress
of Evolutionary Computation, CEC 2011, 2586–2592. https://doi.org/10.1109/CEC.2011.5949940
Ahrari A, Essam D (2022) An introduction to evolutionary and memetic algorithms for parameter opti-
mization. Adapt Learn Optim 26:37–63. https://doi.org/10.1007/978-3-030-88315-7_3/COVER
Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699. https://doi.
org/10.1016/J.AMC.2010.03.114
Almazán-Covarrubias JH, Peraza-Vázquez H, Peña-Delgado AF, García-Vite PM (2022) An improved
dingo optimization algorithm applied to she-pwm modulation strategy. Appl Sci 12:992. https://doi.
org/10.3390/APP12030992
Ashrafi SM, Dariane AB (2011) A novel and effective algorithm for numerical optimization: Melody
search (ms). Proceedings of the 2011 11th international conference on hybrid intelligent systems,
HIS 2011, pp 109–114. https://doi.org/10.1109/HIS.2011.6122089
Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: An algorithm for optimization
inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, CEC
2007, pp 4661–4667. https://doi.org/10.1109/CEC.2007.4425083
Beyer H-G, Beyer H-G, Schwefel H-P (2002) Evolution strategies - a comprehensive introduction. Nat
Comput 1(1):3–52. https://doi.org/10.1023/A:1015059928466
Burtt E (1981) The adaptiveness of animal colors. Bioscience 31:723–729. https://doi.org/10.2307/
1308778
Cassini spacecraft trajectory design problem. European Space Agency
Cooper WE, Sherbrooke WC (2010) Plesiomorphic escape decisions in cryptic horned lizards (phryno-
soma) having highly derived antipredatory defenses. Ethology 116:920–928. https://doi.org/10.
1111/J.1439-0310.2010.01805.X
Dehghani M, Samet H (2020) Momentum search algorithm: a new meta-heuristic optimization algo-
rithm inspired by momentum conservation law. SN Appl Sci 2:1–15. https://doi.org/10.1007/
S42452-020-03511-6/TABLES/7
Dehghani M, Trojovský P (2021) Teamwork optimization algorithm: a new optimization approach for
function minimization/maximization. Sensors 21:4567. https://doi.org/10.3390/S21134567
Dehghani M, Trojovská E, Zuščák T (2022) A new human-inspired metaheuristic algorithm for solving
optimization problems based on mimicking sewing training. Sci Rep 12:1–24. https://doi.org/10.
1038/s41598-022-22458-9
13
59 Page 62 of 65 H. Peraza‑Vázquez et al.
Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2021) A novel algorithm for global optimization:
rat swarm optimizer. J Ambient Intell Humaniz Comput 12:8457–8482. https://doi.org/10.1007/
s12652-020-02580-0
Duan X, Hou P (2021) Research on teaching quality evaluation model of physical education based on
simulated annealing algorithm. Mobile Inf Syst. https://doi.org/10.1155/2021/4407512
Ela AAAE, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm.
Electric Power Syst Res 80:878–885. https://doi.org/10.1016/J.EPSR.2009.12.018
El-Kenawy ESM, Abdelhamid AA, Ibrahim A, Mirjalili S, Khodadad N, Duailij MAA, Alhussan AA,
Khafaga DS (2022) Al-biruni earth radius (ber) metaheuristic search optimization algorithm. Com-
put Syst Sci Eng 45:1917–1934
Fadakar E, Ebrahimi M (2016) A new metaheuristic football game inspired algorithm. In: 1st conference
on swarm intelligence and evolutionary computation, CSIEC 2016 - Proceedings, pp 6–11. https://
doi.org/10.1109/CSIEC.2016.7482120
Grigg JW, Buckley LB (2013) Conservatism of lizard thermal tolerances and body temperatures across
evolutionary history and geography. Biol Lett. https://doi.org/10.1098/RSBL.2012.1056
Hansen P, Mladenovići N (2018) Variable neighborhood search. Handbook Heuristics 1–2:759–787.
