Numerical Induction Ps Bhimra
Numerical Induction Ps Bhimra
(c) Two 3-ph ase induction m otors A , B a re identical in all re sp e cts e xce p t t h a t m o to r A h a s a la rg e r air
gap th an m otor B . E xp lain which of th e two m otors will have
( i ) m ore no-load cu rren t
( ii ) poorer no-load power factor and
(H i) b e tte r full-load power factor. lA ns. ( c ) : ( i) and ( ii ) Motor A , (Hi) Motor B]
(b )f2 < f l
(O f2> h
( d ) rotor g enerated voltage and rotor cu rre n t a re m axim u m
(e) rotor em f E 2 and ro to r cu rre n t a re zero
(/) both E 2 and / 2 are minim um
(g ) both E 2 an d 72 a re negative.
[A ns. (a ) A t stan d still ( b ) U n d er norm al runn ing conditions (c) R otor is d riven a g a in s t th e direction of
ro ta tin g m agnetic field (d ) A t stan d still (e) A t synchronous speed (f) A t no-load ( g ) W h en o p e ra tin g as a 3-phase
induction generator]
6 .5 . D iscuss the production of s ta rtin g torque, throu g h th e con cep t of in te ra ctio n of flux an d m m f waves
in a 3-ph ase slip-ring induction motor.
H ence show th a t th e ro to r is forced to ro ta te in the direction of ro ta tin g flux w ave.
6 .6 . E xp lain the production of torque in a 3-p h ase slip -rin g induction m o to r w hen th e ro to r is ru n n in g with
a slip s. H ence introduce th e concept of load angle.
D iscuss th e conditions und er which optim um torqu e is developed in a 3 -p h a s e in d u ction m otor.
6 .7 . D escribe th e developm ent of electrom agn etic torque in a sq u irre l-ca g e in d u ction m o to r through the
in teraction of flux and m m f w aves, w hen the ro to r is ru n n in g a t a speed less th a n sy n ch ro n o u s speed.
Tt = ^ P2 <t>F 2 cos 02 ,
T he above torq u e exp ression can also be exp ressed a s T = K i n cos On I ,* ,., •
Kl a u* • n. i , e 2 2 E x p lain h °w th is torque expression
K I 2 cos 62 can be used to obtain the torque-slip ch a ra cte ristics of a 3-p h ase in d u ction m otor.
- 6 .9 . (a) T h e speed of rotor field, w ith resp ect to sta to r, is alw avs eau al tn 5vnr(im T,n„o j * ui
speeds o f th e induction motor. E xplain . * q syn ch ron ou s speed a t all possible
( « E xp lain why th e rotor of a polyphase induction m otor can n ev er a tta in syn ch ron ou s speed.
(c) I he rotor o f a sh p -n n g induction m otor is connected to an n r « « , , , « „ v i 4 . ,. •
short-circuited. I f rotatin g m agnetic field produced by rotor w in d in g 1 ! , ’ , W a S 1 5 s ta to r wmding IS
which the rotor m ust revolve. g ro ta tes clock w ise, ex p lain th e direction in
_ n . . i [Ans. (c) Anti-clockwise]
4-Mes but « . ^ is
Sc a nn e d by C a m Sc a nn er
— ob‘ _____________________________________ Polyphase In
(m) speed o f rotor field w ith resp ect to rotor stru ctu re ; w ith resp ect to s ta to r str u c tu r e and w ith resp ect
to sta to r field. (Ans (fl) Nq (ft) Yeg (c) g 2 Hz 4() ^ 1000 rpm flnd zero
6 .1 1 . (a) Show t h a t th e voltage gen erated in th e rotor circu it of a 3-p h ase in d u ction m otor a t a n y slip s is
equ al to s tu n es th e voltage gen erated a t stan d still.
(b ) W ith th e help of rotor eq u iv alen t circu it o f an induction m otor, show th a t th e pow er tra n sfe rre d
m otor ^ v a n a b ^e *®sses m a 3-phase induction m otor ? G ive the power-flow d iagram for th is
m otor and d iscu ss th e various losses involved in it.
d ir. 6 ' 1 4 ' Y 4 ‘P° le ’ 3 *p h as®- 5 0 Hz synchronous m achine h as its rotor directly coupled to th a t o f a 3-p h ase
! i 3 Y r T 0 S ta to rs o f both m achines are connected to th e sam e 3-p h ase, 5 0 H z supply I t is
D eterm in e th e n u m b « 150 Hz across th e rotor term in als o f th e in d u ction m otor.
