Ms ivis
‘The diagrams in this paper are not necessarily drawn to scale .
Choose the best answer for each questi
Lays
A. 10m.
B10™
Ca, oe
D. 39"
2 then 2 =
ey
A 2 4
3y-b
a
b=3y
cy
3y-@
>
a-3y
3. 16-@x~3y)? =
A 4n2x~3y 4428-439).
B. (4-2x~3y'4+2x-3p).
©. 42x 43y (442x439),
D. (4~2x+3y)(4+2e~3y).
4, 00875402 =
0.087 (correct to 2 significant figures)
B. 0.0875 (correct to 3 decimal places),
©. 0.08754 (correct to 4 significant figures),
D. 0.087540 (correct to $ decimal places)
>
5. Let f(x) =x° + 3x? + ax— 5, where a isa constant. When f(x) is divided by x + 1, the remainder is 4
Find the remainder when f(x) is divided by x +2.
A 27
eae]
cB
D7
6. Let (x) be a polynomial. If fx) is divisible by x +3, which of the following must be a factor of
J3x=1P
Ax
Bo x3
Cc wwe
Dara
JK The solutions of 2x(s~ 2) 5(3 ~x) are
A. xg-3orx2?
2
[Goon the next
2016-S4-Final Exan-Maths2-P.2 2XK How many integral solutions does the compound inequality
x+3s3x-Land 3y~1<2y-+ Shave?
A3
Ba
cs
D6
YE The soltons of 5-2 ors 3~ 2e are
A xsi.
B x<2,
©. -2srs1,
D. xs-2orr2 1.
6 The figure shows he sraph ofthe quadratic Function y=f2)
salvef/)* <0
A Isx<2
B l
3
D. x
12, Ifa and f are the roots of the equation 2x? ~ 6x +
a+ 2and +2?
AL 2 14r+21=0
B. 27+ 14r—21=0
C. t+ lay +21 =
D. 2x7-14x-21=0
) which of the following equations has the roots
13, Which of the following quadratic equations has a double real root?
A ¥-9=0
BP =8r-
©. SP exa1
D. =the +15
M4. Which of the flowing Fires can represent the gap of ae ax 432
dA
fe
2016-84-Final Exam-Maths2-P.315, The figure shows the graph of y=—x" + 3x—m + 1, Pind the range of values of m.
A met
Bo m>i
cmb .
1
D.
pot tdeomt!
16, The figure shows the graph of the quadratic function y= fix). Find fix).
A ate ayes yeh
Bayes
Cle aK
t
D. Fe+3}-4)
17. Ifthe graph of the quadratic function y =x" + by +e passes through (3 ,-8) and (-5 ,-8), then the
equation of the axis of symmetry of the graph is
=3
a
1
pomp
18. Which of the following can represent that y is @ function of x?
L , 4, i
| \ > *
m, y WV.
A. Wonly
Bland Ilonly
©. Land IV only
D.{, land LV only
19, The coordinates ofthe vertex ofthe graph of quadratic function are ¢
through (1,14) The quadratic function is
5) and the graph passes
AL y= 9x 36e431
BL y=-9x" + 36x—31
©. yas tay—t
D. ye? 4x-9,
2016-S4-Final Exam-Maths2-P4 420, If and y are non-zero numbers such that (3y —4x) : @v +») =$ :6, then.x: y=
A 7:8
B 8:29
c. 9:32
D. 13:34
21
2
2B,
24,
25.
2%,
Itis given thats varies inversely as. If decreases by 20% then +
A decreases by 25%.
B. decreases by 56.25%
C. increases by 25%.
D. increases by 56.25%
If varies directly as x and inversely as y*, which of the following must be constant?
Ie is given that ais parly constant and partly varies directly as 62. When a=3,6= 1 and when a
82, Find the vae(s) of when a= -37,
ae
“20r3
~3or2
“a0r3
pop
It is given that varies jointly as Jp #1 and g
When p =8 and q = 15, r= 5. Find the value of r when p= 3 and
AL
9
B. 6
135
o 6
D. 12
In the figure, O is the centre of the citcle ABCD, The straight line BOD cuts AC at E and BOD is
perpendicular to AC. IFAC = 6 and BD = 10, find the length of DE. a
AL
B 3
Cc 4
Dos °
z
° 4
D>
In the figure, Q isthe centre of the circle ACDEB, AOB is a straight line. If
‘ZBOE ~ 60°, then ZAOC=
A 30%
BL 40"
cso"
DB. Go",
2016-S4-Final Exam-Maths2-P.s 327, In the figure, ACBD is a circle. AB and CD intersect at E.
