0% found this document useful (0 votes)
36 views13 pages

Numerical Induction Ps Bhimra

The document discusses various aspects of 3-phase induction motors, including their operation, characteristics, and performance under different conditions. It covers topics such as no-load current, power factor, torque production, rotor speed, and efficiency calculations. Additionally, it addresses the differences between induction motors and transformers and provides examples and calculations related to motor performance.

Uploaded by

Devkriti Sharma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
36 views13 pages

Numerical Induction Ps Bhimra

The document discusses various aspects of 3-phase induction motors, including their operation, characteristics, and performance under different conditions. It covers topics such as no-load current, power factor, torque production, rotor speed, and efficiency calculations. Additionally, it addresses the differences between induction motors and transformers and provides examples and calculations related to motor performance.

Uploaded by

Devkriti Sharma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

818 E lectrical M achinery__________________________________________________________ [

(c) Two 3-ph ase induction m otors A , B a re identical in all re sp e cts e xce p t t h a t m o to r A h a s a la rg e r air
gap th an m otor B . E xp lain which of th e two m otors will have
( i ) m ore no-load cu rren t
( ii ) poorer no-load power factor and
(H i) b e tte r full-load power factor. lA ns. ( c ) : ( i) and ( ii ) Motor A , (Hi) Motor B]

6 .3 . ( a ) Describe th e principle of operation of a 3-p h ase induction m otor. E x p la in w hy th e ro to r is forced


to ro ta te in th e direction of ro ta tin g m agnetic field.
(6) D iscuss the differences betw een 3-ph ase induction m otors an d tra n sfo rm e rs.
6 .4 . A 3-ph ase induction m otor is som etim es called a generalized tra n s fo rm e r in so far as voltage and
frequency tran sfo rm atio n s a re concerned. As p er this sta te m e n ts , discu ss how a 3-p h a se induction m otor
operates under the following conditions : 1
(a) rotor frequency f 2 = sta to r frequency f\

(b )f2 < f l

(O f2> h
( d ) rotor g enerated voltage and rotor cu rre n t a re m axim u m
(e) rotor em f E 2 and ro to r cu rre n t a re zero
(/) both E 2 and / 2 are minim um
(g ) both E 2 an d 72 a re negative.

[A ns. (a ) A t stan d still ( b ) U n d er norm al runn ing conditions (c) R otor is d riven a g a in s t th e direction of
ro ta tin g m agnetic field (d ) A t stan d still (e) A t synchronous speed (f) A t no-load ( g ) W h en o p e ra tin g as a 3-phase
induction generator]
6 .5 . D iscuss the production of s ta rtin g torque, throu g h th e con cep t of in te ra ctio n of flux an d m m f waves
in a 3-ph ase slip-ring induction motor.
H ence show th a t th e ro to r is forced to ro ta te in the direction of ro ta tin g flux w ave.
6 .6 . E xp lain the production of torque in a 3-p h ase slip -rin g induction m o to r w hen th e ro to r is ru n n in g with
a slip s. H ence introduce th e concept of load angle.
D iscuss th e conditions und er which optim um torqu e is developed in a 3 -p h a s e in d u ction m otor.
6 .7 . D escribe th e developm ent of electrom agn etic torque in a sq u irre l-ca g e in d u ction m o to r through the
in teraction of flux and m m f w aves, w hen the ro to r is ru n n in g a t a speed less th a n sy n ch ro n o u s speed.

.. c^ en.C* Sh. ™ th a t th e slip' ria g and sq u irrel-cage induction m o to rs a re id e n tica l in so fa r a s th e ir rotor-reac-


tions on the s ta to r a re concerned.

6 .8 . In a 3-p h ase induction m otor, electrom agn etic torq u e is given by

Tt = ^ P2 <t>F 2 cos 02 ,

T he above torq u e exp ression can also be exp ressed a s T = K i n cos On I ,* ,., •
Kl a u* • n. i , e 2 2 E x p lain h °w th is torque expression
K I 2 cos 62 can be used to obtain the torque-slip ch a ra cte ristics of a 3-p h ase in d u ction m otor.

- 6 .9 . (a) T h e speed of rotor field, w ith resp ect to sta to r, is alw avs eau al tn 5vnr(im T,n„o j * ui
speeds o f th e induction motor. E xplain . * q syn ch ron ou s speed a t all possible

( « E xp lain why th e rotor of a polyphase induction m otor can n ev er a tta in syn ch ron ou s speed.
(c) I he rotor o f a sh p -n n g induction m otor is connected to an n r « « , , , « „ v i 4 . ,. •
short-circuited. I f rotatin g m agnetic field produced by rotor w in d in g 1 ! , ’ , W a S 1 5 s ta to r wmding IS
which the rotor m ust revolve. g ro ta tes clock w ise, ex p lain th e direction in
_ n . . i [Ans. (c) Anti-clockwise]

4-Mes but « . ^ is

to p l d ’uce fh™ tam e3 n u m b e r * o f W i l l I n d u X n ’S X t a r t k l t o r a n ’ E x Z m " ' h ° WeVer' d“ iB" ed


M
A3-phase, 50 Hr induction motor has a full-load speed of 960 rpm. Calculate
(/) number of the poles
(ii) slip freq u en cy

Sc a nn e d by C a m Sc a nn er
— ob‘ _____________________________________ Polyphase In

(m) speed o f rotor field w ith resp ect to rotor stru ctu re ; w ith resp ect to s ta to r str u c tu r e and w ith resp ect
to sta to r field. (Ans (fl) Nq (ft) Yeg (c) g 2 Hz 4() ^ 1000 rpm flnd zero

6 .1 1 . (a) Show t h a t th e voltage gen erated in th e rotor circu it of a 3-p h ase in d u ction m otor a t a n y slip s is
equ al to s tu n es th e voltage gen erated a t stan d still.
(b ) W ith th e help of rotor eq u iv alen t circu it o f an induction m otor, show th a t th e pow er tra n sfe rre d

m ag n etically from sta to r to rotor is given by l\ — p er phase.


s
(c) E x p la in th e term s air-gap power P in tern a l m ech an ical power developed Pm and sh a ft pow er P ,h. How
a re th e se term s rela te d w ith each oth er ? H ence show th a t
Pg : rotor ohm ic loss : Plu = 1 ; s : (1 - s)
6 -1 2 . (a) Ju s tify the following sta tem en ts for a 3-ph ase induction m otor :
( ’) R otor leak ag e im pedance a t sta rtin g is different from its value a t norm al ru n n in g conditions.
( « ) R e la tiv e sp eed betw een s t a t o r field and ro to r field is zero.
(h i) S ta to r cu rre n t rises as the sh a ft load is increased.

m otor ^ v a n a b ^e *®sses m a 3-phase induction m otor ? G ive the power-flow d iagram for th is
m otor and d iscu ss th e various losses involved in it.

te rm in a ls ^ L ' a u e n c f n f M U *** ’ 4 ^ m otor is connected to 5 0 H z supply. A t th e rotor


L X ra tio o f Shn r Yu Fm d th e P° 8sible 8peeds a t w hich th e rotor m u st be ^ v e n W h at
is th e ra tio o f sh p -n n g em fs a t th e se speeds a t no load ? | Ans. 600 rpm, 2400 rpm. unityl

d ir. 6 ' 1 4 ' Y 4 ‘P° le ’ 3 *p h as®- 5 0 Hz synchronous m achine h as its rotor directly coupled to th a t o f a 3-p h ase
! i 3 Y r T 0 S ta to rs o f both m achines are connected to th e sam e 3-p h ase, 5 0 H z supply I t is
D eterm in e th e n u m b « 150 Hz across th e rotor term in als o f th e in d u ction m otor.
D eterm in e th e n u m b er of poles for w hich th e induction m achine should be wound. G ive a ll p o ssib ilities.
(7.A.S., 1987) (Ans. 8 poles or 16 poles)
a t t h t ’ n n p r a t i ^ Y 8' del^ ' C0Tm®cted - 4 'P ole<5 0 Hz induction motor h a s a s ta to r re sista n ce o f 0 .4 f i p er p h ase
? tem p eratu re. F o r a lu ie cu rren t of 2 0 A, th e total sta to r inpu t is 4 0 0 0 w atts. F o r n egligible
s ta to r core lo sses, find out th e in te rn a l torque. (Ang 2 4 4 5 Nml

6 ' i ? ‘ A. 3 ' P.haSe; 4 3 0 V ’ 5 0 Hz induction motor ta k es a power input of 3 5 kW a t its full-load speed of 9 8 0
r.p.m . T h e to tal s ta to r lo sses are 1 kW and the friction and windage lo sses are 1.5 kW . C a lcu la te (a ) slip ( b )
) rotor ohm ic lo sses (c) sh a ft power (d) sh a ft torque and (e) efficiency.