https://doi.org/10.1007/978-3-319-07124-4_19/TABLES/4
Harifi S, Mohammadzadeh J, Khalilian M, Ebrahimnejad S (2021) Giza pyramids construction: an
ancient-inspired metaheuristic algorithm for optimization. Evol Intel 14:1743–1761. https://doi.org/
10.1007/S12065-020-00451-3/METRICS
Holland JH (2006) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2:88–105.
https://doi.org/10.1137/0202009
Huneault M, Galiana FD (1991) A survey of the optimal power flow literature. IEEE Trans Power Syst
6:762–770. https://doi.org/10.1109/59.76723
Ikram RMA, Dehrashid AA, Zhang B, Chen Z, Le BN, Moayedi H (2023) A novel swarm intelligence:
cuckoo optimization algorithm (coa) and sailfish optimizer (sfo) in landslide susceptibility assessment.
Stochastic Environ Res Risk Assess 37:1717–1743. https://doi.org/10.1007/S00477-022-02361-5
Irizarry R (2004) Lares: an artificial chemical process approach for optimization. Evol Comput 12:435–
459. https://doi.org/10.1162/1063656043138897
Ismail K, Elshaer A, Abdelaleem BH, Elruby AY, Khodadadi N, Harati E, Caso FD, Nanni A (2023)
Optimizing truss structures using composite materials under natural frequency constraints with a
new hybrid algorithm based on cuckoo search and stochastic paint optimizer (csspo). Buildings
13:1551. https://doi.org/10.3390/BUILDINGS13061551
Joyce T, Herrmann JM (2017) A review of no free lunch theorems, and their implications for metaheuristic
optimisation. Stud Comput Intell 744:27–51. https://doi.org/10.1007/978-3-319-67669-2_2
Karami H, Sanjari MJ, Gharehpetian GB (2014) Hyper-spherical search (hss) algorithm: a novel meta-heu-
ristic algorithm to optimize nonlinear functions. Neural Comput Appl 25:1455–1465. https://doi.org/
10.1007/S00521-014-1636-7/FIGURES/22
Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based
metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.
1016/j.engappai.2020.103541
Kaveh A, Bakhshpoori T (2019) Cyclical parthenogenesis algorithm. Outlines, MATLAB Codes and Exam-
ples, Metaheuristics, pp 167–177
Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization.
Adv Eng Softw 110:69–84. https://doi.org/10.1016/J.ADVENGSOFT.2017.03.014
Kaveh A, Talatahari S, Khodadadi N (2022) Stochastic paint optimizer: theory and application in civil engi-
neering. Eng Comput 38:1921–1952. https://doi.org/10.1007/S00366-020-01179-5/FIGURES/25
Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc ICNN’95 - Int Conf Neural Netw 4:1942–
1948. https://doi.org/10.1109/ICNN.1995.488968
Khan MS, Ul Hassan CHA, Sadiq HA, Ali I, Rauf A, Javaid N (2018) A new meta-heuristic optimization
algorithm inspired from strawberry plant for demand side management in smart grid. Lecture Notes
Data Eng Commun Technol 8:143–154. https://doi.org/10.1007/978-3-319-65636-6_13
Kim JH (2016) Harmony search algorithm: a unique music-inspired algorithm. Procedia Eng 154:1401–
1405. https://doi.org/10.1016/J.PROENG.2016.07.510
Kim C, Lee B (2023) Torcwa: Gpu-accelerated fourier modal method and gradient-based optimization for
metasurface design. Comput Phys Commun 282:108552. https://doi.org/10.1016/J.CPC.2022.108552
Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex con-
strained optimization problems from the real-world and some baseline results. Swarm Evolut Comput.