If ZCBE = 40° and ZBED = 15°, find BAD. A
Aes
Bans"
Cc. 40
D. 75°
28. Inthe figure, two circles meet at P and Q. BPC and AQD are straight lines,
If ZPCD = 104°, find ZPBA.
A lod
B76
Cc 37
ts ey
80°
50°
40°
44
30. In the figure, ABCis a circle. DE is the tangent to the circle at B and AB L DE. \f AC ~ 5 cm and
ZCBD = 60°, find the diameter ofthe circle.
4
A. 10cm cay
BN8 em
CG. Sem
BD. 2Sem
.
31. Simplify J=23V=TE vv
i
pop>
A
Bo -15/2
Cc. isis
D. -1sv2i
32, If'm isa real number, then
A ol
ets
Co 1+ 2m
D. -s—2mi
33, The LCM. of 9a°b, 12a‘b? and 15a is
A 3a!
B. 3o’b.
C180
D. 1800"!
2016-$4-Final Exam-Maths2-P.6 66x9
ar
Tex -9
35, Find the equation ofthe straight ine wth slope 1 and y-intrcept 5
A. x-2y-10=0
B. x+2y+10=0
©. x-2y+10=0
D. x42y-10=0
36. Which of the following figures may represent the straight line L: ax + by +1 =0, where a+ b= and
a>B?
A c
= x *
B o.
37. Which of the following numbers is the smallest?
‘A 600"
B. 400"
Cc. 300%
D. 200%"
A. b+ 10-20
8 b+1-2a
C. btina’.
o. Mt,
Fa
2016-S4-Final Exam-Maths2-P.7 739. log x then y=
40, ve of the following figures may represent the graph of y= 1.6"?
Te
Kit
END OF PAPER
“Title of the publication; [2016 HIRDSE Mathematics Compulsory Part
Paper It
Copyright owner Hong Kong Examinations and Assessment
‘Authority
Date of making Wis copy: | 19” May 2016
"This material Ras been copied under a licence isued by the HKEAA, You
are not permitted to make any further copy of this work, oF to make it
available to other.__Itis important to understand and respect copyright
2016-S4-Final Exam-Maths2-P8 8‘The diagrams in this paper are not necessarily drawn to scale.
‘Choose the best answer for each question.
Sei
A
1 Se? Tay 2y" x= y
AG yXSx+2y41)
B.(x—y)(Sx+2y—D).
Core yx 2y+0),
D.Ge+yXSx+2y=)
2 (ga)
A sil
B, 2x5!"
2
7
2
ic)
D.
3. 0.000 3021 =
‘A. 0.000 30 (correct to 2 significant figures).
B. 0.000 302 (correct to 3 decimal places),
€.0,000 3 (correct to 4 significant figures).
1D, 0,000 302 (correct to 5 decimal places).
4p 8542 then
armas
ae
7
3 2
¢
®
19
pe
4
stand 32-0) al munter, hen
A.-1.25,
B.-I
ci
D. 125.
6. The straight line J passes through the point (-2 , 1) and is perpendicular to the straight line
3x + 4y~7=0. The equation of L is
A. dx + 3y +50,
B.dx—3y+1
C.3x + dy +2=0.
D.3x-4y+ 10=0,
7. Straight line Ly is parallel to straight line 1, and the y-intercept of L2 is twice the y-intercept of Ly
Ifthe equation of Ly is 3x - 2y + 6 =0, find the equation of Ls
A.2x + 3y-18=0
B.2x+3y-9=0
C.3x=2y+ 12-0
D.3x-2y+3=0
2017-8 4-MATHL-Final-Exam 2-2 28. Inthe figure, straight lines Ly and La intersect at a point on the negative x-axis, Which of the
following is/are true?
lL axe k
I, bod
ML be ad catty +b=0
A.Tonly
B.Ilonly 7
C. Land I only 7
D, 1and Ill only perereeo
9. Leta be constant. Solve the equation 4x? = (x ~ a)?
A
orx=-f
B.x=aory= 3a
C.x=-aor
D.x=-aorx=3a
10. Let k be.a constant. Ifthe quadratic equation 2x” + 4x + 5k=2 has real root(s), find the range of
values of &.