D eterm in e th e n u m b er of poles for w hich th e induction m achine should be wound. G ive a ll p o ssib ilities.
(7.A.S., 1987) (Ans. 8 poles or 16 poles)
a t t h t ’ n n p r a t i ^ Y 8' del^ ' C0Tm®cted - 4 'P ole<5 0 Hz induction motor h a s a s ta to r re sista n ce o f 0 .4 f i p er p h ase
? tem p eratu re. F o r a lu ie cu rren t of 2 0 A, th e total sta to r inpu t is 4 0 0 0 w atts. F o r n egligible
s ta to r core lo sses, find out th e in te rn a l torque. (Ang 2 4 4 5 Nml
6 ' i ? ‘ A. 3 ' P.haSe; 4 3 0 V ’ 5 0 Hz induction motor ta k es a power input of 3 5 kW a t its full-load speed of 9 8 0
r.p.m . T h e to tal s ta to r lo sses are 1 kW and the friction and windage lo sses are 1.5 kW . C a lcu la te (a ) slip ( b )
) rotor ohm ic lo sses (c) sh a ft power (d) sh a ft torque and (e) efficiency.
6 .1 9 . A 10 kW , 3 -p h a se, 50 Hz, 4 pole induction m otor h as a full-load slip of 0 .0 3 . M ech an ical and stra y
load lo sses a t full-load a re 3.5% o f output power. Com pute
(a ) pow er d elivered by s ta to r to rotor,
( b ) electro m a g n etic (in te rn a l) torque a t full load, and 1
(c) rotor ohm ic lo sses at full load. | Ans. (a) 10.67 kW (6) 67.93 Nm (c) 320.10 W|
J II IVy
(Prob . 6
820 Electrical M a ch in e ry _________________________________________ ____ ________________________________________
6 .2 2 . (a) Discuss why the speed of a 3-phase induction m otor falls as its load to rq u e is in cre a se d .
(6) Two w attm eters a re connected to m easure the power input to a 3 -p h a se induction m o to r ru n n in g a t no
load. One of the two w attm eters gives negative reading. W hy ? E xp lain .
(c) Explain why a 3-phase induction motor, in gen eral sim ilar to a tra n sfo rm e r, ta k e s m ore m a g n etizin g
cu rren t as com pared to a transform er.
6 .2 3 . (a) Explain why slip in a 3-phase induction m otor is directly p roportion al to to rq u e w hen o p e ra tin g
n ear synchronous speed.
(ft) A 4-pole, 2 0 kW, 5 0 Hz, 4 0 0 V SCIM has a sta rtin g torque of 1 6 0 N m and a full-load to rq u e o f 1 2 0 Nm .
C alculate
(i) sta rtin g torque for a s ta to r voltage of 3 0 0 V,
(ii ) voltage so th a t m otor operates satisfactorily a t full load from a 60 -H z so u rce,
(lii) voltage applied to sta to r so th a t full-load torque is developed a t sta rtin g .
V'
[H int. (ft) Keep j constant) [A ns. (ft) 9 0 Nm, 4 8 0 V, 3 4 6 .1 4 V]
(H
i)th e ro to r c u rr e n t a t s ta rtin g in p er u n it of full-lond ro to r c u r r e n t. , , . E .S .. W ?S |
diagrum of aCtransformer ?80r ^ * * " P“'y,,1,“SC induCtil>'' » — •How does i, differ from the phasor
^s S tD
„Th?tprall ? : i ; t i : lt c “/eu irlyphasc induction ra°i°r-
Sc a nn e d by C a m Sc a nn er
P ro b . 6]
Polyphase In d u ction M o to rs 821
circ u it p a ra m e te rs ? ' nt*u c t' on n iotor eq u iv alen t circu it, w h a t should be k ep t in m ind re g a rd in g th e e q u iv a le n t
ind u ction m o to r e q u iv a le n t^ r c u T ^ E x p y a in '6111 C' rCU*t- T ^ is’ how ever, is n ° t p erm issib le in th e a n a ly sis o f
T - 1 ^
em 2 n n ,2 T 2
and hence show th a t T'
T..„
em ssmT ^ S
S smT
F o r sm a ll v a lu e o f slip o ccu rrin g in th e sta b le o p eratin g region prove th a t
r1' = -2 F„„ S
smT
^ [H in t. (W U ) I f s t a t o r re s is ta n c e w ere con sid ered then th e slip a t w hich m a x im u m to rq u e o ccu rs, is given
s,nT=^ J 7 F
S in ce s mT i s re d u ce d w ith th e co n sid e ra tio n of s t a t o r re s is ta n c e , th e full-load slip w ould be sm a lle r.
