CIASS1CA    MECHANICS                     Co3pgpe 2)
Ihe            denens io nal dy nani cal Systerms can have
                                     called tnttCycles
 I9olatod but doed stable orbits
 ohen certan     Conduttons are 9atr8ç1ed.
                      ctosod trayectory  tn phase 8pace having
   Limit Cycle ts a                     trajectorg sprals into
                     least one  other
the property that at                                     hehavour
                  abpioaches  nogattve 1nfinty. Some
 tt etther as tme      non lnear Systons
 ts exth btted tn Some
    Let x Ct)= (xtt),90)                                    closedosbt
                                 inutial Condition X(o) t3a
             Soutton xCt) oor an
        n an
   tor untque Vae otT,
           xCE) =X(t+T)0
        1S the     penodic totth pertod T
              perodic   &oluttons s ufrCiently close to t eAst
     NO Other
     that the  perrodic  obbit ls an tso latod one In limttcycte.
  So
            lum1t Cycle approaches t>0 (or) t’-o
        The
      nearby tiayectories approach a lumit cycle as t
   Lf
   tt lS    SaLd to be stable.
  L t > - o , It ts Said
                         to be nstable.
                              pernodc attractor.
     Astable tmit cy cle ts a
  EXample):
                             ltmit ycle 1s that op the
                        of a
        ASimple example
               pendulum             motton.
  uwatl -clock                                  between
                                     the batana
              Cyctte motOn 19 due to
          The                             tastana).
         -excttatten and dampung (ar
tie &els
Xamplea:
                          provided by tho van der pol   oscllater
Another eKample         9
                          the Vaun der pol model 0f an electrtcal
Cohich represents
             a trido  Valve, the reststan co propesty of tohch
CrCut with
Changes cotth Cuwent)
 tohen     -0
     y=0        )
      Sub @en
         -0
     (x, y) (o,o)
                    b     d
                     d    dy
 J
                                                                    AI
                                                                    QUad
                                                                    cam
                                   b-bx
      -= - 2by -1)                                             Y5O
                                                               on
                                 =b.
                                                               Shot
  m-AT
   --A(b-A)+1
   =A-btl.
  The singular potnt E: (0,0) s a tunctton of the co nbro
  Parameter bin the range C-oo,o) ky anaysing the gorm
  O6       tho ergen Values A4
Rererence:
                                  Com
       *     wwW, g CIRDce dirct.                  9xDJD9x0-t-yz33
                  You ta.be /qrVsc JwDp Bo? s; =
       * https: /
                  phys. It bretexts Ora
       * bttps: l
                                                                 AI
                                                                 QUad
                                                                 cam
                                                               Shot
                                                               on
                                                               Y5O