Ak<
Boks
Dks
2
3
4
a
3
11, Inthe figure, ABCD is a rectangle, where AB = 10 em and BC = 12 om. Eis a point on AD, where
AE=x om, P and Q are points on AB and CD respectively such that AP = AE and DQ= ED. If the
sum of the areas of AAEP and ADEQ is 40 em’, then
A. 2+ (12-2=40, xem £
B. x +(12~x)'= 80, °
© ¥+(10-3'=40.
D. x #(10—x)°=80. tok
12, Let fix) =12- 4x +3. Ifa) = 8, then a "
A.-Lors. rar
B.-1 or 3.
C. Lor.
D.lor3
13, Let kbe a constant, If f(x) = x° ~2x+3k then 3) =A)
A.-12
0
C6
6k
14, If m and 1 are constants such that 4x°-+m(x—1) -28 = mx(e¥3)+n(ue4), then
A8
B.-7
4
D6
2017-S.4-MATH-Final-Exam 2-315, The figure shows the graph of y = hx? ~~, where h and kare constants. Which of the following
is true?
A.h> Oand k> 0 fF pektask
B.h>Oand k<0
C.h0
D.h cosy
I, cos.x> cos y
lsinx > sin y
A.tand Ionly
B. 1 and Ill only
C. and IL only
B.A Mand HL
2017-8 4-MATH-Final-Fxam 2-5 728, Which of the following quadratic equations can be formed from the roots k and —1?
Axt4(1-By-k=0
B.xr+(k-Dx-k=0
CP + (1+ Rr +k=0
D.xt+(1+Kr—k= 0
29. Let kbe a constant. and flare the roots of the quadratic equation x? ~ 2x + k= 0. Ifa~ B= 4, find
the value of k.
Ad
B.2
C2
D3
30, Which ofthe following statements about the graph of y = -x7 + dx — 5 istare true?
I. The equation of the axis of symmetry of the graph is x = ~2,
IL The coordinates of the vertex of the graph are (2 ,~1).
L-The graph cuts the x-axis at two points
A.lonly
B.Ionly
C.Land I only
D.tand Il only
31, sandy ae posivenumbers then FE
ae
a
°F
32. The figure shows the graphs of y= 0", y=a' and y = b on the same rectangular coordinate plane,
where «and 6 are positive constants. The graphs of y=", y= a' and y"~ B* cut the yeaxis at the
same point P. Which of the following isare true?
I. The coordinates of P are (0 , a).
MN, ab<1
TIL, The graph of y~ a" is the image of the graph of y = a"
when reflected in the y-axis.
A. ILonly
B. Land Il only
.Land IL only
D.1and Il only
2017-S.4-MATH-Final-Exam 2-6 633. Which of the following is the best estimate of 3 465°?
A101
B10"
c. 100
D1
34, Let a and b be positive constants. If logs a+ 1 = 2 logs b, then
35, The graph in the figure shows the linear relation between logy x and logy y. If
of aand k.
Aa=4and k= 1
36.
C. ogsy.
psy
3
31. The L.CM. of 6x’y, 103
Auy.
and 15x'y'zis
Bugs
C3094
D.30x% "2,
1 1
38 Fras * Fans ©
a
(#3)a-5)
——
GDE-9,
© eS
act, find the values
loniy
39. In the figure, 4B is a diameter ofthe circle. DE is the tangent to the circle at C and BDL DE. IF
ZABC = 40°, then CB
30°.
B40",
C.45°,
D. 50°
2017-8 -MATHFinal-Exam 2-740, In the figure, Os the centre of the circle ABD. CB is the tangent tothe cirele at B and AODC is a
straight line. IFAD = 4, find the length of BC.
A2d
BW
ca
Dias
END OF PAPER,
‘Title ofthe publication, [2017 HKDSE Mathematics Compulsory
Part Paper IL
‘Copyright owner: Hong Kong Examinations and
Assessment Authorit
Date of making this eopy: | 19 May 2017
‘This material has been copied under a licence issued by the HKEAA,
You are not permitted to make any further copy of this work, or to
‘make it available to others. It is important to understand and respect,
copyright.
