0% found this document useful (0 votes)
13 views25 pages

Kca55 Short e

This document outlines the specifications and handling precautions for multilayer ceramic capacitors certified for automotive use. It includes guidelines on storage conditions, voltage ratings, soldering techniques, and mechanical stress management to ensure reliability and performance. Users are advised to consult the product information page for further details and to adhere strictly to the provided cautions and recommendations.

Uploaded by

Dumitru Mihai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views25 pages

Kca55 Short e

This document outlines the specifications and handling precautions for multilayer ceramic capacitors certified for automotive use. It includes guidelines on storage conditions, voltage ratings, soldering techniques, and mechanical stress management to ensure reliability and performance. Users are advised to consult the product information page for further details and to adhere strictly to the provided cautions and recommendations.

Uploaded by

Dumitru Mihai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

Reference Specification

Safety Standard Certified Metal Terminal Type Multilayer Ceramic Capacitors for
Automotive (Powertrain/Safety) /Type MF [X1/Y2:250Vac, X1/Y2:1000Vdc]

Product specifications in this catalog are as of Mar. 2024, and are subject to change or
obsolescence without notice.
Please consult the approval sheet before ordering.Please read rating and Cautions first.

<Reference>Please kindly use our website.


Please refer to the product information page for more information on ceramic capacitors.→ Ceramic capacitor product information
Various data can be obtained directly from the product search.→ Product search (SMD) / Product search (Lead Type)
Reference only

Caution

■Storage and Operation Conditions


1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions.
1-1. Store the capacitors in the following conditions:Room Temperature of +5°C to +40°C and a Relative Humidity
of 20% to 70%.
(1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere, or high temperature and humidity
conditions during storage may affect solderability and packaging performance. Therefore, please maintain
the storage temperature and humidity. Use the product within six months after delivery, as prolonged storage
may cause oxidation of the electrodes.
(2) Please confirm solderability before using after six months. Store the capacitors without opening the original bag.
Even if the storage period is short, do not exceed the specified atmospheric conditions.
1-2. Corrosive gas can react with the termination(external) electrodes or lead wires of capacitors, and result
in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas
(e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas, etc.).
1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused
by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical
performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.

■Rating
1. Temperature Dependent Characteristics
1. The electrical characteristics of a capacitor can change with temperature.
1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes.
The following actions are recommended in order to ensure suitable capacitance values.
(1) Select a suitable capacitance for the operating temperature range.
(2) The capacitance may change within the rated temperature. When you use a high dielectric constant type
capacitor in a circuit that needs a tight (narrow) capacitance tolerance (e.g., a time-constant circuit),
please carefully consider the temperature characteristics, and carefully confirm the various characteristics
in actual use conditions and the actual system.

2. Measurement of Capacitance
1. Measure capacitance with the voltage and frequency specified in the product specifications.
1-1. The output voltage of the measuring equipment may decrease occasionally when capacitance is high.
Please confirm whether a prescribed measured voltage is impressed to the capacitor.
1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied.
Please consider the AC voltage characteristics when selecting a capacitor to be used in an AC circuit.

3. Applied Voltage
1. Do not apply a voltage to a safety standard certified product that exceeds the rated voltage as called out in the
specifications. Applied voltage between the terminals of a safety standard certified product shall be less than or equal
to the rated voltage (+ 10%). When a safety standard certified product is used as a DC voltage product, the AC rated
voltage value becomes the DC rated voltage value.
(Example:AC250V (r.m.s.) rated product can be used as DC250V (+ 10%) rated product.)
If both AC rated voltage and DC rated voltage are specified, apply the voltage lower than the respective rated voltage.
1-1. When a safety standard certified product is used in a circuit connected to a commercial power supply,
ensure that the applied commercial power supply voltage including fluctuation should be less than 10% above
its rated voltage.
1-2. When using a safety standard certified product as a DC rated product in circuits other than those connected to
a commercial power supply.
When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage.
When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor


DC Voltage DC Voltage+AC AC Voltage Pulse Voltage

E E E 0 E

0 0

(E: Maximum possible applied voltage.)

2. Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

EGKCA03B
1/24
Reference only

Caution

4. Type of Applied Voltage and Self-heating Temperature


1. Confirm the operating conditions to make sure that no large current is flowing into the capacitor due to the continuous
application of an AC voltage or pulse voltage. When a DC rated voltage product is used in an AC voltage circuit or a
pulse voltage circuit, the AC current or pulse current will flow into the capacitor; therefore check the self-heating condition.
Please confirm the surface temperature of the capacitor so that the temperature remains within the upper limits of the
operating temperature, including the rise in temperature due to self-heating. When the capacitor is used with a
high-frequency voltage or pulse voltage, heat may be generated by dielectric loss.

5. DC Voltage and AC Voltage Characteristics


1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied.
Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.
1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage (see figure).
Please confirm the following in order to secure the capacitance.
(1) Determine whether the capacitance change caused by the applied voltage is within the allowed range.
(2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases, even if the
applied voltage is below the rated voltage. When a high dielectric constant type capacitor is used in a circuit that
requires a tight (narrow) capacitance tolerance (e.g., a time constant circuit), please carefully consider the voltage
characteristics, and confirm the various characteristics in actual operating conditions in an actual system.
2. The capacitance values of high dielectric constant type capacitors changes depending on the AC voltage applied.
Please consider the AC voltage characteristics when selecting a capacitor to be used in an AC circuit.

6. Capacitance Aging
1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with the
passage of time. When you use high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance
tolerance (e.g., a time-constant circuit), please carefully consider the characteristics of these capacitors, such as their
aging, voltage, and temperature characteristics. In addition, check capacitors using your actual appliances at the intended
environment and operating conditions.

7. Vibration and Shock


1. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance.
Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
2. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.
Do not use a dropped capacitor because the quality and reliability may be deteriorated.

Crack

Floor
3. When printed circuit boards are piled up or handled, the corner of another printed circuit board should not be allowed
to hit the capacitor, in order to avoid a crack or other damage to the capacitor.