r2 0 fl4
( « ) y = s , uT = 0 .2 o r X = = 0 .2 « etc.)
[A ns. (a) (,) See Fig. 6 .1 7 ( « ) All the three T „ „ Ttm and s mT a re reduced. (6) « ) 0 .0 2 5 4 , sm aller, (ii) 0 .1 6 O).
( ii ) th e m a x im u m to rq u e in te rm s o f full-load to rq u e an d
u u a i ii i c u vjy u a i i ix j^ai 11 i c i
r
[Prob. 6
822 Electrical M achinery _______ "
T'f, 2
IHint- (6)
Sp s mT
I 21
T.n sfl S,nT- — SmT
Now -J-
7 ? LL = - —
r . = j75------------
2 7 ~ 16
7Sn 16 S fl
i , 2 2 ‘ 2m T 2 '* '
. / r , . T --- ----------
/2'"r *,nr
1 s-nr 2 .e|c_
" . 16 Sf l SmT + Sfl
Sfl s mT
[Ans. (a) (i) Ttt l and Ttm are reduced to ^, but n , and s mT remain unchanged.
w Z- increase, T „ re ra -in , same but a . is reduced te half.
(b ) (i) 0.167 (ii) 2.874 T , n (Hi) 0.934 Tt fl.\
6 .3 3 . (a ) Show th a t th e m axim um in tern al torque developed by a polyphase induction m
depend on th e rotor circuit resistan ce.
(6) A 3-ph ase squirrel-cage induction m otor has a rotor sta rtin g cu rre n t o f 6 tim es its full load value. The
m otor h as a full load slip of 5% . D eterm ine
( i ) th e sta rtin g torque in te rm s of full-load torque ;
( ii ) th e slip a t which m axim um torque occurs ; and
(Hi) m axim um torque in term s of full-load torque.
(H in t, (i) U se Eq. (6 .5 1 a ). ( ii ) U se Eq. 6 .3 7 . lAns. ( b ) ( i ) 1.8 Tr „ (ii ) 0 .3 1 (Hi) 3 .18 Tt f l ]
6 .3 4 . ( a ) W ith s ta to r resistan ce neglected, the torque-slip ch a ra c te ris tic can be obtained from th e expression
Tt
T e ni s mT S
s s Tm
s = s m7 > ± VA:2 - 1]
where ^ = -sr-
1e
(U se n egative sign if s mT > s , e . g ., s mT > and use positive sign in ca se s mT < s , e . g . a t s ta rtin g ).
(b ) The m axim u m torque of a 3-p h ase sq u irrel-cage induction m otor is 4 tim e s th e full-load torq u e and the
sta rtin g torque is 1.6 tim es th e full-load torque. N eglect s ta to r re s is ta n c e . C a lc u la te
Sc a nn e d by C a m Sc a nn er
Prob. 6]
Polyphase Induction Motors 823
T - i K
«». 2x2 ~ 2
or 240 = -
2
K = 480.
fa ) I f R is th e su m o f r o to r re s is ta n c e a n d e x te rn a l re s is ta n c e , th e n a t s t a t i n g
re sl ~- J - xX_ 3V? -
[«2 + *^l
or 0 . 7 5 x 2 4 0 = —^ — R etc
R 2 + 1 ,e tc -
<6 > 0 .7 5 x 2 4 0 = f M f _ i 8 0 _ R
1,400 J fl2 + i ’ ‘ IA n s. (a) 0 .2 5 1 4 Q, (6) 0 .4 7 2 fl]
t h a t to in c re a s e th e s t a r t i n g t o r q u ^ e x t S S ^ M t t e r o t o ! * ^ m 0 t° r Ke“ “ P r° V<i
[H in t, (a ) C on d ition for m a x im u m to rq u e is
r2
...(6 .2 5 )
T h e e x te r n a l r e s is ta n c e in ro to r c irc u it a t s ta r tin g is
(V ^ + J^ -r,).