2017-8 4-MATH-inal-Exam 2-8Swor>
‘The diagrams in this paper are not necessarily drawn to scale,
Choose the best answer for each question.
I 27") _
oa”
AL 4
B. 4"
cn
D. an
2. 0.087542 =
A. 0.087 (correct to 2 significant figures).
B. 0.0875 (correct to 3 decimal places)
C, 0.08754 (correct to 4 significant figures),
D. 0.087540 (correct to 5 decimal places).
3. ifm +2n+6=2m—n=7, then n=
AW4
B.-1
C3
Di
5. Miss
4h-17
3-h
4h-7
34h
4n-17
a+h
Chan sells two cars for $ 80080 cach, She gains 30% on one and loses 30% on the
other one. After 2 transactions, Miss Chan
A. loses $15 840
B. gains $5 544
C. gains $10 296
D. has no gain and no loss.
2021-S4-MATH-Final-Exam-Paper 2 PS
Goonto thenent page >6 16 Qx—3y2=
A, (4— 2x — 3y)(4 + 2x + 3y)
B. (4—2x—3y)(4 + 2x - 3y)
C. (4=2x + 3y)(4 + 2x + 3y)
D. (42x + 3y)(4+ 2x - 3y)
7. Ifmisa real number, then the real part of (3 + mi)(1 ~ 2) is
A, 342m,
B. 3—2m.
Cc. m-6
D. m+6
8. Find the imaginary part of | + 2/—3? + 4? — si.
A. -2
B. -1
c 6
D. 9
9. Find the area enclosed by the lines x + y= 7, x—2y= 10 and the y-axis.
A. 48.5q. units
B, 64 sq. units
C. 72.sq. units
D. 965g. units
10. Ifthe straight lines 3x + 2y—
find k.
A. 3
B-
Cc 6
D.
Oand 4x — ky + 1 = 0 are perpendicular to each other,
2021-S.4-MATI
I-Exam-Paper 2 Pau
13,
14.
2021-S.4-MATH-Final-Exam-Paper 2 PS
In the figure, the equation of the straight line Lis ax + by + 15 = 0. Which of the following
are true?
L a>b Y
I. a>-3 3
mM, b>-S
A. Land only
B. Land Ill only
C. Mand Il only
D. 1, Mand til
If +4 is a root of the equation +x? + kx + 12 = 0, find the other root.
A. -3
B. 3
cea)
D. -4
If the quadratic equation x? — (4k — 15)x + 4 = 0 has two distinct real roots, find the
maximum integral value of k.
AO
B,
cr
D.
era
The figure shows the graph of y = —2x? + ax +b, where a and b are the constants. The
equation of axis of symmetry of the graph is
A x=2,
y
BL x=3.
C. x=5.
D. x=8. a15. Suppose @ and Bare roots of ¥” +5x-2=0. Find a 28.
a
A. -29
B. 29
a
2
D. 29
4
: a +6a+3=0 :
16. Ifa and 6 are distinet real numbers, and} «find the value of a? + 6.
b +6643
A. 25
B. 30
Cc. 35
D. 40
17, The base of a rectangle is 2x cm and the height is (4 — 2x) cm. The maximum area of the
rectangle is
AL dem?
B. 6em’,
Cc. 8em’,
D. 10cm?
18, LetF(a)=8~3x,60)= V2v=3 and My FSD
Find the value of H(2),
Ga)
A. -10
eel
2
cil
D. 2
19, x + kx — 25, where k is a constant, If (4) = —37. find the value of k.
7
B. -I
cot
Dee7,
2021-S.4-MATH-Final-Exam-Paper 2 P620. Iffx+4)= 1 5x, then flx) =
A Sx.
B. 55x.
C. -19- 5x.
D. 21-5x.
21. Ifx’ + ke + 15x—4 is divisible by x + 4, then k=
pomp
22. Suppose f(x) is a polynomial. If fx) is divisible by 3x ~ 7, then which of the following must
be a factor of fix + 2)?