EGKCA03B
2/24
Reference only

Caution

■Soldering and Mounting


1. Mounting Position
1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing
or bending the printed circuit board.
1-1. Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts.

[Chip Mounting Close to Board Separation Point]


It is effective to implement the following measures, to reduce stress in separating the board. It is best to implement all
of the following three measures; however, implement as many measures as possible to reduce stress.
C
Perforation Contents of Measures Stress Level
B (1) Turn the mounting direction of the component parallel
A>D
(1) to the board separation surface.
A D (2) Add slits in the board separation part. A>B
Slit (3) Keep the mounting position of the component away
A>C
(3) from the board separation surface.

[Mounting Capacitors Near Screw Holes]


When a capacitor is mounted near a screw hole, it may be affected by the board deflection that occurs during the
tightening of the screw. Mount the capacitor in a position as far away from the screw holes as possible.

Screw Hole Recommended

2. Information before Mounting


1. Do not re-use capacitors that were removed from the equipment.
2. Confirm capacitance characteristics under actual applied voltage.
3. Confirm the mechanical stress under actual process and equipment use.
4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly.
5. Prior to use, confirm the solderability of capacitors that were in long-term storage.
6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage.
7. The use of Sn-Zn based solder will deteriorate the reliability of the MLCC.
Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance.

3. Maintenance of the Mounting (pick and place) Machine


1. Make sure that the following excessive forces are not applied to the capacitors.
1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum
to prevent them from any bending damage or cracking. Please take into account the following precautions and
recommendations for use in your process.
(1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.
(2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting.

EGKCA03B
3/24
Reference only

Caution

2. Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving
moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also, the locating
claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips.
The suction nozzle and the locating claw must be maintained, checked, and replaced periodically.

4-1. Reflow Soldering


1. When sudden heat is applied to the components, the [Standard Conditions for Reflow Soldering]
mechanical strength of the components will decrease Reflow
Temperature (℃)
because a sudden temperature change causes deformation Soldering
inside the components. In order to prevent mechanical damage Peak Temperature
Gradual
to the components, preheating is required for both the 220℃ Cooling
components and the PCB. Preheating conditions are shown 190℃ ΔT
170℃
in table 1. It is required to keep the temperature differential 150℃
between the solder and the components surface (ΔT) as small Preheating
as possible.
2. Solderability of tin plating termination chips might be
deteriorated when a low temperature soldering profile where Time
the peak solder temperature is below the melting point of tin 60 to 120 seconds 30 to 60 seconds
is used. Please confirm the solderability of tin plated
termination chips before use. [Allowable Reflow Soldering Temperature and Time]
3. When components are immersed in solvent after mounting,
280
be sure to maintain the temperature difference (ΔT) between

Soldering Temperature
270
the component and the solvent within the range shown in table 1.
260

(℃)
250
Table 1
240
Part Number Temperature Differential
230
KCA55 ΔT≦130°C 220
0 30 60 90 120
Soldering Time (sec.)
Standard Conditions
Lead Free Solder In the case of repeated soldering, the accumulated soldering
Peak Temperature 240 to 260°C time must be within the range shown above.
Atmosphere Air or N2
Lead Free Solder: Sn-3.0Ag-0.5Cu

4. Optimum Solder Amount for Reflow Soldering


4-1. If solder paste is excessive, solder between a chip and a
The level of
metal terminal melts. This causes the chip to move and the bottom of the chip
come off.
0.3 mm min. and
4-2. If solder paste is too little, it causes a lack of adhesive lower than the level of
strength on the metal terminal and the capacitor comes off. the bottom of the chip

4-3. Please make sure that solder is smoothly applied higher In section
than 0.3mm and lower than the level of the bottom of the
chip.

Inverting the PCB


Make sure not to impose any abnormal mechanical shocks to the PCB.

4-2. Flow Soldering


1. Do not apply flow soldering.

EGKCA03B
4/24
Reference only

Caution

4-3. Correction of Soldered Portion


1. For the shape of the soldering iron tip, refer to the figure
on the right.
2. Regarding the type of solder, use a wire diameter of
φ0.5mm or less (rosin core wire solder).
3. Apply the tip of the soldering iron against the lower end
of the metal terminal.
(1) In order to prevent cracking caused by sudden heating
of the ceramic device, do not touch the ceramic base
directly.
(2) In order to prevent deviations and dislocating of the
chip, do not touch the junction of the chip and the metal
terminal, and the metal portion on the outside directly.
4. The amount of solder for corrections by soldering iron,
The level of
should be lower than the level of the bottom of the chip. the bottom of the chip

Solder amount

In section

5. Washing
Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken
solder joints. Take note not to vibrate PCBs.

6. Electrical Test on Printed Circuit Board


1. Confirm position of the backup pin or specific jig, when inspecting the electrical performance of a capacitor after
mounting on the printed circuit board.
1-1. Avoid bending the printed circuit board by the pressure of a test-probe, etc. The thrusting force of the test probe can
flex the PCB, resulting in cracked chips or open solder joints. Provide backup pins on the back side of the PCB
to prevent warping or flexing. Install backup pins as close to the capacitor as possible.
1-2. Avoid vibration of the board by shock when a test-probe contacts a printed circuit board.

[Not Recommended] [Recommended]

Peeling Backup Pin

Test-probe
Test-probe

7. Printed Circuit Board Cropping


1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that causes bending
or twisting the board.
1-1. In cropping the board, the stress as shown at right may cause the capacitor to crack. Cracked capacitors may cause
deterioration of the insulation resistance, and result in a short. Avoid this type of stress to a capacitor.

[Bending] [Twisting]

EGKCA03B
5/24
Reference only

Caution

2. Check the cropping method for the printed circuit board in advance.
2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus (Disk separator, router type separator,
etc.) to prevent the mechanical stress that can occur to the board.
Hand Separation Board Separation Apparatus
Board Separation Method (1) Board Separation Jig
Nipper Separation (2) Disk Separator (3) Router Type Separator
Level of stress on board High Medium Medium Low
Recommended × △* △* ○

· Board handling
Hand and nipper separation · Board handling · Layout of slits
Notes apply a high level of stress. · Board bending direction · Design of V groove Board handling
Use another method. · Layout of capacitors · Arrangement of blades
· Controlling blade life

* When a board separation jig or disk separator is used, if the following precautions are not observed,
a large board deflection stress will occur and the capacitors may crack. Use router type separator if at all possible.