(A ns. (a) 0 .0 2 (6) 6 8 0 W (c) 3 1 .8 2 kW (d) 3 1 0 .0 6 Nm (e) 90.91% )

u 6 1 7 * ^ 4 0 0 V ’ 3 Ph a s e > 6 P °le * 5 0 H z induction m otor d raw s a pow er of 2 k W a t no load an d a t ra te d


V 1 /Y x Y x t Y Uen2Cy a fulM oad shp ° f 3 % ’ the P ° w e r in Pu t t0 m o to r is 5 0 k W an d th e s t a t o r o hm ic loss
,S i k ^ , NCg eCt/ R ! T a t n 0 ,l0ad - I f the sta to r core loss and m ech an ical losses a re assu m ed eq u al th e n at
a slip o f 3% ca lc u la te (a) rotor ohm ic loss (6) sh a ft (or output) pow er (c) sh a ft torque (d) in te rn a l torq u e and
(e) efficiency. (Ans. (a) 1.425 kW (6) 45.075 kW (c) 443.75 Nm (d) 453.60 Nm (e) 9 ? l S i j
6 .1 8 . A 2 0 kW , 6 pole, 4 0 0 V , 50 Hz 3-ph ase induction m otor h as a full-load slip o f 0 0 2 I f th e torou e lost
in m ech an ical (fn c tio n and w indage) losses is 20 N m, find th e rotor ohm ic loss, m otor in p u t and e f L e n c v
S ta to r lo sses to ta l 9 0 0 w atts. F wm -iency.
^ 20,000 x 60......... .................
IH“ ‘ - T" = 2 . » 1 0 0 0 x 0 . 9 8 * 194 88 ^ N" ’-
M ech an ical torq u e developed = 1 94 .81 + 2 0 = 2 1 4 .8 8 Nm.
. D 2n x 1000 (0.98) ............ . . I4 „
” m~ go (214.88) = ...J [Ans. 450.04 w atts, 23402.1 w atts. 85 .462%1

6 .1 9 . A 10 kW , 3 -p h a se, 50 Hz, 4 pole induction m otor h as a full-load slip of 0 .0 3 . M ech an ical and stra y
load lo sses a t full-load a re 3.5% o f output power. Com pute
(a ) pow er d elivered by s ta to r to rotor,
( b ) electro m a g n etic (in te rn a l) torque a t full load, and 1
(c) rotor ohm ic lo sses at full load. | Ans. (a) 10.67 kW (6) 67.93 Nm (c) 320.10 W|

J II IVy
(Prob . 6
820 Electrical M a ch in e ry _________________________________________ ____ ________________________________________

6 .2 0 . A 3-ph ase induction m otor has its s ta to r copper loss e q u a l to th e su m o f th e [® "d


losses. Its rotor copper loss is equal to one-third of s ta to r copper loss. I f its e icien y <, ^ 0347)
Take m echanical loss equal to iron loss.
6 .2 1 . The power supplied to a 3-phase induction m otor is 4 0 kW an d th e co rresp on d in g s t a t o r losses a re
1.5 kW. C alculate the n et m echanical power developed and th e ro to r I R loss w |jen ® lf c m r h r n n l i l
W hat will be the net power developed if the speed of the above m otor is reduce o c ^
speed by m eans of extern al rotor resistors, assum ing th e torque and s ta to r losses to re m a in u n a e re ^ ^ jggQ \
and windage losses may be assum ed to be 0 .8 kW. ^ ^ kw ^ k — kW]

6 .2 2 . (a) Discuss why the speed of a 3-phase induction m otor falls as its load to rq u e is in cre a se d .
(6) Two w attm eters a re connected to m easure the power input to a 3 -p h a se induction m o to r ru n n in g a t no
load. One of the two w attm eters gives negative reading. W hy ? E xp lain .
(c) Explain why a 3-phase induction motor, in gen eral sim ilar to a tra n sfo rm e r, ta k e s m ore m a g n etizin g
cu rren t as com pared to a transform er.
6 .2 3 . (a) Explain why slip in a 3-phase induction m otor is directly p roportion al to to rq u e w hen o p e ra tin g
n ear synchronous speed.
(ft) A 4-pole, 2 0 kW, 5 0 Hz, 4 0 0 V SCIM has a sta rtin g torque of 1 6 0 N m and a full-load to rq u e o f 1 2 0 Nm .
C alculate
(i) sta rtin g torque for a s ta to r voltage of 3 0 0 V,
(ii ) voltage so th a t m otor operates satisfactorily a t full load from a 60 -H z so u rce,
(lii) voltage applied to sta to r so th a t full-load torque is developed a t sta rtin g .
V'
[H int. (ft) Keep j constant) [A ns. (ft) 9 0 Nm, 4 8 0 V, 3 4 6 .1 4 V]

6 .2 4 . ( a ) A 3-phase, 5 0 Hz source feeds the sta to rs of both 3 -p h a se SR IM h a v in g 8 poles an d a synchronous


m otor having 2 poles. The synchronous m otor, coupled m ech an ically w ith ind u ction m o to r, ru n s clockwise
w hereas the ro ta tin g field in 3-<J> induction m otor ro ta te s counterclockw ise.
C alcu late frequency of the voltages taken from th e slip rin gs of SR IM .
(6) Find the num ber of synchronous-m otor poles and the conditions for o b tain in g a freq u en cy of 150 Hz
from the ro to r of SRIM of p a rt (a).

(c) R epeat p a rt (ft) for obtaining a slip-ring frequency of 16 - Hz.


3
[A ns. ( a ) 250 H z (ft) 4 poles, synchronous m otor ro ta tio n a g a in st th e d irectio n o f ro ta tin g field in SRIM (c)
6 poles, synchronous m otor rotation in the direction of ro ta tin g field in SRIM.
6 .2 5 . A 4-pole, 3-ph ase SRIM is coupled m echan ically w ith a sv n rh rrm m ,c u , r™
synchronous m otor and sta to r of the induction m otor a re fed from n 7 ,n 8 P
frequency o f th e em fs a t the ro to r te rm in a ls if the sy n ch ro n ou s moTor k d r i v e n ^ S° UrCe' * * ‘ he
(a) in a direction opposite to the induction m otor s ta to r ro ta tin g field,
(ft) in the direction of ro ta tin g field in SRIM .

If the frequency of th e ro to r voltage is req u ired to be 3 0 0 H z, th e n calculate


(c) th e n u m b er of poles th a t th e SR IM m u st h av e ,a , v, ,
c . IAns - (n ) 150 Hz (ft) 5 0 Hz (c) 10 poles)

sta to rs of both t h e m achines a re given a S O -H ^ su p p lT w h a t f r e a ^ ^ 4 P° le ’ 3 ‘ p h a s e sy n ch ro n o u s m otor. If


(6) A 3-p h ase, 5 0 H z indue Uon m otor has a ^ 2 * ^ ^ ^ °f ^
m axim um torque w hich is 2 .5 tim es fuil-Ioad torq u e N e e l e d W S t 15 Um eS fulM oad tor(lue and a
assu m in g co n sta n t ro to r re s is ta n c e , find : “ s t a t o r r e s is ta n c e a n d ro ta tio n a l losses and

( i) the slip a t full load ( ii ) th e slip a t m a x im u m to rq u e and

(H
i)th e ro to r c u rr e n t a t s ta rtin g in p er u n it of full-lond ro to r c u r r e n t. , , . E .S .. W ?S |

n , , lA n s .(n ) 2 5 Hz or 125 Hz (ft) 0 . 0 5 6 , 0 . 2 6 8 . 4.7221

diagrum of aCtransformer ?80r ^ * * " P“'y,,1,“SC induCtil>'' » — •How does i, differ from the phasor

^s S tD
„Th?tprall ? : i ; t i : lt c “/eu irlyphasc induction ra°i°r-

Sc a nn e d by C a m Sc a nn er
P ro b . 6]
Polyphase In d u ction M o to rs 821

circ u it p a ra m e te rs ? ' nt*u c t' on n iotor eq u iv alen t circu it, w h a t should be k ep t in m ind re g a rd in g th e e q u iv a le n t

W T h ^ s h u n t b r 1110 C m u ii ° f 0 0 mot°r- W h at do th e various p a ra m e te rs rep resen t ?