A. 3x-7
Bo x+2
Cc. 3x-1
D. 3x1
23, 8173. 27? =
AL gto
B. 3h
Cc get
D. 385
24. Which of the following is the least?
AL L1nytoe
B. 2.229550
c. 3333800
D. 4.44q2s00
25. Ifa=log 3 and b = log 7, then top =
A. 6+10-2a
B. b+1-2a
C b+.
vp, 24,
2a
2021-S.4-MATH-Final-Exam-Paper 2 PT
Goon tothe nextlogx+logyx
26. Simplify ees
logx
Bie
BL
2
co 3
4
vp 3
8
27, Itis given that logs y isa linear function of logs x. The intercepts on the vertical axis and
on the horizontal axis of the graph of the linear function are 7 and 8 respectively. Which of
the following must be true?
A, xyl=3%
B.
cc)
D.
yt = 3%
28. The relation between the intensity / W/m? and the intensity level D dB of a sound can be
represented by the following formula: D = 10 log Pod
If the intensity of a sound is increased by 170% when compared with the original intensity,
what is the increase in the corresponding intensity level?
A. 1434B
B. 2.30dB
C. 4314B
D. 174B
29. The L.C.M. of a+ 4a+4,a?—4 and a+ 8 is
A. at2
B. (a—2)(a+2)*(a? -2a+4)
C. (@-2)(a+2)*(a? + 2a +4)
D. (@-2)(a+2)*(a? ~ 2a +4)
2021-S.4-MATH-Final-Exam-Paper 2 P8. 6 +9x+20
20. Simply Syaeata F-16846
A (x+2)(x-3)
(x+ 6)(x+4)
p 42043)
(e+ (r+ 4)
(x+2,00+3)
(e+ 6)(x—4)
D.
3. if 242 #9 _. find the values of the constants @ and b.
x-5 xt+9 x7 +4x-45
A.
B.
Cc.
D.
32, In the figure, OA // CB. If ZOAC = 25°, then ZAPB=
A. 65°.
70°.
= AD
33. In the figure, O is the centre of the semi-circle ABCD. If AC = BD and. 2COD = 48°
then “ABD =
3 —
33° .
az
4g
gop>
2021-S.4-MATH-Final-Exam-Papet 2 Po
Goon tothe next page >34, In the figure, 74, 7B and PQ are tangents to the circle. If TP = 12 em, 7Q = 10 em and
PQ= 8m, then BO=
pop>
dom,
Sem,
5.5 om.
6em.
A,
yi
12cm
a 10cm Q B
35. Inthe figure, AB: CD =3:2. If ZAMB=65°, then ZACB=
pap
26°.
30°.
35°.
39°.
36. Inthe figure, BQ is a tangent to the circle. AP // BO and AB= AC. ZTAB = 108°.
Find ZCBQ.
A.
B,
G
D.
32°
36°
48°
72°
2021-S.4-MATH-Final-Exam-Paper 2 P1031.
38,
39,
40.
In the figure, AB is a tangent to the circle. AO L OB, Od = 8 em and AB = 12 em. Find the
radius of the circle. (Give the answer correct to 3 significant figures.)
A. 4.47¢em A
B. 5.96 em
C. 6.71Lem N2cm
D. 7.45 em i
sin (180°—@) _ cos (270°)
tan 225° sin330°
A. -sin 0
B. 3sin0
C. sin 042008 0
D. sin 0-2cos 8
B
cos10° + cos?20° + cos*30° + ... + cos*80° =
iS 7)
B. 4
Cc. 6
D. 8
Find the minimum value of (2 + cos @)(2—cos 0).
A.
B.
Cc.
D.