(1) Example of a suitable jig


[In the case of Single-side Mounting]
An outline of the board separation jig is shown as follows. Recommended example: Stress on the component
mounting position can be minimized by holding the portion close to the jig, and bend in the direction towards
the side where the capacitors are mounted. Not recommended example: The risk of cracks occurring in the
capacitors increases due to large stress being applied to the component mounting position, if the portion away
from the jig is held and bent in the direction opposite the side where the capacitors are mounted.

[Outline of Jig] Recommended Not Recommended

[In the case of Double-sided Mounting]


Since components are mounted on both sides of the board, the risk of cracks occurring can not be avoided with the
above method. Therefore, implement the following measures to prevent stress from being applied to the components.
(Measures)
① Consider introducing a router type separator. If it is difficult to introduce a router type separator, implement
the following measures. (Refer to item 1. Mounting Position)
② Mount the components at a right angle to the board separation surface.
③ When mounting components near the board separation point, add slits in the separation position
near the component.
④ Keep the mounting position of the components away from the board separation point.

(2) Example of a Disk Separator


An outline of a disk separator is shown as follows. As shown in the Principle of Operation, the top blade and bottom
blade are aligned with the V-grooves on the printed circuit board to separate the board. In the following case, board
deflection stress will be applied and cause cracks in the capacitors.
① When the adjustment of the top and bottom blades are misaligned, such as deviating in the top-bottom, left-right
or front-rear directions
② The angle of the V groove is too low, depth of the V groove is too shallow, or the V groove is misaligned
top-bottom IF V groove is too deep, it is possible to brake when you handle and carry it. Carefully design depth of
the V groove with consideration about strength of material of the printed circuit board.

[Outline of Machine] [Principle of Operation] [Cross-section Diagram]

EGKCA03B
6/24
Reference only

Caution
Not Recommended
Recommended
Top-bottom Misalignment Left-right Misalignment Front-rear Misalignment

Top Blade Top Blade Top Blade Top Blade

Bottom Blade Bottom Blade Bottom Blade Bottom Blade

Example of Recommended Not Recommended


V-groove Design Left-right Misalignment Low-Angle Depth too Shallow Depth too Deep

(3) Example of Router Type Separator


The router type separator performs cutting by a router rotating at a high speed. Since the board does not bend in the
cutting process, stress on the board can be suppressed during board separation. When attaching or removing
boards to/from the router type separator, carefully handle the boards to prevent bending.

[Outline Drawing]
Router

8. Assembly
1. Handling
If a board mounted with capacitors is held with one hand, the board may bend. Firmly hold the edges of the board with
both hands when handling. If a board mounted with capacitors is dropped, cracks may occur in the capacitors.
Do not use dropped boards, as there is a possibility that the quality of the capacitors may be impaired.
2. Attachment of Other Components
2-1. Mounting of Other Components
Pay attention to the following items, when mounting other
components on the back side of the board after capacitors
have been mounted on the opposite side. When the bottom
dead point of the suction nozzle is set too low, board deflection
stress may be applied to the capacitors on the back side
Suction Nozzle
(bottom side), and cracks may occur in the capacitors.
・ After the board is straightened, set the bottom dead point
of the nozzle on the upper surface of the board.
・ Periodically check and adjust the bottom dead point.

2-2. Inserting Components with Leads into Boards


When inserting components (transformers, IC, etc.) into boards,
bending the board may cause cracks in the capacitors or
cracks in the solder. Pay attention to the following.
・ Increase the size of the holes to insert the leads, to reduce
the stress on the board during insertion.
・ Fix the board with backup pins or a dedicated jig before
Component with Leads
insertion.
・ Support below the board so that the board does not bend.
When using multiple backup pins on the board, periodically
confirm that there is no difference in the height of each
backup pin.

EGKCA03B
7/24
Reference only

Caution

2-3. Attaching/Removing Sockets


When the board itself is a connector, the board may bend when Socket
a socket is attached or removed. Plan the work so that the board
does not bend when a socket is attached or removed.

2-4. Tightening Screws


The board may be bent, when tightening screws, etc. during the
attachment of the board to a shield or chassis.
Pay attention to the following items before performing the work.
・ Plan the work to prevent the board from bending. Screwdriver
・ Use a torque screwdriver, to prevent over-tightening of the
screws.
・ The board may bend after mounting by reflow soldering, etc.
Please note, as stress may be applied to the chips by forcibly
flattening the board when tightening the screws.

■Other
1. Under Operation of Equipment
1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of an electric shock.
1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not
expose a capacitor to a conductive liquid, including any acid or alkali solutions.
1-3. Confirm the environment in which the equipment will operate is under the specified conditions. Do not use
the equipment under the following environments.
(1) Being spattered with water or oil.
(2) Being exposed to direct sunlight.
(3) Being exposed to ozone, ultraviolet rays, or radiation.
(4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas, etc.)
(5) Any vibrations or mechanical shocks exceeding the specified limits.
(6) Moisture condensing environments.
1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Other
2-1. In an Emergency
(1) If the equipment should generate smoke, fire, or smell, immediately turn off or unplug the equipment. If the
equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
(2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be
caused by the capacitor's high temperature.
2-2. Disposal of Waste
When capacitors are disposed of, they must be burned or buried by an industrial waste vendor with the appropriate
licenses.
2-3. Circuit Design
(1) Addition of Fail Safe Function
Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation
resistance, and result in a short. If the circuit being used may cause an electrical shock, smoke or fire when
a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.
(2) Capacitors used to prevent electromagnetic interference in the primary AC side circuit, or as a
connection/insulation, must be a safety standard certified product, or satisfy the contents stipulated
in the Electrical Appliance and Material Safety Law. Install a fuse for each line in case of a short.