https://doi.org/10.1016/j.swevo.2020.100693
13
A novel metaheuristic inspired by horned lizard defense tactics Page 63 of 65 59
Labbi Y, Attous DB, Gabbar HA, Mahdad B, Zidan A (2016) A new rooted tree optimization algorithm for
economic dispatch with valve-point effect. Int J Electr Power Energy Syst 79:298–311. https://doi.org/
10.1016/J.IJEPES.2016.01.028
Lam AYS, Li VOK (2012) Chemical reaction optimization: A tutorial. Memetic Comput 4:3–17. https://doi.
org/10.1007/S12293-012-0075-1/METRICS
Lara-Reséndiz RA, Arenas-Moreno DM, Beltrán-Sánchez E, Gramajo W, Verdugo-Molina J, Sherbrooke
WC (2015) Cruz, FRM-DL: selected body temperature of nine species of mexican horned lizards
(phrynosoma). Revista Mexicana de Biodiversidad 86:275–278. https://doi.org/10.7550/RMB.48028
Leaché AD, McGuire JA (2006) Phylogenetic relationships of horned lizards (phrynosoma) based on
nuclear and mitochondrial data: evidence for a misleading mitochondrial gene tree. Mol Phylogenet
Evol 39:628–644. https://doi.org/10.1016/J.YMPEV.2005.12.016
Liu Y, Liu J, Ma L, Tian L (2017) Artificial root foraging optimizer algorithm with hybrid strategies. Saudi
J Biol Sci 24:268–275. https://doi.org/10.1016/J.SJBS.2016.09.013
Ma B, Hu Y, Lu P, Liu Y (2023) Running city game optimizer: a game-based metaheuristic optimization
algorithm for global optimization. J Comput Des Eng 10:65–107. https://doi.org/10.1093/JCDE/
QWAC131
Maheri A, Jalili S, Hosseinzadeh Y, Khani R, Miryahyavi M (2021) A comprehensive survey on cultural
algorithms. Swarm Evol Comput 62:100846. https://doi.org/10.1016/J.SWEVO.2021.100846
Middendorf G (2001) Blood-squirting variability in horned lizards (phrynosoma). Copeia. https://doi.org/
10.1643/0045-8511(2001)001[1114:BSVIHL]2.0.CO;2
Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst
96:120–133. https://doi.org/10.1016/J.KNOSYS.2015.12.022
Mittal H, Tripathi A, Pandey AC, Pal R (2021) Gravitational search algorithm: a comprehensive analysis
of recent variants. Multimed Tools Appl 80:7581–7608. https://doi.org/10.1007/S11042-020-09831-4/
TABLES/8
Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185.
https://doi.org/10.1016/J.ASOC.2017.11.043
Mora-Gutiérrez RA, Ramírez-Rodríguez J, Rincón-García EA (2014) An optimization algorithm inspired
by musical composition. Artif Intell Rev 41:301–315. https://doi.org/10.1007/S10462-011-9309-8/
METRICS
Naruei I, Keynia F (2021) A new optimization method based on coot bird natural life model. Expert Syst
Appl 183:115352. https://doi.org/10.1016/j.eswa.2021.115352
Naruei I, Keynia F (2021) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering
optimization problems. Eng Comput. https://doi.org/10.1007/s00366-021-01438-z
Niall KK (2017) Erwin schrödinger’s color theory: Translated with modern commentary. Erwin
Schrödinger’s Color Theory: Translated with Modern Commentary, pp 1–193. https://doi.org/10.
1007/978-3-319-64621-3/COVER
Nucci CA, Borghetti A, Napolitano F, Tossani F (2021) Basics of power systems analysis. Springer
Handbooks, pp 273–366. https://doi.org/10.1007/978-981-32-9938-2_5/FIGURES/85
Nusair K, Alasali F (2020) Optimal power flow management system for a power network with stochastic
renewable energy resources using golden ratio optimization method. Energies 13:3671. https://doi.org/
10.3390/en13143671
Pan JS, Zhang SQ, Chu SC, Yang HM, Yan B (2023) Willow catkin optimization algorithm applied in
the tdoa-fdoa joint location problem. Entropy 25:171. https://doi.org/10.3390/E25010171
Patil S, Suparna HS, Bharanidharan N, Dharani N (2022) Puzzle optimization algorithm based weighted
feature selection for identification of rice leaf disease through thermal images. Proceedings - 2nd
international conference on smart technologies, communication and robotics 2022, STCR 2022.