End of Paper
2021-S.4-MATH-Final-Exam-Paper 2 PAL
Goon tothe next page >yossay ee ¢—x nog sna BopMooY 2130 UM “T= (
? “a
* o>prea>? -¥
gona sr BoLMoTOS
30; Hmm pp 2a P94 re = ni gE et
Zpor z- ideo soquna fast “a
oot
22S ~cayoonsvny ajo uemop ag st Sumonoy AB ;O HSH *S
=
I
Bassa
A
*
= gton'9 = Y= (OY Svemsueg ase > pe gD 9 9+ r= CY
£
sero fer a
wap bax
ermmter 9
©
cere ber @
x10 nae
pate fiery
‘om €+ x01~ 4 wonenbs apangos “¢
orretex a
o=r-k-x 9
okex a
ont-x
‘andy amy uy 7 aun wens jo uonenbe om pus -Z
rmwpopSuumaaresi “a
sequins Awuseus amd vstx “D
aqui (Moone UE SI
soda iwsts
conn sr aymoys5 AA JOWPNM'D= PITH “T
‘yong‘jams om fo sup am pay “uD Z= dO
pu ub § BY HEY T dO POR Hod ew Mes ZY PEE JO "HIRO NHL ARTY MLL “st
2a oo
ea
340-8
en
90 pan 99.7208 aossonxo psoesaip pu Worssan2
98 por >,q.am stossaxico 2053 30 WO'1H POE THOR “81
har
1
sud
ov
are
at aon.
tama e ee
(+0-9)
= ose) uni = pSoy‘m ms 81H “ST
és0a
o 44
@ v
2 pi go sydd ayqssod 39 saous Burmoros 9 30H
‘z= so qd om suosandor29 ro on pee 7 = jo ye om Sosa 1D aT
a
°
a
y0<¢fs00—0 om
ocd un +0
ed ms0 509
gana og sa Suenos 9g} 30 Gong me Nesp uy sq pw IpINb UF aH 3 “ > 06 10} 900 = yo ei oon doen} M40 PHN FE
rod
> ‘a 9 Fp
10 9F
‘uo §1
? ™
oma
oct T
ena am Founoqy 130 A,
‘onnoadsar 0 = 4-39 poe | = 40am ey pow 7 sou sens omy suoneno se NS up OL “CE
460K
‘30 ye Kove aoe soo und Ame OE,
191 ebo sb yo ye yeas a,
“equimy yeare st
‘Gog sas Sumo OS
so sory Ras anya Sab pm Essa sea ogame pes ¥eg @ 27 “ie
‘auon29g
‘Baworsg a J0 HUN ‘Lz ROH O YogEBsLUADOIE- AED ore
»
x
Asoranis ang son 5p BHAT) 980 PH&
sin)
_2yeAinpesd saeeaioop euz0q fo qu
a 2
. —— . ke
@ v
#
4 (8) - o> vom eH IC “a
\ a
*
eee ees \-a097 Fe tst=0"7
‘etstnasn gaan roe toons neo AE HE
l= wor a
4 woyz
A wet “@
901° zt ¥
aL
8 ‘a 30 89] 2 pu WD Cf = 20
cos pu mo = 40 = gO ‘sou Breas om a9 paw gay ‘spa jo anus Amn 308 210] “OE
‘Do47 pra’.95 = 407 Wwe 0° = ¥407 ‘sennsadsas
rpm ‘yw ara om or BEN om a SG PUR Ou ‘xg ADF amma O ‘ANB ANT] “Fe
} a
aks : 2
4
”, aca
a9 caKe
oe x messtet
‘d¥ Jo 909 a9 PUL ZI = OY PUR 9=GO‘L=ad So ET sqydus “61
‘pasmodsan pam 3 3s HHO: Poe OY GY MMOL aU “EL ea” oat
Ceep 5 in seg Ky w senbypma a 30 pete pm ae eet OF
15 PoE 1 atm 6 Asp poe Ay ur pumoo ya) yenbuwe a jo sopMENTS
esx 2m SY + Y Bo] m sad two} a Kg Fousasdas 94 oo posnsroW ORE,
‘onus Jo my aprudam og pu axenbapae we Jo Jy apron am Uoouoq UOURATOA,
era
fe 9
ue 8
Tey
apm => oo
apm 5=0 3,
apm 6-20 8
neg pur = oy
f wp
(GYJosmone am ¢ + pm Z— xj sumsUOD eg pur Dam OE —H9 — a4 = VT
eD(or+e) “a
wo (ne4) y
se
ova aus um 7 >> 0p mos aod eto aayn Kara
Toy wa a9) an ram pon ance presence Pe ae ee
ve
0 0
70t- °O
>a
7 Vv
‘seu 251
qi’) = $¢— 4 + -ruonenbo aneipenb ayn 0 noes aM 2a HED BT “ee
o>o0>9 a
o<0>"
o>d:0<¢ &
o<20e8 V
vou 0 9 + Ag +3517 oun Bens ajo worenbs aj SY AR BT TE
ratwr=s ¢
ber 3
a
o-* ¥