d u rin g th e a n a ly s is nf im *s t ' nS ° ^ c a n d X ,,, in p a ra lle l, is e ith e r o m itted or m oved to th e p rim a ry te rm in a ls

ind u ction m o to r e q u iv a le n t^ r c u T ^ E x p y a in '6111 C' rCU*t- T ^ is’ how ever, is n ° t p erm issib le in th e a n a ly sis o f

W> b" W,!en th e tr a n s f “r m c r “ d ta d “ «<>" " » t » r e q u iv a le n t c i r c u i t ,


I H i n t .( d ^ B e c a u s e o f t h ' 13" ' 63 * " “ * • ' * ™ l ™ ,h a " in ‘ " - “ fo rm ers. E x p la in ,
le a k a g e re a c ta n c e .) ^ ° Ce ° ^ a *r ®a P> induction m otor h a s m ore le ak ag e flux an d , th e re fo re , m ore

to rq u e p e r p h a se is g iven by Auction m o to r is n eglected , show from its e q u iv a le n t circu it t h a t m a x im u m

T - 1 ^
em 2 n n ,2 T 2
and hence show th a t T'
T..„
em ssmT ^ S
S smT
F o r sm a ll v a lu e o f slip o ccu rrin g in th e sta b le o p eratin g region prove th a t

r1' = -2 F„„ S
smT

m o d ified ' S k e ‘ Ch ‘ h e lyPiCa' * a r a c t e r i s , i c o f an induction m otor. How is th is c h a ra c te ris tic

(i) if its ro to r-circu it re s is ta n c e is in cre a se d ,


(ii) if its ro to r circ u it re a c ta n c e is in cre a se d

a t f„Sh,„“ „e e t rrg e " ? " " “ * d' » ° “ 'd * •

m a r i m u m t t u ? a U U r i t a g ° f “ ‘ e m a ' reS iS ,a" Ce ‘ h a l be i,1Serted “ *h ' » • « * « » in o rd e r to obtain

^ [H in t. (W U ) I f s t a t o r re s is ta n c e w ere con sid ered then th e slip a t w hich m a x im u m to rq u e o ccu rs, is given

s,nT=^ J 7 F
S in ce s mT i s re d u ce d w ith th e co n sid e ra tio n of s t a t o r re s is ta n c e , th e full-load slip w ould be sm a lle r.
r2 0 fl4
( « ) y = s , uT = 0 .2 o r X = = 0 .2 « etc.)

[A ns. (a) (,) See Fig. 6 .1 7 ( « ) All the three T „ „ Ttm and s mT a re reduced. (6) « ) 0 .0 2 5 4 , sm aller, (ii) 0 .1 6 O).

6 .3 2 . (a ) S k e tc h th e torq u e-slip c h a r a c te r is tic o f an induction m o to r w ork in g a t ra te d v o lta re and


E x p la in a n d d ra w th e s e c h a r a c te r is tic s , w ith re s p e c t to th e n orm al o- e, if th e follow ing ch a n g e s a re m a d e ^
(i) A pplied s t a t o r v o lta g e is red u ced to h a lf a t ra te d frequ ency.

(ti) B o th th e ap p lied v o lta g e an d freq u en cy a r e red u ced to half.

(6 ) F o r a 3 -p h a s e in d u ction m o to r, th e ro to r o hm ic loss a t m a x im u m to rq u e is 16 tim e s t h a t a t full lnnd


torq u e. T h e slip a t fu ll-load to rq u e is 0 .0 3 . I f s t a t o r re s is ta n c e an d ro ta tio n a l losses a re n eg le cte d , th e n c a lc u la te
(i) th e slip a t m a x im u m to rq u e ,

( ii ) th e m a x im u m to rq u e in te rm s o f full-load to rq u e an d

( iii ) th e s t a r t i n g to rq u e in te rm s o f full load torq u e.

u u a i ii i c u vjy u a i i ix j^ai 11 i c i
r
[Prob. 6
822 Electrical M achinery _______ "

T'f, 2
IHint- (6)
Sp s mT

I 21
T.n sfl S,nT- — SmT
Now -J-
7 ? LL = - —
r . = j75------------
2 7 ~ 16
7Sn 16 S fl
i , 2 2 ‘ 2m T 2 '* '
. / r , . T --- ----------
/2'"r *,nr
1 s-nr 2 .e|c_
" . 16 Sf l SmT + Sfl
Sfl s mT
[Ans. (a) (i) Ttt l and Ttm are reduced to ^, but n , and s mT remain unchanged.
w Z- increase, T „ re ra -in , same but a . is reduced te half.
(b ) (i) 0.167 (ii) 2.874 T , n (Hi) 0.934 Tt fl.\
6 .3 3 . (a ) Show th a t th e m axim um in tern al torque developed by a polyphase induction m
depend on th e rotor circuit resistan ce.
(6) A 3-ph ase squirrel-cage induction m otor has a rotor sta rtin g cu rre n t o f 6 tim es its full load value. The
m otor h as a full load slip of 5% . D eterm ine
( i ) th e sta rtin g torque in te rm s of full-load torque ;
( ii ) th e slip a t which m axim um torque occurs ; and
(Hi) m axim um torque in term s of full-load torque.
(H in t, (i) U se Eq. (6 .5 1 a ). ( ii ) U se Eq. 6 .3 7 . lAns. ( b ) ( i ) 1.8 Tr „ (ii ) 0 .3 1 (Hi) 3 .18 Tt f l ]

6 .3 4 . ( a ) W ith s ta to r resistan ce neglected, the torque-slip ch a ra c te ris tic can be obtained from th e expression

Tt
T e ni s mT S
s s Tm

D erive this expression and show th a t

s = s m7 > ± VA:2 - 1]

where ^ = -sr-
1e
(U se n egative sign if s mT > s , e . g ., s mT > and use positive sign in ca se s mT < s , e . g . a t s ta rtin g ).

(b ) The m axim u m torque of a 3-p h ase sq u irrel-cage induction m otor is 4 tim e s th e full-load torq u e and the
sta rtin g torque is 1.6 tim es th e full-load torque. N eglect s ta to r re s is ta n c e . C a lc u la te

(i) th e slip a t th e m axim u m torque


( ii ) full-load slip and
(iii) th e ro to r cu rre n t a t sta rtin g in te rm s of full-load ro to r cu rre n t. (A ns. (i) 0 .2 1 , (it) 0 .0 2 6 7 , (Hi) 7.7591

6 .3 5 . (a ) S k etch th e torque-speed curve of a conventional in d uction m o to r an d in d ica te how th is will change


w hen
( i ) th e ro to r re s is ta n c e is doubled, keeping s ta to r v oltag e an d freq u en cy u n ch a n g e d ;

( ii ) th e applied voltag e is halv ed , th e freq u en cy and ro to r re s is ta n c e re m a in u n ch a n g e d ;

( iii ) both th e applied v oltag e and freq u en cy a re h alv ed , ro to r re s is ta n c e re m a in s u n ch an g ed .


(I.A .S .. 1987)

( b ) A 3-p h a se induction m o to r a t ra te d voltage an d freq u en cy h a s a s t a r t in g to rq u e of 1 5 0 % an d a m axim um


torque of 2 0 0 p e rce n t of full-load torq u e. N eglectin g s ta to r re s is ta n c e a n d ro ta tio n a l lo sse s, ca lcu la te the slip
a t full load and slip a t m a x im u m torq u e. (/.A .S ..1 9 5 4 )
[Ans. (6) 0.452, 0.1211

Sc a nn e d by C a m Sc a nn er
Prob. 6]
Polyphase Induction Motors 823

N m a t a sp eed o f 1 2 o \ ) r n n ! d e l t a - c o n n e c t e d in d u ction m o to r develops a m a x im u m to rq u e o f 2 4 0


is 0 .2 fl p e r p h a se C a lc u la te t h J • a i^ e & r o ta tio n a l losses a r e a ssu m e d n egligib le. T h e ro to r r e s is ta n c e
(a ) 7 W r ^ alCUlate th e ad d itio n al ro to r re s is ta n c e re q u ire d to give a s t a r t i n g to rq u e o f :
( ) 7 5 % o f m a x im u m to rq u e a t ra te d v o lta g e and

( ) 7 5 % o f m a x im u m to rq u e w hen th e su p ply v o lta g e is red u ced to 3 6 0 v olts.

,Hint‘ s mT = 0.2 ; x2 “ = 1 II.