https://doi.org/10.1109/STCR55312.2022.10009526
Peña-Delgado AF, Peraza-Vázquez H, Almazán-Covarrubias JH, Cruz NT, García-Vite PM, Morales-
Cepeda AB, Ramirez-Arredondo JM (2020) A novel bio-inspired algorithm applied to selective
harmonic elimination in a three-phase eleven-level inverter. Math Problems Eng. https://doi.org/10.
1155/2020/8856040
Peraza-Vázquez H, Peña-Delgado A, Ranjan P, Barde C, Choubey A, Morales-Cepeda AB (2021) A
bio-inspired method for mathematical optimization inspired by arachnida salticidade. Mathematics
10:102. https://doi.org/10.3390/math10010102
Peraza-Vázquez H, Peña-Delgado AF, Echavarría-Castillo G, Morales-Cepeda AB, Velasco-Álvarez J,
Ruiz-Perez F (2021) A bio-inspired method for engineering design optimization inspired by din-
goes hunting strategies. Math Probl Eng 2021:1–19. https://doi.org/10.1155/2021/9107547
Pisinger D, Ropke S (2010) Large neighborhood search, pp 399–419. https://doi.org/10.1007/978-1-
4419-1665-5_13
13
59 Page 64 of 65 H. Peraza‑Vázquez et al.
Pratha SJ, Asanambigai V, Mugunthan SR (2023) Hybrid mutualism mechanism-inspired butterfly and
flower pollination optimization algorithm for lifetime improving energy-efficient cluster head selec-
tion in wsns. Wireless Pers Commun 128:1567–1601. https://doi.org/10.1007/S11277-022-10010-
X/FIGURES/14
Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of
social behavior. IEEE Trans Evol Comput 7:386–396. https://doi.org/10.1109/TEVC.2003.814902
Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warn-
ing signals and mimicry. Avoiding Attack. https://doi.org/10.1093/ACPROF:OSO/9780198528609.
001.0001
Sadollah A, Eskandar H, Lee HM, Yoo DG, Kim JH (2016) Water cycle algorithm: a detailed standard
code. SoftwareX 5:37–43. https://doi.org/10.1016/J.SOFTX.2016.03.001
Salawudeen AT, Mu’azu MB, Sha’aban YA, Adedokun AE (2021) A novel smell agent optimization
(sao): an extensive cec study and engineering application. Knowl-Based Syst 232:107486. https://
doi.org/10.1016/j.knosys.2021.107486
Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–
18. https://doi.org/10.1016/J.KNOSYS.2014.07.025
Sherbrooke WC, Sherbrooke WC (1988) Integumental biology of horned lizards (phrynosoma)
Sherbrooke WC (1997) Physiological (rapid) change of color in horned lizards. Amphibia-Reptilia
18:155–175. https://doi.org/10.1163/156853897X00044
Stevens M, Merilaita S (2011) Animal camouflage: Function and mechanisms. Animal camouflage:
mechanisms and function, pp 1–16
Talatahari S, Azizi M, Tolouei M, Talatahari B, Sareh P (2021) Crystal structure algorithm (crystal):
a metaheuristic optimization method. IEEE Access 9:71244–71261. https://doi.org/10.1109/
ACCESS.2021.3079161
Tan WH, Mohamad-Saleh J (2023) A hybrid whale optimization algorithm based on equilibrium con-
cept. Alex Eng J 68:763–786. https://doi.org/10.1016/J.AEJ.2022.12.019
Trojovska E, Dehghani M, Trojovsky P (2022) Fennec fox optimization: a new nature-inspired optimiza-
tion algorithm. IEEE Access 10:84417–84443. https://doi.org/10.1109/ACCESS.2022.3197745
Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (aaa) for nonlinear global optimization.