ip equine Area amndw 51 1(¢~—) + (p~ 251 OqUMU OEE aq=I2T “IE
quonoes
sesnqucog eonuop! z put sift essreymbo (eantOD! gz JOESHCD MOIRA AIT oy
ann st Suymonoy 0930 oH Popes ase sasngmo Om ay
42009 0= +080) HSS (F~ 06) HZ
vopenbs axa soap moor ump Kms NOY .09E 50560204 “FCside jo pug
1 2 wa
ae 2
wt oe
ov
30 srupes mn py '9 = 79 DUR 02 ~ OD 11 BF HL
“pal ho siaoRue 3i9 am 3 pu Daya SmBU AM YL Ty
‘Da 30 wogenba x9 pus 04 406 nom UT a NOgE
ssucqpop PRION MN fg fot NH amp UH pa‘ayar eT Y"(G-* ¢) ale Y JO STEMS DU], “sy
oy sofa nam ya pur SERB
lo
8 r
é sc =o 00 90 = 451
ao + “oy pan xwoong woumas 2 ag sno ily an UB “OF
£ cee a
4 z
€ ou
a z
¢ Tames
a SEEM SARTORI
SE EI+9 BOL 08 9 soe JO SEA Pi
CEE OPN jo ones une a PE NERC PE “th aerial oat ae2021-2022/F/R.4/Mths./2/22 *
‘The real part of 2i7* + 3173 + 5i7* + 7475 is
A -3
a i
Cee
D. 10.
2 , which of the following are
Let 2 = 22% , where @ is a real number. If w, = +5 and we =
true?
1 wy isaxeal number.
TI, The real part of wz is equal to 0
TH. The imaginary part of z is equal to the imaginary part of +.
A. Tand only
B. Land Ill only
C. Wand It only
D, 1, Mand II
In the figure, the equation of the straight line L is ax+by+¢=0 . Which of the following are
true?
a y
L se L
mw ¢<0
ml. £<0 O =
A. [and only
B. TandIifonly
C. Iand II only
D. I, Wand WL
If the two straight lines ax—y+1=0 and 2x+3y+b=0 have infinitely many points of
intersection, find the values of a and_b.
A. Zand b
B, and b=
c and b=2021-2022/F/R Maths 2/23
In the figure, A, B and C are points on a rectangular coordinate plane. AC and BC are parallel
to the y-axis and x-axis respectively. If the coordinates of C are (1,—2) and the equation of the
straight line AB is x+2y—3=0 , find the distance between A and B.
ew >
a
o
a
‘The equation of the straight line Ly is x-+2y —6=0. The straight line Lz is perpendicular to Ly
and intersects L, at a point lying on the x-axis. Find the area of the triangular region bounded by Ly,
Iq andthe y-axis,
A. 12
B15
Cc. 45
D. 90
aand f are the roots of the equation 2x* ~ x + 2 = 0. The quadratic equation with two roots —* and
A. 2x?@-x4+2=0
BL 2x*+x—-2=0.
C. 2xt+x4+2=0.
D, 2x*-x-2=0.
The driving speed of Mr Chan is (x +$) km/h, He can drive 100 km in (x — 10) h. Find the value
of x.
A 10
B. 15
(csa20)
D. 2510.
i.
12,
2021-2022/8/F.4/Matbs./2/P.4
If the quadratic equation kx? + 8x + (8 — k) = 0 has one double real root, find the value of k.
A.
B.
ic
ene
D.
If g(x) = x3 + 2x? +2 , then g(—2) + g(2)
A. -12.
B. 0.
clea
D. 20.
Tf f(e—1) =x? + 2x-4 , then f(x) =
was.
x?42x-4.
oe >
xt +2x-3
xt 4x1
S
The figure shows the graph of y= —2x*+ax-+b, where a and b are constants. The
equation of the axis of symmetry of the graph is
” Bs? hax
AS ca peBttarth
5 ——s,
B. x=3 olf
CG xat,
2
Do x57.1B.
2021-2022/F/R A/Maths /2/PS
Ifthe minimum value of y = 4x? + 16x +d is —15, find the value of d.