0. s'"^
S in ce r t a n d x , a r e n egligib le,

T - i K
«». 2x2 ~ 2
or 240 = -
2
K = 480.

fa ) I f R is th e su m o f r o to r re s is ta n c e a n d e x te rn a l re s is ta n c e , th e n a t s t a t i n g

re sl ~- J - xX_ 3V? -
[«2 + *^l
or 0 . 7 5 x 2 4 0 = —^ — R etc
R 2 + 1 ,e tc -

<6 > 0 .7 5 x 2 4 0 = f M f _ i 8 0 _ R
1,400 J fl2 + i ’ ‘ IA n s. (a) 0 .2 5 1 4 Q, (6) 0 .4 7 2 fl]

t h a t to in c re a s e th e s t a r t i n g t o r q u ^ e x t S S ^ M t t e r o t o ! * ^ m 0 t° r Ke“ “ P r° V<i

P h a s e r ™ ts ^ V o P2hr c S . t X ^ l de ^ 'r 3 "17 * ^ l0">” at * • *«* °f W » ^ ™ «P-


e a ch r o , h fa p ro d u ce a ~ r £ e ^ ^ ^

[H in t, (a ) C on d ition for m a x im u m to rq u e is

r2
...(6 .2 5 )
T h e e x te r n a l r e s is ta n c e in ro to r c irc u it a t s ta r tin g is
(V ^ + J^ -r,).
(8) *- ^
2 smr, 1
*f
1 s mT1

an H _ r 2 * added resistance
2 sistance
s m T, =
. [A ns. (6) 0 .3 3 6 fl)
6 .3 8 . ( a ) E x p la in th e d ifferen ces b etw een th e c h a ra c te ris tic s nf «lirx ,
in d u ction m o to rs. S k e tc h a ty p ica l c h a r a c te r is tic for e a ch . sq u irre l-c a g e polyphasi

(6 ) A 4-pole, 3-phase, 5 0 H z induction motor has a full-load sliD o f 3% »nH » mnar- . a


full-load to rq u e . C le a rly sp ecifyin g a n y a p p ro x im a tio n s you m ay n eed to m ak e calcuTaTe^he s t a T ' th<
th e m o to r a s a p e rc e n ta g e of full-load to rq u e ca lc u la te th e s ta r tin g to rq u e o
( I .E .S .. 1975
co o t o u . , . [A ns. (6) 44.24%
b .d 9 . In a 3 -p h a s e in d u ctio n m oto r, th e s t a t o r re a c ta n c e eq u als th e ro to r r e a c ta n c e a t et a „ j c n i u . i
r e s is ta n c e is o n e -fo u rth o f th is v a lu e . I f th e m o to r develops 2 2 0 N m a t 3% slip, w h a t w ill b T i J f
(a ) s t a r t i n g an d

< W p u ll-o u t to rq u e s. Ig n o re no-load c u rr e n t. IA n .. 1 2 0 .6 7 N m . ( » 4 5 2 737 Nm

mot°r ha> a ro,M °f 0 2 0 P" ph“ « “ 0 * —


(a ) th e to rq u e for a fu ll-lo ad slip o f 4 % an d

Sc a nn e d by C a m Sc a nn er
[Prob. 6
824 E lectrical M achinery _----------- !— :---------- ------------- - " 7 ..
------------ " . • , u* n of full-load torque a t starting.
(fe ) t h e resistance to b e added to the rotor circu it o o a | Ans. 9 2.89 Nm, 0.192 Q]

R otatio n al losses and s ta to r im pedance are neglected. ^ ^ ^ ^ ^ ^


6 .4 1 . A 4-pole, 3-p h ase, star-co n n ected slip-ring induction mo F o r negligib]e s ta to r impedance
m ains. Its rotor h as a stan d still leakage im pedance of 0 .4 + y2 ohm s p f

and rotation al losses, com pute :


( ) m axim um torque in new ton-m etres, g ^ m axim u m torq u e a t s ta rt.
( ) the resistan ce to be included in the rotor circu it to ae v • ^ ^ ^ ^ m (fc) Q6 Qj

j tor h as s ta to r im p ed an ce of 0 .0 7 + j 0 .3 0 O and
6 .4 2 . A 4 20-V , 6-pole, 5 0 H z s ta r ^ m agn etizin g c u rr e n t is n eglected . D eterm ine
stan d still rotor im pedance referred to s ta to r is 0 .0 8 + 7 0 .3 7 U. i n g
(a) the m axim um internal power developed and the corresponding slip and

(b) the m axim um internal torque and the slip at ^ RW Q 1Q44 . (6) 1088.1 76 Nm, 0.1187]

. v d in a t normal voltage. Find th e slip o fth e induction motor


6 .4 3 . (a ) A 3-phase inductionp^ t ° r ^ s^ a sli,p ^ ^ ^ th e n o rm ai voltage.
w hen developm g the sam e torque bu g tnrmlP a n d a t n orm al voltage. T h e ro to r resistan ce
^ .(b ) A 3-ph ase induction m otor h as 5% slip a t full-loa q W h a t should be th e percentage
- 3 ,4 th of n o ™ , full-load speed.

N eglect s ta to r im pedance.
[Hint, (a) U se E q . (6 .3 1 )
V\ 0.10
(*>) T* P = T T T Iv x 0.05
r0.10] + ( 0 .6)2
0.05 J
(*V?) 0.10 [Ans. (a) 4.938% , (6) 20.356%]
X 0.2875 CtC‘
6 4 4 A 440-V 3-phase, 4-pole, 5 0 Hz slip-ring star-co n n ected induction m otor h a s a voltag e of 8 0 V between
slin Hnirs when full-voltage is applied to the sta to r and the slip-rings a re o p e n -c rc u ite d w ith the rotor
s a t i o n a i The sta to r cu rren t a t no-load is 2A a t a p f of 0 .2 lagging. T h e ro to r is sta r-co n n e cte d w ith a per
phase stan d still leakage im pedance of 0 .0 5 + j 0 .2 5 fi referred to rotor. F o r th e m o to r ru n n in g w ith th e slip-nngs
sh ort-circuited and a t a slip of 5% , calculate
(a) the torque developed in Nm,
{ b ) the mechanical power developed,
(c) the rotor ohmic loss and •
(id ) the stator current and power factor. -9
Neglect stator leakage impedance and rotational l’g sses.
[H in t, (d) R otor cu rre n t a t 0 .0 5 slip, / 2 = 4 4 .8 1 A.

Rotor pf at 0.0 5 slip, cos 02 = 0.970


Rotor current in phasor form, 72 = / 2 (cos 02 - j sin 02) = 43.4 7 - j 10.89.
Stator current required to balance the rotor current is given by
" _1_T
5.5

T otal s ta to r cu rre n t, I ] = ( / 1 ' + I q)

= - b h + ( 0 . 4 - 7 1.96) = (8 .3 - j 3 .9 4 ) A e tc.].
5 .5 J
[Ans. (a) 3 8 .3 5 Nm (6) 5 7 2 2 .8 w atts (c) 301.2 w atts (d) 9 .1 8 8 A at 0.903 pf lagging !

6 .4 5 . (a ) A 3 -p h a se induction m otor h a s o p eratin g pf of 0 .8 5 a t full-load sp eed of 9 6 0 r.p .m . and a t 400 \


supply voltage. In ca se th e supply voltage falls to 3 5 0 V, find th e o p e ra tin g p f a t th e sa m e full-load torque.
( b ) A 3 -p h a se induction m o to r h as a ro to r re s ista n ce of 0 .5 D p er p h ase an d ro to r sta n d still leak ag e roa' ta " 2
of 1 5 O p er p h ase. I f th c ra tio of m axim u m s ta rtin g torq u e to full-load to rq u e is 2 , find th e ratio o
s ta rtin g torque to full-load torque for d ire ct sta rtin g . N eglect s ta to r im p ed an ce a n d ro ta tio n a l losses.

Sc a nn e d by C a m Sc a nn er
Prob. 6] Polyphase Induction Motors 825

[H in t, (a) 0 .8 5 = t= s ^ = y •
Vr22 + ( 0 .0 4 * 2)2
This gives r 2 = 0 .0 6 4 5 4 jc2.
Slip a t reduced voltage = 0 .0 5 2 2 etc.
(6) M axim um startin g torque can, at the most, be equal to maximum torque Te m . H ere s mT = 1 /3 .