EGKCA03B
8/24
Reference only

Caution

2-4. Test Condition for AC Withstanding Voltage


(1) Test Equipment
Test for AC withstanding voltage should be made with equipment capable of creating a wave similar
to a 50/60 Hz sine wave.
(2) Voltage Applied Method
The capacitor's leads or terminals should be firmly connected to the output of the withstanding
voltage test equipment, and then the voltage should be raised from near zero to the test voltage.
If the test voltage is applied directly to the capacitor without raising it from near zero, it should be
applied with the zero cross. *At the end of the test time, the test voltage should be reduced to near
zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding
voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from
near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave passes 0V.
- See the figure at right -

2-5. Remarks
Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used.
The above notices are for standard applications and conditions. Contact us when the products are used
in special mounting conditions. Select optimum conditions for operation as they determine the reliability of
the product after assembly. The data herein are given in typical values, not guaranteed ratings.

3. Limitation of applications
The products listed in the specification(hereinafter the product(s) is called as the “Product(s)”) are designed and manufactured
for applications specified in the specification. (hereinafter called as the “Specific Application”)
We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety,
or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally
require high performance, function, quality, management of production or safety.
Therefore, the Product shall be applied in compliance with the specific application.
WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS
INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE
UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH
IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT
IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH
APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE
PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS
OFFICIALLY ISSUED BY US*)
1. Aircraft equipment
2. Aerospace equipment
3. Undersea equipment
4. Power plant control equipment
5. Medical equipment
6. Transportation equipment
7. Traffic control equipment
8. Disaster prevention/security equipment
9. Industrial data-processing equipment
10. Combustion/explosion control equipment
11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.
For exploring information of the Products which will be compatible with the particular purpose other than those specified
in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal,
or via our web contact form.
Contact form: https://www.murata.com/contactform
*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that,
in such case we shall unambiguously specify such Specific Application in the specification without any exception.
Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as
the evidence to imply that we accept the applications listed in (1) to (11).

EGKCA03B
9/24
Reference only

Notice

■Rating
1. Operating Temperature
1. The operating temperature limit depends on the capacitor.
1-1. Do not apply temperatures exceeding the upper operating temperature. It is necessary to select a capacitor with
a suitable rated temperature that will cover the operating temperature range. It is also necessary to consider
the temperature distribution in equipment and the seasonal temperature variable factor.
1-2. Consider the self-heating factor of the capacitor. The surface temperature of the capacitor shall be the upper
operating temperature or less when including the self-heating factors.

2. Atmosphere Surroundings (gaseous and liquid)


1. Restriction on the operating environment of capacitors.
1-1. Capacitors, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion
of the terminations and the penetration of moisture into the capacitor.
1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject
to moisture condensation.
1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal
electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents
for long periods of time.

3. Piezo-electric Phenomenon
1. When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies
and noise may be generated. Moreover, when the mechanical vibration or shock is added to the capacitor, noise may occur.

■Soldering and Mounting


1. PCB Design
1. Notice for Pattern Forms
1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly
on the substrate. They are also more sensitive to mechanical and thermal stresses than leaded components.
Excess solder fillet height can multiply these tresses and cause chip cracking. When designing substrates,
take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.
1-2. There is a possibility of chip cracking caused by PCB expansion/contraction with heat, because stress on a chip is
different depending on PCB material and structure. When the thermal expansion coefficient greatly differs between
the board used for mounting and the chip, it will cause cracking of the chip due to the thermal expansion and
contraction.

Pattern Forms
Prohibited Correct
Chassis
Solder(ground) Solder Resist

Placing Close to Chassis

Electrode Pattern

Lead Wire Solder Resist


Placing
of Chip Components
and Leaded Components

Soldering Iron
Placing Lead Wire Solder Resist
of Leaded Components
after Chip Component

Solder Resist

Lateral Mounting

EGKCA03B
10/24
Reference only

Notice

2. Land Dimensions
2-1. Chip capacitors can be cracked due to the stress of PCB
bending, etc. if the land area is larger than needed and
has an excess amount of solder. Please refer to the land
dimensions in the following table for reflow soldering.
Please confirm the suitable land dimension by evaluating
of the actual SET / PCB.

Unit:mm
Dimensions
Body size (L×W) a b c
Part Number
KCA55□7UMF□□□□L□□□ 6.1×5.1 3.2 to 4.0 2.0 to 2.4 5.5 to 5.7

3. Board Design
When designing the board, keep in mind that the amount of strain which occurs will increase depending on the size
and material of the board.

Relationship with amount of strain to the board thickness, length, width, etc.]

3PL
ε= Relationship between load and strain
2Ewh2
ε:Strain on center of board (μst)
P L:Distance between supporting points (mm)
Y w :Board width (mm)
h :Board thickness (mm)
E :Elastic modulus of board (N/m2=Pa)
h Y :Deflection (mm)
P :Load (N)
L w

When the load is constant, the following relationship can be established.


· As the distance between the supporting points (L) increases,the amount of strain also increases.
→Reduce the distance between the supporting points.
· As the elastic modulus (E) decreases, the amount of strain increases.
→Increase the elastic modulus.
· As the board width (w) decreases, the amount of strain increases.
→Increase the width of the board.
· As the board thickness (h) decreases, the amount of strain increases.
→Increase the thickness of the board.
Since the board thickness is squared, the effect on the amount of strain becomes even greater.

4. Washing
1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the
solvent for cleaning.
2. Unsuitable cleaning solvent may leave residual flux or other foreign substances, causing deterioration of electrical
characteristics and the reliability of the capacitors.
3. Select the proper cleaning conditions.
3-1. Improper cleaning conditions (excessive or insufficient) may result in deterioration of the performance of the capacitors.

5. Coating
1. A crack may be cause in the capacitor due to the stress of the thermal contraction of the resin during curing process. The
stress is affected by the amount of resin and curing contraction. Select a resin with low curing contraction. The difference
in the thermal expansion coefficient between a coating resin or a molding resin and the capacitor may cause the
destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation
resistance or dielectric breakdown. Select a resin for which the thermal expansion coefficient is as close to that of the
capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress.
2. Select a resin that is less hygroscopic. Using hygroscopic resins under high humidity conditions may cause
the deterioration of the insulation resistance of a capacitor. An epoxy resin can be used as a less hygroscopic resin.