At
B. 10
G12
D. 15
14. If 0 q > 0.If log(p + q) =x and log(p — q) = y, then log yp? — q
xy
ae
x
B. 2
C. fery
D. Jxy.
Which of the following is the greatest?
A. 23538
B. 3525%
cc. 523258
D. 53275
If 10% = 2 and 10” =7, then log2, =
A. b-a-2
B. b+a-2
>
Qs
>
dD =
9 9 BP
1
425.
2021-2022/8/R.A/Maths 2/P.8
The figure shows the graph of y =logax and the graph of y = logy. on the same rectangular
coordinate system, where a and b are positive constants. If a vertical line Z cuts the graph of
y =loggx , the x-axis and the graph of y = logy x at the points A, M and B respectively, which
Of the following are true?
Looa>i y
IL ab>1
rasta
m. f= logab
A. Land Il only 0
B, and IM only
C. Mand If only
D. 1, Mand Il
27.
The H.CF. and L.C.M. of three expressions are 2x*y? and 36x5y® respectively. If the first
expression and the second expression are 2x*y? and 12x°y? respectively, then the third expression
can be
AL 18x7y5 .
B. 18x5y,
C. 86x5y7.
D. 36x7y®2021-2022/R/R4/Maths./2/P.9
28. In the figure, OPSTQ is a quadrant. QS and PT intersect at R If P3:5P: FO +3, find
ZPRQ
P
‘A. 108° es,
B. 120°
Cc, 135°
D. 144° @ lO
29, Inthe figure, AB =8 cm, BC = 17 cm, ZABC = 90° and DCE
correct to 1 decimal place.
B
A. 39 cn
B. 4.9 om A
Cc 75 cm
D. 94am
ic
D
30. In the figure, ABCD is a circle. AC and BD intersect at £. It is given that AED = 82°
If AB =BC and BA // CD, then 2CBD =
A. 33°
B. 41°
Cc. 49°,
D. 57°
31. In the figure, AD is a diameter of the circle ABCD. It is given that PBCQ is a straight line.
If AD = 60 cm and BC = 48 cm, then AP +DQ
24 om
36 cm
48 cm.
60 cm.
eow>
S32.
33.
34,
35.
2021-2022/R/F.4/Maths/2/P.10 °
Inthe figure, ABE and DCE are straight lines. AB isa diameter of the circle and AD = CD .
If ZAED = 24°, find ZACD .
D
A. 33°
B, 36° G,
Cc. 38° 5
— A
D. 57°
In the figure, AD is the altitude of AABC . E and F are the points on AB and AC respectively
such that AB 1 DE and AC 1. DF . Which of the following are true?
4
1, AEDF is acyclic quadrilateral.
I. B,C, F and E areconoyclic.
Mil, If M isthe mid-point of AD , then M is the cireumcentre of AEF. F
2
Dp c
Tand II only
Land III only
Mand If only
1, Hand It
Soup
In the figure, O is the centre of the inscribed circle of AABC If 2AOB = 114°, find 2ACB
A. 33° a
a
In the figure, AD and CD are tangents to the circle at A and C respectively. AB is a inser of
the circle. AB produced and DC produced meet at F . If AD =15 cm and CE = 10 cm, then
A. Sem
B. 7.5 om.
Cc. 10m
D. 15 om
as
S36.
37.
38,
39.
2021-2022/R/R 4/Meaths./2/P.11
In the figure, two circles touch each other externally at one point, where A and B are the points of
contact. AB is the common tangent to the two circles. If the radius of the larger circle is 9 om and
AB = 12 cm, find the radius of the smaller circle.
A. 3om
B. 40m
C. 6 om
D. 7.5 cm
If sin@cos@ <0 , then @ may lie in quadrants
A. LorlV
B. Worlll.
Cc. Morlv.
D. Iorlv.
For 180° < 6 < 360°, the greatest value of 1 +3 sin(180° + @) — 4cos(270°— 6) is
pomp
ao
If A+B = 180°, which of the following must be true?
L sind=sinB
Il, cosA =sinB
UI. cosA = cosB
A. Tonly
B. only
C. Tend Ill only
D. Mand Il only
For 0° < @ < 360°, how many roots does the equation 2 sin@ = tan 0 have?
ae
he
C4
D. 5
END OF PAPER