Te-it 2
etc. (A ns. (a) 0 .7 7 7 5 lag (6 ) 0.6 1 4 3 )
T<m ' 1 /3 1
1 1 /3
.4 6 . A 3 -p h a s e , 5 0 H z, 4 0 0 -V w ound-rotor induction m otor ru n s a t 9 6 0 r.p .m . a t fu ll-load . T h e ro to r
resis a n ce an d sta n d still re a c ta n c e p er p h ase a re 0 .2 11 an d 1 £1 resp ectiv ely . I f a re s is ta n c e of 1 .8 £2 is ad ded
o e a c h p h a se o f th e ro to r a t sta n d still, w h a t would be th e ra tio o f s ta rtin g to rq u e w ith full v o lta g e an d th e
added re s is ta n c e to th e full-load torq u e u n d er n o rm al r u n n i n g conditions ? S ta te a ssu m p tio n s m a d e in y o u r
ca cu la tio n s. C a n th e sa m e s ta r tin g torq u e be obtained w ith a n o th e r v alu e of th e a d d ition al r e s is ta n c e ? E x p la in .
It th e a n sw e r is y e s, find its v alu e. ( I E S 1979 )

H in t . Te.,t = — • | v a ; r e/r = ^ - . - 5 - V 2 e tc
e s l (os 5 ’ ef l (og 2 6

[A n s. A ssu m p tio n s, ( i ) s ta to r im p edance and ro ta tio n a l losses ignored an d ( ii ) in d u ction m o to r p a ra m e te rs


re m a in co n sta n t. 2 .0 8 . Y e s , b u t w ith an additional re sista n ce of 0 .3 £1).

6 .4 7 . A 4 0 k W , 3 -p h a s e slip rin g induction m otor of negligible s ta to r im pedan ce ru n s a t a sp eed o f 0 .9 6


tim e s syn ch ron ou s speed a t ra te d torque. The slip a t m axim u m torq ue is 4 tim e s th e full load v alu e. I f th e
ro to r re s is ta n c e of th e m o to r is in cre a se d by 5 tim e s, determ in e

(a ) th e sp eed, pow er o u tp u t and ro to r ohm ic loss a t ra te d torque


( b ) th e sp eed co rresp on d in g to m axim u m torque.
N eglect m e ch a n ica l losses. ( G A T E 1993 )
[Ans. (a) 0.5 2 Ns, 2 1 .67 kW , 20 kW ( b ) 0 .0 4 Ns]
6 .4 8 . A 5 k W , 4 0 0 V , 5 0 H z, 4 poles d elta conn ected 3-p h ase induction m o to r is su p p lied by a cab le of
negligible in d u cta n ce . On s ta rtin g th e m otor using a s ta r-d e lta s ta r te r , it is found t h a t th e s ta r tin g to rq u e is
th e sa m e on s t a r a s w ell a s d elta connection, due to th e v oltag e drop in th e feed er re s is ta n c e . T h e eq u iv alen t
circu it p a ra m e te rs of th e m o to r a re a s follows :

ri - 1 £1, * i = 4 .5 £1, r 2' = 1.4 Cl and x 2' = 4.5 Cl


D eterm ine th e feeder resistance. (G A T E 1991 )
[Ans. 5 .3 7 8 £1]
6 .4 9 . A 4 0 0 V, 5 0 H z, 3 -p h a se , d e lta connected, 6-pole induction m o to r h a s th e follow ing sta n d still le a k a g e
im p ed an ces p e r p h a se re fe rre d to s ta to r:
z 1 = 1.2 +>2.1 £1, z2 = 1.32 + >2.2 £1

N eg lectin g m a g n e tiz in g im p ed an ce, d eterm in e


(a ) g ro s s o u tp u t p ow er a t a slip of 0 .0 4 ,

( b ) th e ch a n g e in line c u rr e n t w hen th e s ta to r te rm in a ls are sw itch ed from s t a r to d e lta a t a slip of 0 4


(c) th e re s is ta n c e to be added in e a ch ro to r p h ase to obtain a s ta rtin g torq u e of 3 5 0 N m

[Ans. ( a ) 127 98.6 W (b ) 3 7 .1 0 5 A, 111 .309 A (c) 1.08 £1 or 6.9 8 Cl]


6 .5 0 . A 1 0 k W , 6-pole, 5 0 H z, 3 -p h a se induction m otor h a s lin e a r torq u e-slip c h a ra c te ris tic s b etw een zero
torq u e an d m a x im u m to rq u e. Th e slip a t w hich m a xim u m torq u e of 5 2 0 N m o ccu rs is 0 .2 . F o r m e ch a n ica l losses
of 6 0 0 W , fm d th e sp eed a t w hich th e m o to r would ru n w hen d eliverin g ra te d sh a ft pow er. [Ans. 9 5 9 .5 rpm)

6 .5 1 . T h e n o rm a l full-load slip an d s h a ft torqu e o f a 3 7 3 kW , 5 0 H z, 3 -p h a s e ind u ction m o to r a re resp ectiv ely


1.9% a n d 2 4 0 0 N m . T h e ro to r w in ding h a s a re s is ta n c e of 0 .2 5 £1 an d a sta n d still le a k a g e re a c ta n c e of 1 .5 £1
p er p h ase. E s tim a te th e slip an d th e pow er o u tp u t for th e sa m e full-load c u rre n t w hen e x te rn a l re s is to rs of
2 £1 p e r p h a se a r e in s e rte d in th e ro to r circu it. N eg lect no-load cu rre n t. [/.A.S., 79971

[H in t. F o r so lu tion , re fe r to C h a p te r on P oly p h ase Induction m a ch in e s in th e book “G en eralised T h eory


of E le c tric a l M a ch in e s” by th e sa m e a u th o r.) [Ans. 17.1.% , 3 1 5 .2 0 6 kW)
826 Electrical M a c h i n e r y _____________________________________________________________________ [Prob . 6

6 .5 2 . A 3 -p h a se indu ction m otor h a s 4-pole sta r-co n n e cted s ta to r w in d in g an d ru n s on 4 0 0 V , 5 0 Hz supply.


T h e rotor re sista n c e is 0 .1 Q and re a cta n c e 0 .9 O. T h e s ta to r to ro to r tu r n s ra tio is 1 .7 5 an d th e fu ll-lo ad slip
is 5%. C a lcu la te th e full-load pow er output. D ete rm in e also th e m a x im u m to rq u e an d th e co rresp o n d in g speed.
[7.A.S., 1998 \
[A ns. 1 2 1 .0 8 0 6 kW , 184.791 Nm, 1333.5 rpm]
6 .5 3 . A 3-p h a se, 6 -pole, 5 0 H z, 4 0 0 V S C IM h a s p e r-p h a se ro to r le a k a g e im p e d a n ce = 0.8 + j 2 .4 Q a t
sta n d still. R oto r copp er b a rs o f th is m otor a re rep laced by a lu m in iu m b a r s . D e te r m in e how th e follow ing
perfo rm an ce p a ra m e te rs ch an g e w ith re sp ect to th e ir previou s v a lu es :
S lip a t m ax im u m to rq u e, s ta r tin g torque, m axim u m to rq u e, fu ll-lo ad slip .
T a k e r e sis tiv ity = 2.1 p fl cm fo r copper an d 3 .4 p fl cm for a lu m in iu m . [A ns. 1 .1 6 2 5 , 1.2 267, 1.0, 1.1625]
6 .5 4 . A 3-p h a se, 5 kW , 4 0 0 V , 5 0 Hz S C IM h a s th e follow ing d a ta :
F lu x p er pole = 4 0 m W b, m ean conductor le n g th = 18 cm
C opper d en sity = 8 .9 4 gm / cm 3, cu rre n t d en sity = 4 A / m m 2.
F u ll-lo ad efficien cy = 0 .8 4 and pow er fa cto r = 0 .8 5 .
C om p are th e am o u n t o f copper requ ired for s ta to r w ind ing i f th e in d u ctio n m o to r is d esig n e d to o p erate
w ith s ta to r w in d ing in (a) d elta an d ( b ) s ta r .
[A ns. ( a ) D elta : T o ta l tu rn s = 144, cond u ctor w eig h t = 0 .6 7 6 2 kg.
(b ) S t a r : T o ta l tu rn s = 8 4 , cond u ctor w eig h t = 0 .6 8 3 1 kg.]
6 .5 5 . A 3 -p h a se in d u ction m otor is design ed to o p era te a t ra te d v o lta g e V a n d r a te d fre q u e n c y f . In ca se
both sou rce voltage an d freq u en cy a r e re sp ectiv ely ch a n g ed to (a ) ~ , f / 2 (6 ) V , f / 2 (c) — , f
£ 2
(d ) V , 2f ; find th e m axim u m an d s ta r tin g to rq u e s in te r m s o f th e ir r a te d v a lu e s . N e g le c t a ll s t a to r losses.