Appl Soft Comput 31:153–171. https://doi.org/10.1016/J.ASOC.2015.03.003
Wagner S, Wie B (2015) Hybrid algorithm for multiple gravity-assist and impulsive delta-v maneuvers. J
Guid Control Dyn 38:2096–2107. https://doi.org/10.2514/1.G000874
Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W (2022) Artificial rabbits optimization: a new bio-inspired
meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell
114:105082. https://doi.org/10.1016/J.ENGAPPAI.2022.105082
Westland S, Ripamonti C, Cheung V (2012) Computational colour science using matlab
Xing B, Gao W-J (2014) Invasive weed optimization algorithm. Intell Syst Ref Library 62:177–181. https://
doi.org/10.1007/978-3-319-03404-1_13/COVER
Xu H, Lu Y, Guo Q (2022) Application of improved butterfly optimization algorithm combined with black
widow optimization in feature selection of network intrusion detection. Electronics 11:3531. https://
doi.org/10.3390/ELECTRONICS11213531
Yu C, Lahrichi N, Matta A (2023) Optimal budget allocation policy for tabu search in stochastic simulation
optimization. Comput Oper Res 150:106046. https://doi.org/10.1016/J.COR.2022.106046
Yuan Y, Wang S, Lv L, Song X (2020) An adaptive resistance and stamina strategy-based dragonfly algo-
rithm for solving engineering optimization problems. Eng Comput (Swansea, Wales) 38:2228–2251.
https://doi.org/10.1108/EC-08-2019-0362/FULL/PDF
Yuan Y, Lv L, Wang S, Song X (2020) Multidisciplinary co-design optimization of structural and control
parameters for bucket wheel reclaimer. Front Mech Eng 15:406–416. https://doi.org/10.1007/S11465-
019-0578-2/METRICS
Yuan Y, Ren J, Wang S, Wang Z, Mu X, Zhao W (2022) Alpine skiing optimization: a new bio-inspired
optimization algorithm. Adv Eng Softw 170:103158. https://doi.org/10.1016/J.ADVENGSOFT.2022.
103158
Yuan Y, Mu X, Shao X, Ren J, Zhao Y, Wang Z (2022) Optimization of an auto drum fashioned brake using
the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf
optimizer algorithm. Appl Soft Comput 123:108947. https://doi.org/10.1016/J.ASOC.2022.108947
Yuan Y, Shen Q, Wang S, Ren J, Yang D, Yang Q, Fan J, Mu X (2023) Coronavirus mask protection algo-
rithm: a new bio-inspired optimization algorithm and its applications. J Bionic Eng 20:1747–1765.
https://doi.org/10.1007/S42235-023-00359-5/TABLES/13
13
A novel metaheuristic inspired by horned lizard defense tactics Page 65 of 65 59
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
* Hernán Peraza‑Vázquez
hperaza@ipn.mx
* Adrián Peña‑Delgado
apea@utaltamira.edu.mx
* Marco Merino‑Treviño
mmerino@ipn.mx
Ana Beatriz Morales‑Cepeda
ana.mc@cdmadero.tecnm.mx
Neha Sinha
neha.cse.2203005@iiitbh.ac.in
1
Instituto Politécnico Nacional, CICATA Altamira, km.14.5 Carretera Tampico ‑Puerto Industrial
Altamira, 89120 Mexico City, Tamaulipas, Mexico
2
Universidad Tecnológica de Altamira, Boulevard de los Ríos Km. 3 + 100, Puerto Industrial
Altamira, 89601 Mexico City, Tamaulipas, Mexico
3
TecNM/Instituto Tecnológico de Ciudad Madero, Juventino Rosas y Jesús Urueta s/n, Col. Los
Mangos, 89318 Ciudad Madero, Tamaulipas, Mexico
4
Department of Computer Science and Engineering, Indian Institute of Information Technology
Bhagalpur, Bhagalpur, Bihar 813210, India
13