EGKCA03B
11/24
Reference only

Notice

■Other
1. Transportation
1. The performance of a capacitor may be affected by the conditions during transportation.
1-1. The capacitors shall be protected against excessive temperature, humidity, and mechanical force during
transportation.
Mechanical condition
Transportation shall be done in such a way that the boxes are not deformed and forced are not directly passed
on to the inner packaging.
1-2. Do not apply excessive vibration, shock, or pressure to the capacitor.
(1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur
in the ceramic body of the capacitor.
(2) When the sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface
of the capacitor, the capacitor may crack and short-circuit.
1-3. Do not use a capacitor to which excessive shock was applied by dropping, etc. A capacitor dropped accidentally
during processing may be damaged.

2. Characteristics Evaluation in the Actual System


1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification
values in a finished product before using.
2. Since a voltage dependency and temperature dependency exists in the capacitance of high dielectric type ceramic
capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore,
be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect
the capacitance value of the capacitor.
3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual
system. Evaluate the surge resistance in the actual system as required.

Note
1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted
to your product.
2. You are requested not to use our product deviating from this specification.

EGKCA03B
12/24
Reference only

1. Application
This product specification is applied to Safety Standard Certified Resin Molding SMD Type Multilayer
Ceramic Capacitors Type MF.
The safety standard certification is obtained as Class X1, Y2.

1. Specific applications:
・Automotive powertrain/safety equipment: Products that can be used for automotive equipment related to
running, turning, stopping, safety devices, etc., or equipment whose structure, equipment, and performance
are legally required to meet technical standards for safety assurance or environmental protection.

・Consumer equipment: Products that can be used in consumer equipment such as home appliances,
audio/visual equipment, communication equipment, information equipment, office equipment, and household
robotics, and whose functions are not directly related to the protection of human life and property.

・Industrial equipment: Products that can be used in industrial equipment such as base stations,
manufacturing equipment, industrial robotics equipment, and measurement equipment,
and whose functions do not directly relate to the protection of human life and property.

・Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical
devices designated under the GHTF international classifications as Class A or Class B (the functions of
which are not directly involved in protection of human life or property) or in medical devices other than
implants designated under the GHTF international classifications as Class C (the malfunctioning of which is
considered to pose a comparatively high risk to the human body).

・Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as
car navigation systems and car audio systems that do not directly relate to human life and whose structure,
equipment, and performance are not specifically required by law to meet technical standards for safety
assurance or environmental protection.

2. Unsuitable Application: Applications listed in “Limitation of applications” in this product specification.

Approval standard and certified number


AC Rated voltage DC Rated voltage
Standard number *Certified number
V(r.m.s.) V
UL60384-14,
UL/cUL E37921 250 1000
CSA E60384-14
ENEC(VDE) EN 60384-14 40039447 250 -
*Above Certified number may be changed on account of the revision of standards and
the renewal of certification.

2. Rating
2-1. Operating temperature range
Char. U2J : -55 to 125 °C

2-2. Rated Voltage


AC250 V(r.m.s.)
DC1000 V

2-3. Part name configuration


ex.)
KCA 55 W 7U MF 103 M L01 K
Series Chip Dimension Temperature Certified Capacitance Capacitance Individual Package
Dimension (T) Characteristics Type Tolerance Specification
(LW)

TEIKAKU
13/24
Reference only

•Chip Dimension (L×W)


Chip Dimension (㎜)
Code
L W
55 5.7 5.0

•Dimension (T)
Please refer to [Part number list] on the dimensions of metal terminal product.
Code Dimension (㎜)
L 2.8
Q 3.7
T 4.8
W 6.4

•Temperature Characteristics
Please confirm detailed specification on [Specification and test methods].
Code Temperature Characteristics
7U U2J (EIA)

•Certified Type
This denotes safety certified type name Type MF.

•Capacitance
The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF.
ex.) In case of 103 .
10 × 103 = 10000 pF

•Capacitance Tolerance
Please refer to [Part number list].

•Individual Specification
Murata’s control code
Please refer to [Part number list].

•Package
Code Package
K Φ330 mm reel Plastic taping
L Φ180 mm reel Plastic taping

2-4. Marking
Certified Type : Code
Company name : Abbreviation

TEIKAKU
14/24
Reference only

3. Part number list

Unit : mm

Cap. Dimension (mm) Pack


Chip
Customer Part Number Murata Part Number T.C. Cap. tol. qty.
type
(%) L W T e d (pcs)

6.1 5.1 2.8 0.9 4.0


KCA55L7UMF101KL01K U2J 100 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF151KL01K U2J 150 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF221KL01K U2J 220 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF331KL01K U2J 330 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF471KL01K U2J 470 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF681KL01K U2J 680 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF102KL01K U2J 1000 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF152KL01K U2J 1500 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF222KL01K U2J 2200 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF332KL01K U2J 3300 pF ±10 1 2000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 3.7 0.9 4.0
KCA55Q7UMF472KL01K U2J 4700 pF ±10 1 1000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 4.8 0.9 4.0
KCA55T7UMF682ML01K U2J 6800 pF ±20 2 1000
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 6.4 0.9 4.0
KCA55W7UMF103ML01K U2J 10000 pF ±20 2 500
±0.4 ±0.3 ±0.3 ±0.2 min.

PNLIST
15/24
Reference only

Unit : mm

Cap. Dimension (mm) Pack


Chip
Customer Part Number Murata Part Number T.C. Cap. tol. qty.
type
(%) L W T e d (pcs)

6.1 5.1 2.8 0.9 4.0


KCA55L7UMF101KL01L U2J 100 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF151KL01L U2J 150 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF221KL01L U2J 220 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF331KL01L U2J 330 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF471KL01L U2J 470 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF681KL01L U2J 680 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF102KL01L U2J 1000 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF152KL01L U2J 1500 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF222KL01L U2J 2200 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 2.8 0.9 4.0
KCA55L7UMF332KL01L U2J 3300 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 3.7 0.9 4.0
KCA55Q7UMF472KL01L U2J 4700 pF ±10 1 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 4.8 0.9 4.0
KCA55T7UMF682ML01L U2J 6800 pF ±20 2 400
±0.4 ±0.3 ±0.2 ±0.2 min.
6.1 5.1 6.4 0.9 4.0
KCA55W7UMF103ML01L U2J 10000 pF ±20 2 200
±0.4 ±0.3 ±0.3 ±0.2 min.