A n s . (a) 1, 2 ( 6 ) 4, 8 (c) i i (d ) J , |

6 .5 6 . (a ) W h a t a re th e fa cto rs th a t govern th e o p e r a tin g c h a r a c te r is tic s o f p o ly p h a s e in d u c tio n m otors


(W In ca s e o f p o ly p h ase in d u ctio n m otors, ex p la in w hy th e ro to r sp e ed f a lls a s th e lo a d to r q u e is in creased .
(c ) R ow er fa c to r o f a p o ly p h ase in d u ctio n m o to r is low a t n o -lo ad b u t it im nrn v p s
is in crea sed . E x p la in . ’ im p ro v es a s th e lo a d on th e m otor

one offfie? Z £ £ Z Z S S tZ S S X ; *“ “ “ * —**


(a ) M o to r A h a s open s ta to r s lo ts b u t m o to r B h a s sem i-clo se d s t a t o r s lo ts .
Cb) M o to r A h a s sem i-clo sed ro to r slo ts b u t m o to r B h a s clo sed r o to r slo ts .
(c) M o to r A h a s lo n g er a ir-g a p th a n m o to r B.
F o r e a c h o f th e th r e e d iffe re n c e s lis te d a b o v e, d isc u ss w h ich o f t h e tw o m o to r s h a v e •
(i) b e tte r s t a r tin g to rq u e
( i i ) h ig h e r b rea k d o w n to rq u e

( i i i ) b e tte r fu ll-lo a d pow er fa c to r and

( i v ) h ig h e r fu ll-lo a d speed . ..

6.58. fa) In case of induction motors exnlain „h„ ,h • , ^


possible. ’ P hy the air-gap length is kept as small as is mechanically
(b) Show that polyphase induction motors possess shunt .
W A 3-phase squirrel cape induction motor I d o lled “ o h * 7 “ '
aluminium is used for rotor bars, exnlain what hnrm.n. t •* [ copper bars. If, instead of using copper,
conditions. ’ ^ What haM>ens >«• speed, efficiency etc. under normal running

therete% ffic^ yda ^ l c ^ r main8*— •*— °*'mic 1— increase, output and,'

from no-load and blocked-rotor tests^Md* pw p L ^ ^ t O T w r n d ^ B ^ ^ i i t ^ c r 0" m°l°r be daten"ined


CMA 400 V. 50 Hz, 3-phase star-connected squirrel-cage induction motor^ave the following test results :

Sc a nn e d by C a m Sc a nn er
P rob. 6] Polyphase Induction M o to rs 827

No-lond or o p en -circu it te s t (lin e v a lu es) : 4 0 0 V , 9 A, 5 6 0 W . B lo c k e d -ro to r o r s h o r t c ir c u it t e s t (lin e


v a l u e s ) : 2 1 0 V , 3 6 A, 4 8 2 0 W.
T h e effectiv e s ta to r re sista n ce is 0 .7 2 f l per p h ase. C a lcu la te th e eq u iv a le n t c irc u it p a ra m e te rs .
IA n s. r , = 0.72 fi, r 2 = 0.59 fl, x , = x 2 = 1.567 Q , X , n = 24 D|

6 .6 0 . (a) W h a t is re p resen ted by th e circle d iag ram o f an induction m otor? W h a t in fo rm a tio n ca n b e o b ta in e d


from it ?

D erive th e cu rren t-lo cu s for th e ro to r-circu it o f a polyphase ind u ction m otor.


(6 ) Show th a t th e d ia m e te r o f current-locbs^circle o f a polyphase in d u ction m o to r is V j / X j + x 2 , w h e re Xj
is th e per p h ase s ta to r le a k a g e re a cta n c e , x 2 is th e 's ta n d s till per p h a se ro to r le a k a g e r e a c ta n c e re fe rre d to
s ta to r and V , is th e per p h ase s ta to r voltage.

6 .6 1 . (a) E x p la in how th e circle diagram for a polyphase induction m otor ca n be d raw n from its t e s t d a ta .
( 6 ) A 4 0 0 V , 3 -p h a se, 8 pole, 5 0 Hz sta r-co n n ected induction m otor gave th e follow ing t e s t r e s u lts :
No-load test (line v a lu e s ): 400 V, 10 A, cos 0O= 0.2.
Blocked-rotor test (line v a lu e s ): 160 V, 30 A, cos 0,f = 0 . 35.

If, a t full load and rated voltage, th e power fa cto r is a t its m axim u m , th e n c a lc u la te fu ll-lo ad c u r r e n t,
pow er factor, torq u e in n ew ton -m etres, speed, power output and efficiency. S ta to r and ro to r o h m ic lo sse s a re
equaL lA ns. 28.75 A, 0.806, 174.224 Nm, 698.7 r.p.m ., 12.644 kW, 78.834%1

r n A 4 klV’ 400 Y’ 50 Hz‘ 3 ‘p h a se >4 -Pole d elta connected slip rin g ind u ction m otor h a s s ta to r r e s is ta n c e
o f 0 .3 6 D p er p h ase, rotor re sista n ce o f 0 .0 6 D per phase and per p h ase s ta to r to ro to r tu r n s r a tio o f 2 T h e
following d a ta p e rta in s to th e line v alu es d uring lig h t load te sts :
No load ; 400 V, 3.3 A, cos 0(1= 0.174
Locked rotor : 210 V, 16 A, cos 0 = 0.45

D raw th e circle d iag ram and com pute :


(a) lin e c u rre n t, pow er factor, slip, torque and efficiency a t full load,,

torque^ ^ ° p e ra tin g pow er fa cto r. m axim um power output, m axim u m to rq u e in N m and slip a t m a x im u m

startin g 1116 eX te m a l re s ista n c e th a t m u st be in se rted in series w ith ro to r circ u it to o b ta in m a x im u m to rq u e a t

(Ans. (a) 8.66 A, 0.8434, 0.057, 26.738 Nm. 77.65% (6 ) 0.852. 6.42 kW, 50.04 Nm, 0 .2 1 (c) 0 .2 2 6 4 f l referred to
1ULUI *J *

6 .6 3 . (a ) I f no-load pow er fa cto r a n gle 0O for a polyphase induction m otor is ta k e n to b e e q u a l to 9 0 °, show

w ith th e help o f circ le diagram th a t th e b est possible op erating pow er fa cto r is given by V*
V , + 2 / 0 (x , + x 2) ‘
(b) Tw o in d u ction m otors A an d B a re id en tical in a ll resp ects exceDt th a t m ntnr 4 c i

r : M t T p o t ^ r r win possess hie,,er v a J °f £ « r ^ x pow:sr “ dr


(H in t. (6 ) In d u ctio n m otor le a k a g e re a cta n ce is d irectly proportional to th e n u m b er o f poles.)
lA n s. ( b ) M otor B . C on sequ en tly slow -speed ind u ction m otors (m otor A h e re ) o p era te a t poor pow er fa cto rs I
6 .6 4 . (a ) W h a t a re th e cau ses o f an induction m otor o p eratin g alw ays a t lag g in g pow er fa cto rs ?
E x p la in how th e pow er fa cto r o f a n induction m otor is controlled by s ta tic ca p a cito rs Show th a t for n
co n sta n t ca p a cita n ce , th e d egree o f pow er fa cto r co rrectio n is n ot th e sa m e a t d iffere n t load s.
(6 ) A d elta-co n n ected ind u ction m otor o p eratin g from a b alanced 3 -p h a se, 4 0 0 V 5 0 Hz suddIv tn k e« n
cu n-ent o f 5 0 A a t 0 .7 6 p.f. lag. C a lcu la te per p h ase v alu e o f th e ca p a cita n ce and to tal’ kV A ra tin g o f th e 3 D h o s o
d elta-con nected ca p a cito r b a n k w hich w hen connected to th e m otor te rm in a ls would im prove th e lin e pow er
factor to 0 .9 lag. | w 6 4 „ mF „ 768PkVA]

6 .6 5 . (a) D iscu ss why th e pow er fa cto r o f a 3 -p h a se ind u ction m otor is low a t (a ) no-load and ( b ) also u n d er
overloads. UCI

(6 ) A th re e -p h a se ind u ction m otor ra ted a t 4 0 0 V, 5 0 Hz, coupled to a pum p is ru n n in g a t a low pow


la cto r o f 0 .6 . T h e in p u t is 4 .5 kVA. It is proposed to im prove th e pow er fa cto r to 0 .8 by co n n ectin g a
d elta-conn ected ca p a cito r b a n k . F in d th e v alu e o f th e ca p a cito r p er p h ase. (G A T E , 1 9 9 -i) (A ns 18 104 pFl

iKJNNriiwnnroi wi
Sc a nn e d by C a m Sc a nn er
828 Electrical Machinery ________________________ [Prob. 6

6 .6 6 . (a ) W h a t is th e o b je ctio n to th e re d u ce d -v o lta g e s t a r tin g o f p o ly p h a se in d u c tio n m o to rs ?