(8) *- ^
2 smr, 1
*f
1 s mT1
an H _ r 2 * added resistance
2 sistance
s m T, =
. [A ns. (6) 0 .3 3 6 fl)
6 .3 8 . ( a ) E x p la in th e d ifferen ces b etw een th e c h a ra c te ris tic s nf «lirx ,
in d u ction m o to rs. S k e tc h a ty p ica l c h a r a c te r is tic for e a ch . sq u irre l-c a g e polyphasi
Sc a nn e d by C a m Sc a nn er
[Prob. 6
824 E lectrical M achinery _----------- !— :---------- ------------- - " 7 ..
------------ " . • , u* n of full-load torque a t starting.
(fe ) t h e resistance to b e added to the rotor circu it o o a | Ans. 9 2.89 Nm, 0.192 Q]
j tor h as s ta to r im p ed an ce of 0 .0 7 + j 0 .3 0 O and
6 .4 2 . A 4 20-V , 6-pole, 5 0 H z s ta r ^ m agn etizin g c u rr e n t is n eglected . D eterm ine
stan d still rotor im pedance referred to s ta to r is 0 .0 8 + 7 0 .3 7 U. i n g
(a) the m axim um internal power developed and the corresponding slip and
(b) the m axim um internal torque and the slip at ^ RW Q 1Q44 . (6) 1088.1 76 Nm, 0.1187]
N eglect s ta to r im pedance.
[Hint, (a) U se E q . (6 .3 1 )
V\ 0.10
(*>) T* P = T T T Iv x 0.05
r0.10] + ( 0 .6)2
0.05 J
(*V?) 0.10 [Ans. (a) 4.938% , (6) 20.356%]
X 0.2875 CtC‘
6 4 4 A 440-V 3-phase, 4-pole, 5 0 Hz slip-ring star-co n n ected induction m otor h a s a voltag e of 8 0 V between
slin Hnirs when full-voltage is applied to the sta to r and the slip-rings a re o p e n -c rc u ite d w ith the rotor
s a t i o n a i The sta to r cu rren t a t no-load is 2A a t a p f of 0 .2 lagging. T h e ro to r is sta r-co n n e cte d w ith a per
phase stan d still leakage im pedance of 0 .0 5 + j 0 .2 5 fi referred to rotor. F o r th e m o to r ru n n in g w ith th e slip-nngs
sh ort-circuited and a t a slip of 5% , calculate
(a) the torque developed in Nm,
{ b ) the mechanical power developed,
(c) the rotor ohmic loss and •
(id ) the stator current and power factor. -9
Neglect stator leakage impedance and rotational l’g sses.
[H in t, (d) R otor cu rre n t a t 0 .0 5 slip, / 2 = 4 4 .8 1 A.
= - b h + ( 0 . 4 - 7 1.96) = (8 .3 - j 3 .9 4 ) A e tc.].
5 .5 J
[Ans. (a) 3 8 .3 5 Nm (6) 5 7 2 2 .8 w atts (c) 301.2 w atts (d) 9 .1 8 8 A at 0.903 pf lagging !
Sc a nn e d by C a m Sc a nn er
Prob. 6] Polyphase Induction Motors 825
[H in t, (a) 0 .8 5 = t= s ^ = y •
Vr22 + ( 0 .0 4 * 2)2
This gives r 2 = 0 .0 6 4 5 4 jc2.
Slip a t reduced voltage = 0 .0 5 2 2 etc.
(6) M axim um startin g torque can, at the most, be equal to maximum torque Te m . H ere s mT = 1 /3 .