PNLIST
16/24
Reference only
4. Specification
No. Test Item Specification Test Method (Compliant Standard:AEC-Q200, Ref. Standard:JIS C 5101(all
parts), IEC60384 (all parts))
1 Pre-and Post-Stress Electrical Test -
2 High Temperature Exposure (Storage) The measured and observed characteristics should Set the capacitor for 1,00012 h at 1503 C.
satisfy the specifications in the following table. Let sit for 242 h at *room temperature, then measure.

Appearance No marking defects


Capacitance Within ±5.0 % or ±0.5 pF
Change (Whichever is larger.)
Q Q ≧ 1,000
I.R. More than 1,000 MΩ or 50 MΩ・µF
(Whichever is smaller.)
3 Temperature Cycle The measured and observed characteristics should Fix the capacitor to the supporting jig in the same manner and under the same
satisfy the specifications in the following table. conditions as (20).
Perform the 1,000 cycles according to the four heat treatments listed in the
Appearance No marking defects following table.
Capacitance Within ±5.0 % or ±0.5 pF Let sit for 24±2 h at *room condition, then measure.
Change (Whichever is larger.)
Step 1 2 3 4
Q Q ≧ 1,000
Temp. Room Room
I.R. More than 1,000 MΩ or 50 MΩ・µF -55+0/-3 125+3/-0
(℃) Temp. Temp.
(Whichever is smaller.) Time
15±3 1 15±3 1
Dielectric Per Item 18 (min.)
Strength
4 Destructive Physical Analysis No defects or abnormalities Per EIA-469
5 Moisture Resistance The measured and observed characteristics should Apply the 24 h heat (25 to 65 C) and humidity (80 to 98 %) treatment shown
satisfy the specifications in the following table. below, 10 consecutive times.
Let sit for 24±2 h at *room condition, then measure.
Appearance No marking defects
Capacitance Within ±6.0 % or ±0.6 pF
Change (Whichever is larger.)
Q Q ≧ 350
I.R. More than 1,000 MΩ or 50 MΩ・μF
(Whichever is smaller.)

6-1 Humidity Loading(AC) The measured and observed characteristics should Apply the AC250 V(r.m.s.) for 1,000±12 h at 85±3 ℃ in 80 to 85 % relative
satisfy the specifications in the following table. humidity.
Remove and let sit for 24±2 h at *room condition, then measure.
Appearance No marking defects The charge/discharge current is less than 50 mA.
Capacitance Within ±6.0 % or ±0.6 pF
Change (Whichever is larger.)
Q Q ≧ 200
I.R. More than 100 MΩ or 5 MΩ・μF
(Whichever is smaller.)
6-2 Biased Humidity The measured and observed characteristics should Apply the rated voltage (DC1000 V) and DC1.3+0.2-0 V (add 100 kΩ resistor) at
(Humidity Loading (DC)) satisfy the specifications in the following table. 85±3 °C and 80 to 85 % humidity for 1,000±12 h.
Remove and let sit for 24±2 h at *room condition, then measure.
Appearance No marking defects The charge/discharge current is less than 50 mA.
Capacitance Within ±6.0 % or ±0.6 pF
Change (Whichever is larger.)
Q Q ≧ 200
I.R. More than 100 MΩ or 5 MΩ・μF
(Whichever is smaller.)
* “room condition” Temperature : 15 to 35 °C, Relative humidity : 45 to 75 %, Atmosphere pressure : 86 to 106 kPa

ESKCA5502D
17/24
Reference only

No. Test Item Specification Test Method (Compliant Standard:AEC-Q200, Ref. Standard:JIS C 5101(all
parts), IEC60384 (all parts))
7-1 Operational Life (AC) The measured and observed characteristics should Impulse voltage
satisfy the specifications in the following table. Each individual capacitor should be subjected to a 5 kV impulses for three times
or more. Then the capacitors are applied to life test.
Appearance No marking defects
Front time (T1) = 1.7 μs=1.67T
Capacitance Within ±6.0 % or ±0.6 pF Time to half-value (T2) = 50 μs
Change (Whichever is larger.)
Q Q ≧ 350
I.R. More than 100 MΩ or 5 MΩ・μF
(Whichever is smaller.)
Dielectric Per Item 18
Strength The capacitors are placed in a circulating air oven for a period of 1,000 h.
The air in the oven is maintained at maximum operating temperature +2/-0 °C,
and relative humidity of 50 % max..
The charge/discharge current is less than 50 mA.
Throughout the test, the capacitors are subjected to a AC425 V(r.m.s.) (170 %
of ac rated voltage) <50/60 Hz> alternating voltage of mains frequency, except
that once each hour the voltage is increased to AC1000 V(r.m.s.) for 0.1 s.

7-2 Operational Life (DC) The measured and observed characteristics should Impulse voltage
satisfy the specifications in the following table. Each individual capacitor should be subjected to a 5 kV impulses for three times
or more. Then the capacitors are applied to life test.
Appearance No marking defects
Front time (T1) = 1.7 μs=1.67T
Capacitance Within ±6.0 % or ±0.6 pF Time to half-value (T2) = 50 μs
Change (Whichever is larger.)
Q Q ≧ 350
I.R. More than 100 MΩ or 5 MΩ・μF
(Whichever is smaller.)
Dielectric Per Item 18
Strength Apply DC1700 V (170 % of dc rated voltage) for 1,000±12 h at maximum
operating temperature ±2 °C, and relative humidity of 50 % max..
Remove and let sit for 24±2 h at *room condition, then measure.
The charge/discharge current is less than 50 mA.