( b ) U n d e r w h a t co n d itio n s is th e d ire ct-o n -lin e s t a r tin g o f p o ly p h a se ca g e in d u c tio n m o to rs p re fe rre d ?

(c) T h e s ta r tin g period from zero to n o rm a l sp eed is m o re s e v e r e in c a s e o f d .c. m o to rs th a n in in d u ctio n


m o to rs. E x p la in .
(d) A 3 -p h a s e in d u ctio n m o to r a t n o rm a l sp eed is c a r r y in g a b o u t h a l f th e r a t e d lo a d . I f o n e o f th e su p p ly -lin e
fu se s blow s off, w ill th e m o to r sto p or co n tin u e ru n n in g ? E x p la in .
lA n s . (c) L a rg e s ta r tin g c u r r e n ts in c a s e o f d.c. m o to rs g iv e r is e to c o m m u ta tio n d iffic u ltie s etc.
(d) M o to r w ill co n tin u e ru n n in g a s a sin g le -p h a s e in d u ctio n m o to r a t a s lig h tly re d u ce d speed .]
6 .6 7 . A 3 -p h a s e in d u ctio n m otor h a s ro to r im p ed a n ce o f 0 .0 3 + . / 0 .1 8 f i p e r p h a s e re fe r r e d to sta to r.
F u ll-lo a d slip a t ra te d v o lta g e is 3% . E s tim a te th e p e rc e n ta g e re d u ctio n in s t a t o r v o lta g e to d evelop full-load
to rq u e a t h a lf o f th e fu ll-lo ad speed . A lso, d e te rm in e th e pow er fa cto r. N e g le c t s t a t o r im p e d a n c e an d m ech a n ica l
lo sse s. (A n s. 22.85% , 0.308)

6 . 68 . A 3 -p h a se , 4 -pole, 5 0 Hz in d u ctio n m o to r, d u rin g th e s h o r t-c ir c u it t e s t , to o k 1 0 0 A a n d 3 0 kW . In


c a s e s ta to r r e s is ta n c e is eq u a l to e q u iv a le n t s ta n d s till ro to r r e s is ta n c e , co m p u te t h e s t a r t i n g to rq u e .
(A n s. 95.493 Nm]

6 .6 9 . A 3 -p h a se sta r-c o n n e cte d , 4 4 0 V , 5 0 H z, 4-p o le in d u ctio n m o to r h a s th e fo llo w in g c o n s ta n ts in ohm s


p e r p h a se re fe rre d to s ta to r sid e :
r , = 0.2 9 4 , x , = 0 .5 0 3, r 2 = 0.1 4 4 , x 2 = 0 .2 0 9 , X m = 13.25

T h e s ta to r core lo sses a r e n eg lig ib le.


T o ta l frictio n and o th e r lo sses (a ssu m ed co n s ta n t) = 1 4 0 0 W
F in d th e pow er o u tp u t in k W an d th e ra te d o u tp u t in N m i f th e m o to r is b e in g o p e r a te d a t ra te d voltage
and freq u en cy w ith 2 p e rce n t slip . ( I .A .S ., 1 9 7 9 ] | Ans. 2 1 .0 9 3 kW , 137.02 Nm]

6 .7 0 . A 2 0 kW , 4 0 0 V, 3 -p h a se in d u ctio n m o to r h a s fu ll-lo a d pow er fa c to r o f 0 .8 6 a n d fu ll-lo a d efficiency


o f 0 .8 8 . W ith s ta to r w in d ing in d e lta , s h o r t-c ir c u it lin e c u r r e n t a t 2 0 0 V is 7 0 A. I f th is m o to r is fitte d w ith a
s ta r -d e lta s t a r te r , find
(a ) th e r a tio o f s ta r tin g to fu ll-lo ad lin e c u r r e n t and
( 6 ) th e s ta r tin g to rq u e in te rm s o f fu ll-lo a d to rq u e , for a fu ll-lo a d s lip o f 5 % .
(H in t. ( b ) U s e E q . (6.63)1. [A n s. ( a ) 1.223 ( 6 ) 0.2244]
6 .7 1 . (a ) W h y is i t n e c e s s a r y to em ploy sp e c ia l s t a r tin g a r r a n g e m e n ts fo r in d u c tio n m o to rs ?
( b ) C a lc u la te th e re la tiv e v a lu es o f s ta r tin g c u r r e n ts an d s t a r tin g to r q u e s o f a 3 -p h a s e squ irrel-cage
in d u ctio n m o to r, w h en i t is s ta r te d by
(i) d ire ct-o n -lin e s t a r t e r , •
(ii) s ta r -d e lta s t a r t e r an d
(tii) a u to -tr a n s fo r m e r s t a r t e r w ith 6 0 % ta p p in g . . ,
(A n s. (o) 1 : - : 0.361

I- A 7.2 ’ ^ 3 'P ^ a s e s q u ir r e l ca g e in d u ctio n m o to r h a s a s h o r t-c ir c u it c u r r e n t o f 5 tim e s th e fu ll-lo a d current.


It s fu ll-lo a d slip is 5% . C a lc u la te th e s t a r tin g to rq u e as a p e r c e n ta g e o f fu ll-lo a d to r q u e i f th e m otor is started

( ) d ire c t-o n -lin e s t a r t e r ,


( ) s t a r -d e lta s t a r t e r ,

find f r t " v lim it: r 6 th e " ? 0 , ° r « ™ n t to tw ic e t h e m o to r fu ll-lo a d cu rren t. Also

supp y’ m t o r m s o f m o t o r f u u -,o a d “ wha* - ihc

th e e u !o at ^ " ; se0 S" P Ply H" e S la r tin B fu ll-lo a d Fiad

(Hint. (6) and (c). Read auto-transformer starter between lines.]


(A n s. (a) 1.25 ( 6 ) 0 .4 1 7 (c) 0 .2 0 , 0 .8 Ip . 40% (d ) 0.5, 63.2%l

an d d r a t « f f r r tet t V° lta g ? ’ 8 p ° ly p h a s e in d u ctio ? m o to r d ev e lo p s a s t a r t i n g to r q u e o f tw ic e th e full-load torque


and d ra w s fro m th e su p p ly a s t a r t in g c u r r e n t o f 6 tim e s th e fu ll-lo a d c u r r e n t.

D e t e ^ ™ t h T ™ . “ S.U w ed " $ i" B ‘ M m Pc n s a t o r ta u to -tr n n s fo r m e r ) w h ic h s t e p s dow n th e v o ltage to 7 0 * .


e te r m in e th e m o to r s t a r t in g c u r r e n t, s t a r t in g c u r r e n t d ra w n fro m th e s u p p ly a n d th e s t a r t in g torque.
—------------------------------------------------------------------------------------------Polyphase Induction Motors 829

a u ^° tra n sfo rm e r s ta r te r lim its the s ta rtin g cu rre n t from th e supply to tw ice th e fu ll-load c u rre n t,
d eterm in e th e s ta r tin g torque and au to -tran sfo rm er tapping.

H in t. From Eq. (6.51). s p = (Ans. (a) 4.2 Ip , 2.94 I p , 0.98 T , p (6 ) 0.667 T , p . 57 . 74 % tappingl

tim e * thn n . n T ' * ! 0/ Cage ‘n d uct‘on m °to r when sta rte d by sta r-d e lta s ta r te r , develops a s ta r tin g to rq u e o f 0 .4
th e su n nlv lin orque and l a ^es from th e supply a s ta rtin g cu rren t o f tw ice th e full-load c u rre n t. C a lc u la te
SUpply h n e cu rre n t and s ta r tin g torque if th is induction m otor is sta rte d by
( ) a cro ss-th e -lin e sta r te r ,
( ) a u to -tra n sfo rm e r s ta r te r w ith 80%. tapping.

H in t. Here sn = — ,. . . _.
. n 30 | Ans. (a ) 6 I p , \ .2 T t p ( b ) 3.84 l p , 0 .7 6 8 T e p \

powe6r factor oPfO S ’ w S Y ’ J 0? V Squi.r r e l‘ca e e induction m otor h a s a full-load efficien cy o f 0 .8 7 an d a fu ll-lo ad
ra ted voltage Its full lu d e lta * th e m ° t0 r ta k es a s ta r tin S c u rre n t o f 8 0 a m p e re s a t
th a t s ta r tin g torq u e eo u al to h a lf th ' f* u i ; m m im um s ta r lin E cu rre n t to be ta k e n from th e su pply in o rd er
6 t0rqUe eq u al t0 h a lf th e full-load torque is developed w hen sta rte d by
(a ) a n a u to -tra n sfo rm e r sta r te r ,
( b ) s ta to r r e sisto r s ta r te r .