Te-it 2
etc. (A ns. (a) 0 .7 7 7 5 lag (6 ) 0.6 1 4 3 )
T<m ' 1 /3 1
1 1 /3
.4 6 . A 3 -p h a s e , 5 0 H z, 4 0 0 -V w ound-rotor induction m otor ru n s a t 9 6 0 r.p .m . a t fu ll-load . T h e ro to r
resis a n ce an d sta n d still re a c ta n c e p er p h ase a re 0 .2 11 an d 1 £1 resp ectiv ely . I f a re s is ta n c e of 1 .8 £2 is ad ded
o e a c h p h a se o f th e ro to r a t sta n d still, w h a t would be th e ra tio o f s ta rtin g to rq u e w ith full v o lta g e an d th e
added re s is ta n c e to th e full-load torq u e u n d er n o rm al r u n n i n g conditions ? S ta te a ssu m p tio n s m a d e in y o u r
ca cu la tio n s. C a n th e sa m e s ta r tin g torq u e be obtained w ith a n o th e r v alu e of th e a d d ition al r e s is ta n c e ? E x p la in .
It th e a n sw e r is y e s, find its v alu e. ( I E S 1979 )
H in t . Te.,t = — • | v a ; r e/r = ^ - . - 5 - V 2 e tc
e s l (os 5 ’ ef l (og 2 6
A n s . (a) 1, 2 ( 6 ) 4, 8 (c) i i (d ) J , |
( i v ) h ig h e r fu ll-lo a d speed . ..
Sc a nn e d by C a m Sc a nn er
P rob. 6] Polyphase Induction M o to rs 827
6 .6 1 . (a) E x p la in how th e circle diagram for a polyphase induction m otor ca n be d raw n from its t e s t d a ta .
( 6 ) A 4 0 0 V , 3 -p h a se, 8 pole, 5 0 Hz sta r-co n n ected induction m otor gave th e follow ing t e s t r e s u lts :
No-load test (line v a lu e s ): 400 V, 10 A, cos 0O= 0.2.
Blocked-rotor test (line v a lu e s ): 160 V, 30 A, cos 0,f = 0 . 35.
If, a t full load and rated voltage, th e power fa cto r is a t its m axim u m , th e n c a lc u la te fu ll-lo ad c u r r e n t,
pow er factor, torq u e in n ew ton -m etres, speed, power output and efficiency. S ta to r and ro to r o h m ic lo sse s a re
equaL lA ns. 28.75 A, 0.806, 174.224 Nm, 698.7 r.p.m ., 12.644 kW, 78.834%1
r n A 4 klV’ 400 Y’ 50 Hz‘ 3 ‘p h a se >4 -Pole d elta connected slip rin g ind u ction m otor h a s s ta to r r e s is ta n c e
o f 0 .3 6 D p er p h ase, rotor re sista n ce o f 0 .0 6 D per phase and per p h ase s ta to r to ro to r tu r n s r a tio o f 2 T h e
following d a ta p e rta in s to th e line v alu es d uring lig h t load te sts :
No load ; 400 V, 3.3 A, cos 0(1= 0.174
Locked rotor : 210 V, 16 A, cos 0 = 0.45
torque^ ^ ° p e ra tin g pow er fa cto r. m axim um power output, m axim u m to rq u e in N m and slip a t m a x im u m
(Ans. (a) 8.66 A, 0.8434, 0.057, 26.738 Nm. 77.65% (6 ) 0.852. 6.42 kW, 50.04 Nm, 0 .2 1 (c) 0 .2 2 6 4 f l referred to
1ULUI *J *
w ith th e help o f circ le diagram th a t th e b est possible op erating pow er fa cto r is given by V*
V , + 2 / 0 (x , + x 2) ‘
(b) Tw o in d u ction m otors A an d B a re id en tical in a ll resp ects exceDt th a t m ntnr 4 c i
6 .6 5 . (a) D iscu ss why th e pow er fa cto r o f a 3 -p h a se ind u ction m otor is low a t (a ) no-load and ( b ) also u n d er
overloads. UCI
iKJNNriiwnnroi wi
Sc a nn e d by C a m Sc a nn er
828 Electrical Machinery ________________________ [Prob. 6
a u ^° tra n sfo rm e r s ta r te r lim its the s ta rtin g cu rre n t from th e supply to tw ice th e fu ll-load c u rre n t,
d eterm in e th e s ta r tin g torque and au to -tran sfo rm er tapping.