8 External Visual No defects or abnormalities Visual inspection


9 Physical Dimension Within the specified dimensions Using calipers and micrometers.
10 Marking To be easily legible. The capacitor should be inspected by naked eyes.
11 Resistance to Solvents Appearance No marking defects Per MIL-STD-202 Method 215
Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume)
of mineral spirits
Capacitance Within the specified tolerance.
Solvent 2 : Terpene defluxer
Q Q ≧ 1,000 Solvent 3 : 42 parts (by volume) of water 1part (by volume) of propylene
I.R. More than 1,000 MΩ or 50 MΩ・μF glycol monomethyl ether 1 part (by volume) of
monoethanolomine
(Whichever is smaller.)

12 Mechanical Shock Appearance No marking defects Three shocks in each direction should be applied along 3 mutually perpendicular
Capacitance Within the specified tolerance. axes of the test specimen (18 shocks).
The specified test pulse should be half sine and should have a duration : 0.5 ms,
Q Q ≧ 1,000 peak value : 1,500 g and velocity change : 4.7 m/s.

13 Vibration Appearance No defects or abnormalities Solder the capacitor to the test jig (glass epoxy board) in the same manner and
Capacitance Within the specified tolerance. under the same conditions as (20).
The capacitor should be subjected to a simple harmonic motion having a total
Q Q ≧ 1,000 amplitude of 1.5 mm, the frequency being varied uniformly between the
approximate limits of 10 and 2,000 Hz. The frequency range, from 10 to 2,000
Hz and return to 10 Hz, should be traversed in approximately 20 min.
This motion should be applied for 12 items in each 3 mutually perpendicular
directions (total of 36 times).

* “room condition” Temperature : 15 to 35 °C, Relative humidity : 45 to 75 %, Atmosphere pressure : 86 to 106 kPa

ESKCA5502D
18/24
Reference only

No. Test Item Specification Test Method (Compliant Standard:AEC-Q200, Ref. Standard:JIS C 5101(all
parts), IEC60384 (all parts))
14 Resistance to Soldering Heat The measured and observed characteristics should Reflow Soldering : Peak 260+0/-5 °C
satisfy the specifications in the following table. The area of soldering 230 °C min., 20 to 40 s
Let sit for 24±2 h at room condition*, then measure.
Appearance No marking defects
Capacitance Within the specified tolerance.
300 ℃
Q Q ≧ 1,000 260+0/-5 ℃
20 to 40 s
I.R. More than 1,000 MΩ or 50 MΩ・μF 230 ℃ min.
(Whichever is smaller.)
200 ℃
Dielectric Per Item 18
180 ℃
Strength
150 ℃
100 ℃
60 to 120 s

15 Thermal Shock The measured and observed characteristics should Fix the capacitor to the supporting jig in the same manner and under the same
satisfy the specifications in the following table. conditions as (20). Perform the 300 cycles according to the two heat treatments
listed in the following table (Maximum transfer time is 20 s.).
Appearance No marking defects Let sit for 24±2 h at *room condition, then measure.
Capacitance Within ±5.0 % or ±0.5 pF Step 1 2
Change (Whichever is larger.) Temp.
-55+0/-3 125+3/-0
Q Q ≧ 1,000 (℃)
Time
I.R. More than 1,000 MΩ or 50 MΩ・μF 15±3 15±3
(min.)
(Whichever is smaller.)
16 ESD Appearance No marking defects Per AEC-Q200-002
Capacitance Within the specified tolerance.
Q. Q ≧ 1,000
I.R. More than 1,000 MΩ or 50 MΩ・μF
(Whichever is smaller.)
17 Solderbility 95 % of the terminations are to be soldered evenly a) Preheat at 155 °C for 4 h.
and continuously. After the preheating, following test is done.
Reflow Soldering : Peak 260+0/-5 °C
The area of soldering 230 °C min., 20 to 40 s
Let sit for 24±2 h at room condition*, then measure.

300 ℃
260+0/-5 ℃
20 to 40 s
230 ℃ min.

200 ℃

180 ℃

150 ℃
100 ℃

60 to 120 s

b) Should be placed into steam aging for 8 h±15 min.


After the preheating, following test is done.
Reflow Soldering : Peak 260+0/-5 °C
The area of soldering 230 °C min., 20 to 40 s
Let sit for 24±2 h at room condition*, then measure.

300 ℃
260+0/-5 ℃
20 to 40 s
230 ℃ min.

200 ℃

180 ℃

150 ℃
100 ℃

60 to 120 s

* “room condition” Temperature : 15 to 35 °C, Relative humidity : 45 to 75 %, Atmosphere pressure : 86 to 106 kPa

ESKCA5502D
19/24
Reference only

No. Test Item Specification Test Method (Compliant Standard:AEC-Q200, Ref. Standard:JIS C 5101(all
parts), IEC60384 (all parts))
18 Electrical Apperance No defects or abnormalities Visual inspection.
Characterization Capacitance Within the specified tolerance The capacitance/Q should be measured at 25 °C at the frequency and voltage
Q Q≧1,000 shown in the table.

Nominal Measuring Measuring


capacitance frequency volgate
C<1000 pF 1±0.2 MHz AC1.0±0.2 V(r.m.s.)
C≧1000 pF 1±0.2 kHz

I.R. 25 °C More than 10,000 MΩ or 100 MΩ・μF The insulation resistance should be measured with DC50050 V at 25 °C and
(Whichever is smaller.) 125 °C within 2 min. of charging.
I.R. 125 °C More than 1,000 MΩ or 10 MΩ・μF
(Whichever is smaller.)
Dielectric No failure No failure should be observed when voltage in the table is applied between the
Strength terminations for 60±1 s., provided the charge/discharge current is less than 50
mA.
Test Voltage
AC2000 V(r.m.s.)
DC3000 V

19 Board Flex Appearance No marking defects Solder the capacitor on the test jig (glass epoxy board) shown in Fig1 using
Capacitance Within ±10.0 % or ±1.0 pF solder. Then apply a force in the direction shown in Fig 2 for 60 s. The soldering
Change (Whichever is larger.) should be done by the reflow method and should be conducted with care so that
the soldering is uniform and free of defects such as heat shock.