C a lc u la te th e p e rce n ta g e tap p in g on a u to -tra n sfo rm er also. | Ana. (a) 47.432 A, 77% U pping <(,) 51 6 6 4 Al

r o t o n r la c U m e 'o f 2 ^ Sft'p e r T h e r a t io IT o to r ,h a s • ,">*” e fO .3 n p e r p h a se an d a s ta n d s till

T
[H in t. W ith d ire ct sw itch in g , esl ^
3T eP ~ 0.12 + 1
2 0.12
W ith s ta r -d e lta s ta r tin g torq u e is reduced to o n e-th ird o f th a t d urin g d ire ct sw itch in g ]. [A n s. 0.2366]

6 .7 7 . A 5 0 kVA 4 4 0 V , 3 -p h a se, 5 0 Hz in d u ction m otor is provided w ith a 3 -p h a s e step -d ow n a u to tr-xn*


form er s t a r t e r w h ich ste p s down th e v o ltage to 50% o f th e input. G iven th a t th e s ta r tin g c u r r e n t n f t l i
on ra te d v o ltag e ,s 6 tim e s th e ra te d full-load c u rre n t, e s tim a te th e c u r r e n t d raw n hv r / a! u „ t h e fm o to r
from th e m a in s a t s ta r tin g . W h a t is th e s ta r tin g kV A draw n by th e a u to -tra n sfo r m e r ? u T s w Y )

IA n s . 9 8 .4 1 5 A, 75 kVA]
6 .7 8 . T h e s t a r tin g c u r r e n t o f a d elta -co n n ected 3-p h a se ind u ction m o to r a t ra te d v o lt * ™ ic * *• ‘
fu ll-load c u r r e n t an d th e slip a t fu ll load is 5% . T h e no-load c u rre n t is n eg lig ib le . S
( ) I f a n a u to -tr a n s fo r m e r s t a r t e r is u sed to lim it th e s ta r tin g c u r r e n t from m a in s to 9 r n i
c u r r e n t, e s tim a te th e s ta r tin g to rq u e th e n o b ta in ed a s a p e rce n ta g e o f th e fu ll-lo ad to rq u e ° °3
<M N e g le c tin g s t a to r im p ed a n ce, d e te rm in e th e slip a t w h ich m a x im u m to rq u e o ccu rs in th e m otor.

( I .A .S ., 1 9 9 1 ) [A n s. (a) 5 0 per ce n t (6 ) 0.253]


6.79. A 3-phase, 4 0 0 V , 5 0 A, 4-pole, 1 4 4 0 r.p.m. induction motor ta k e s a hlnrkod rn in * ro •
it s fu ll-lo a d c u r r e n t a t 0 .4 p.f. la g a t ra te d v o lta g e an d develops a to rq u e o f 1 8 tim e s it s fu ll lo a d toroY
in d u ctio n m o to r is s ta r te d by a n a u to -tr a n s fo r m e r w ith 6 0 % ta p p in g th e n a t th e tim e o f t i i
m o to r p o w er fa c to r ( 6 ) m o to r c u r r e n t (c) lin e c u r r e n t « ) p o w e r 't a p * to m o to r “' f
o f fu ll-lo a d to rq u e . IA n, (a )P „ , 4 ,a g ^ m A

6 .8 0 . A SCIM has a starting current of six times the full-load current at a slip of 0.04 Calculate the lin e
current and starting torque in p.u. of full-load values for the following methods of starting :
ja ) Direct switching

( ) Auto-transformer starting with motor current limited to 2.0 p.u.


(c) Star-delta starting.
.a , a. U.E.S.,20021
I la ) 6 Pu - 144 Pu (fc) 0.6 7 p.u., 0 .1 6 pu (c) 2 pu, 0 .4 8 pul

caCe'nduclio)^otors ?°l °dViSab'C^ S‘art W°“nd'r0l0r induction molors b* lhc employed for stnrtinC

" .o to ? m h e " ^ r « n B T CXtemal rCSiStnnC° lhC ° f " « « » * * — induction


3 830 Electrical M achinery____________________________________________________________ [P ro b ^

(c) How is th e induction m otor operation affected i f th e e x te rn a l r e s is ta n c e in th e ro to r circ u it is n ot fully


cu t o ff ? ,
(d) T h e re sista n ce m easu red a t th e s ta to r te rm in a ls o f a p olyphase in d u ctio n ^ ° to r 9 , or a g’ ven
lin e cu rre n t show th a t th e sta to r ohm ic losses would be sa m e w h eth er it is s a r or
6 .8 2 . C a lcu la te th e value o f th e re sista n ce elem en ts o f a 5 -step (o r 6 -stu d ) s t a r t e r for a 3 p h a se , 400l V
w ound-rotor ind u ction m otor. T h e full-load slip is 2.5 % and th e m ax im u m s t a r in g c u rr
load value. R otor re sista n ce per phase is 0 .0 2 12.
D erive an y form ula used sta tin g th e variou s assu m p tio n s m ade.
|Ana. 0 .4 1 8 12, 0 .2 0 G, 0 .0 9 6 12. 0 .046 G, 0.022 G|

6 .8 3 . D esign a 4-step s ta r te r for a 3 -ph ase wound rotor ind u ction m otor. T h e fu ll-lo a d slip is 2 .5 % and th e
m axim um sta r tin g cu rre n t is lim ited to 1.6 tim es its full load value. R oto r r e s is ta n c e p e r p h a se is 0 .0 2 12.
D erive th e form ula used for ca lcu la tin g th e re sista n ce sectio n s and s t a te th e v a rio u s a ssu m p tio n s m ade.
[A ns. 0 .2 7 7 12, 0 .1 2 4 12, 0 .0 5 5 12, 0.025 111

6 .8 4 . (a) E x p la in an y two m ethods for perform ing th e p o la rity t e s t on a 3 -p h a s e in d u ctio n m otor.


(b ) A p o larity te s t is perform ed on a 3-p h a se, 4 0 0 V w ound-rotor in d u ctio n m o to r. P h a s e A is g iven 100 V
and th e v o ltm eter connected across th e two te rm in a ls o f p h a se s A an d B is s e e n to reco rd a v o lta g e o f 141 volts,
w ith th e ro to r open circuited. W h a t a re th e p o larity m a rk in g s o f p h a se B , r e la tiv e to p h a se A ?
[A n s. (6 ) T h e two te rm in a ls o f p h ases A and B , w hich a re co n n ected to g e th e r , h a v e th e s a m e p o larity
m arkin gs.)
6 .8 5 . ( a ) W h a t is a n ind u ction g en era to r ? D escrib e, w ith th e h elp o f c irc le d ia g ra m , th e o p e ra tio n o f an
ex tern a lly -e x cited 3-p h ase induction g en erator.
(6 ) D iscu ss th e follow ing for a 3-p h ase in d u ction g e n e r a to r :
(i) I t o p era tes alw ays a t a lead in g pow er factor.
(ii) C ontrol o f load on ind u ction g en era to r and its lim it.
(iii) A p p lication o f S C IM in th e g en e ra tin g mode.
(iv) It re q u ires rea ctiv e pow er for its op eration from a n e x is tin g su p p ly n etw o rk .
(o) C om p arison o f th e use o f induction g e n e ra to r w ith a sy n ch ro n o u s g e n e r a to r.
6 . 86 . (a) E x p la in th e p rin cip le o f op eration o f a self-e x cited 3 -p h a se in d u ctio n g e n e r a to r .
Give th e condition u nd er w hich th is g e n e ra to r m ay fa il to b u ild up.
(6 ) G ive th e ap p licatio n s o f both e x te rn a lly -e x c ite d an d se lf-e x c ite d 3 -p h a s e in d u c tio n g e n e r a to r s .
6 .8 7 . ( a ) C om p are th e re la tiv e ad v a n ta g es and d isa d v a n ta g e s o f c a g e -ro to r a n d w o u n d -ro to r in d u ction
m otors o f th e sa m e pow er ra tin g .

motor*? H°Wd° y°UCOmpare the operation of a P°lypbase induction motor with that of a polyphase synchronous

S canned B y X a m b c a n n e r

You might also like