H in t. From Eq. (6.51). s p = (Ans. (a) 4.2 Ip , 2.94 I p , 0.98 T , p (6 ) 0.667 T , p . 57 . 74 % tappingl
tim e * thn n . n T ' * ! 0/ Cage ‘n d uct‘on m °to r when sta rte d by sta r-d e lta s ta r te r , develops a s ta r tin g to rq u e o f 0 .4
th e su n nlv lin orque and l a ^es from th e supply a s ta rtin g cu rren t o f tw ice th e full-load c u rre n t. C a lc u la te
SUpply h n e cu rre n t and s ta r tin g torque if th is induction m otor is sta rte d by
( ) a cro ss-th e -lin e sta r te r ,
( ) a u to -tra n sfo rm e r s ta r te r w ith 80%. tapping.
H in t. Here sn = — ,. . . _.
. n 30 | Ans. (a ) 6 I p , \ .2 T t p ( b ) 3.84 l p , 0 .7 6 8 T e p \
powe6r factor oPfO S ’ w S Y ’ J 0? V Squi.r r e l‘ca e e induction m otor h a s a full-load efficien cy o f 0 .8 7 an d a fu ll-lo ad
ra ted voltage Its full lu d e lta * th e m ° t0 r ta k es a s ta r tin S c u rre n t o f 8 0 a m p e re s a t
th a t s ta r tin g torq u e eo u al to h a lf th ' f* u i ; m m im um s ta r lin E cu rre n t to be ta k e n from th e su pply in o rd er
6 t0rqUe eq u al t0 h a lf th e full-load torque is developed w hen sta rte d by
(a ) a n a u to -tra n sfo rm e r sta r te r ,
( b ) s ta to r r e sisto r s ta r te r .
C a lc u la te th e p e rce n ta g e tap p in g on a u to -tra n sfo rm er also. | Ana. (a) 47.432 A, 77% U pping <(,) 51 6 6 4 Al
T
[H in t. W ith d ire ct sw itch in g , esl ^
3T eP ~ 0.12 + 1
2 0.12
W ith s ta r -d e lta s ta r tin g torq u e is reduced to o n e-th ird o f th a t d urin g d ire ct sw itch in g ]. [A n s. 0.2366]
IA n s . 9 8 .4 1 5 A, 75 kVA]
6 .7 8 . T h e s t a r tin g c u r r e n t o f a d elta -co n n ected 3-p h a se ind u ction m o to r a t ra te d v o lt * ™ ic * *• ‘
fu ll-load c u r r e n t an d th e slip a t fu ll load is 5% . T h e no-load c u rre n t is n eg lig ib le . S
( ) I f a n a u to -tr a n s fo r m e r s t a r t e r is u sed to lim it th e s ta r tin g c u r r e n t from m a in s to 9 r n i
c u r r e n t, e s tim a te th e s ta r tin g to rq u e th e n o b ta in ed a s a p e rce n ta g e o f th e fu ll-lo ad to rq u e ° °3
<M N e g le c tin g s t a to r im p ed a n ce, d e te rm in e th e slip a t w h ich m a x im u m to rq u e o ccu rs in th e m otor.
6 .8 0 . A SCIM has a starting current of six times the full-load current at a slip of 0.04 Calculate the lin e
current and starting torque in p.u. of full-load values for the following methods of starting :
ja ) Direct switching
caCe'nduclio)^otors ?°l °dViSab'C^ S‘art W°“nd'r0l0r induction molors b* lhc employed for stnrtinC
6 .8 3 . D esign a 4-step s ta r te r for a 3 -ph ase wound rotor ind u ction m otor. T h e fu ll-lo a d slip is 2 .5 % and th e
m axim um sta r tin g cu rre n t is lim ited to 1.6 tim es its full load value. R oto r r e s is ta n c e p e r p h a se is 0 .0 2 12.
D erive th e form ula used for ca lcu la tin g th e re sista n ce sectio n s and s t a te th e v a rio u s a ssu m p tio n s m ade.
[A ns. 0 .2 7 7 12, 0 .1 2 4 12, 0 .0 5 5 12, 0.025 111
motor*? H°Wd° y°UCOmpare the operation of a P°lypbase induction motor with that of a polyphase synchronous
S canned B y X a m b c a n n e r