Type a b c

KCA55 4.5 8.0 5.6


(in mm)

20 50 Pressurizing
speed:1.0mm/s
Pressurize
R4

Flexure: 5 mm.
Capacitance meter
45 45
Fig.1
Fig.2

20 Terminal Strength Appearance No marking defects Solder the capacitor to the test jig (glass epoxy board) shown in Fig.3 using
Capacitance Within specified tolerance solder. Then apply 18 N force in parallel with the test jig for 60 s.
The soldering should be done by the reflow method and should be conducted
Q Q ≧ 1,000 with care so that the soldering is uniform and free of defects such as heat shock.
I.R. More than 1,000 MΩ or 50 MΩ・μF
(Whichever is smaller) Type a b c

KCA55 4.0 8.0 5.6


(in mm)
c
b

(t : 1.6 mm)

Solder resist
Fig.3
Baked electrode or
copper foil

21 Beam Load Test Destruction value should be exceed following one. Place the capacitor in the beam load fixture as in Fig 4.
15 N Apply a force.
L

0.6L

Fig.4

Speed supplied the Stress Load : 2.5 mm/s

ESKCA5502D
20/24
Reference only

No. Test Item Specification Test Method (Compliant Standard:AEC-Q200, Ref. Standard:JIS C 5101(all
parts), IEC60384 (all parts))
22 Capacitance Temp. Coefficient -750±120 ppm/°C The capacitance change should be measured after 5 min. at each specified
Temperature (Temp.Range : 25 to 125 °C) temperature stage.
Characteristics -750+120,-347 ppm/°C
(Temp.Range : -55 to 25 °C) Step Temperature (℃)

Capacitance Within 0.5 % or 0.05 pF 1 25±2


Drift (Whichever is larger.) 2 Min. Operating Temp. ±3
3 25±2
4 Max. Operating Temp. ±3
5 25±2

The ranges of capacitance change compared with the above 25 °C value over
the temperature ranges shown in the table should be within the specified ranges.

23 Active Flammability The cheese-cloth should not be on fire. The capacitors should be individually wrapped in at least one, but not more than
two, complete layers of cheese-cloth. The capacitor should be subjected to 20
discharges. The interval between successive discharges should be 5 s. The UAc
should be maintained for 2 min. after the last discharge.

C1,2 : 1 µF±10 %, C3 : 0.033 µF±5 % 10 kV


L1 to L4 : 1.5 mH±20 % 16 A Rod core choke
R : 100 Ω±2 %, Ct : 3 µF±5 % 10 kV
UAc : UR ±5 % UR : Rated working voltage
Cx : Capacitor under test
F : Fuse, Rated 10 A
Ut : Voltage applied to Ct

24 Passive Flammability The burning time should not be exceeded the time 30 The capacitor under test should be held in the flame in the position which best
s. The tissue paper should not ignite. promotes burning. Time of exposure to flame is for 30 s.
Length of flame : 12±1 mm
Gas burner : Length 35 mm min.
Inside Dia. 0.5±0.1 mm
Outside Dia. 0.9 mm max.
Gas : Butane gas Purity 95 % min.

ESKCA5502D
21/24
Reference only

5. Packing (Taping is standard packing method)

(1) Appearance of taping


(a) Plastic Tape
Cover Tape (Thickness : Around 60 µm) is put on capacitor on Base Tape (Blister carrier Tape).
(b) The sprocket holes are to the right as the Tape is pulled toward the user.

(2) Packed capacitors

Capacitor

(3) Dimensions of Tape


(a) Height dimension code : L, Q, R, T

1.75±0.1
2.0±0.05
Φ1.5+0.1/-0
0.4±0.1
8.0±0.1 4.0±0.1


12.0±0.3

5.5±0.05

C max.
A

Part Number A B C
K□□55L 5.5 (Typ.) 6.4 (Typ.) 4.1 (Typ.)
K□□55Q
K□□55R 5.5 (Typ.) 6.4 (Typ.) 5.8 (Typ.)
K□□55T
(Unit : mm)

(b) Height dimension code : V, W


1.75±0.1

2.0±0.1
Φ1.5+0.1/-0
12.0±0.1 4.0±0.1
0.4±0.1

16.0±0.3

7.5±0.1

C max.
A

Part Number A B C
K□□55V
5.7 (Typ.) 6.7 (Typ.) 7.4 (Typ.)
K□□55W
(Unit : mm)

EKTK5505A
22/24
Reference only

(4) Dimensions of Reel


Φ180 mm reel
(a) Height dimension code : L, Q, R, T
17.0±1.0

2.0±0.5
Φ21±0.8

60+1.0/-0
180+0/-1.5
Φ13±0.2

13.0+1.0/-0 (Unit : mm)

(b) Height dimension code : V, W


19.4±1.0

2.0±0.5
Φ21±0.8

60+1.0/-0
180+0/-1.5
Φ13±0.2

17.0+1.0/-0 (Unit : mm)

Φ330 mm reel
(a) Height dimension code : L, Q, R, T
17.5±1.5

2.0±0.5
Φ21±0.8
100+1.0/-0

330±2.0
Φ13±0.2

13.5±1.0 (Unit : mm)

(b) Height dimension code : V, W


21.5±1.0

2.0±0.5
Φ21±0.8
80±1.0

330±2.0
Φ13±0.2

17.5±1.0 (Unit : mm)

EKTK5505A
23/24
Reference only

(5) Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
Vacant section : 160 min. Capacitors mounting unit Vacant section : 190 min. 210 min.

Direction of feed
(Unit : mm)

(6) The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of
5 pitches.

(7) Missing capacitors number within 0.1 % of the number per reel or 1 pc, whichever is greater, and not
continuous.

(8) The top tape or cover tape and bottom tape should not protrude beyond the edges of the tape and
should not cover sprocket holes.

(9) Cumulative tolerance of sprocket holes, 10 pitches : ±0.3 mm.

(10) Peeling off force : 0.1 to 0.6 N in the direction shown on the follows.

165 to 180°
Top Tape or Cover Tape
Base Tape

EKTK5505A
24/24

You might also like