Surgical humidification
Surgical humidification is the conditioning of insufflation gas with water vapour (humidity) and heat
during surgery. Surgical humidification is used to reduce the risk of tissue drying and evaporative
cooling.
Laparoscopic surgery humidification
During laparoscopy (laparoscopic surgery or minimally invasive surgery), it is necessary to insufflate the
abdominal cavity (i.e. inflate the abdomen like a balloon) with medical-grade carbon dioxide (CO2) to
create a viewing and working space for the surgery. The CO2 may be unconditioned, or conditioned with
heat, or with humidification and heat. During insufflation, the peritoneum (an extensive delicate
membrane that lines the abdominal cavity and covers most of the abdominal organs) is exposed to the
CO2.
Unconditioned medical-grade CO2 has virtually no moisture[1] and enters the abdomen at room
temperature (19 to 21 °C).[2] The condition of the gas is dry and cold compared to that of the natural
physiological state of the peritoneum which is immersed in fluid at body temperature (37 °C).
Experimental and clinical investigations have demonstrated that insufflation with unconditioned CO2
causes evaporation of the fluid and drying of the peritoneum, resulting in inflammation and damage to its
cells.[3][4][5] Clinically, peritoneal injury caused by drying has been linked to post-operative pain,[6][7][8]
evaporative cooling resulting in a decrease in core temperature and increased risk of intra-operative
hypothermia,[7][9][10][11][12] as well as adhesion formation.[4][13]
In addition, animal studies have revealed that surgical humidification reduces peritoneal tumor
implantation and tumor load [14][15] suggesting a possible benefit in cancer patients undergoing
abdominal surgery.
Conditioning the CO2 with only heat causes tissue drying.[16] Warmer gas has a greater capacity for
evaporation as the gas can hold more water vapor, therefore the tissues will dry faster than when
unconditioned gas is used, potentially leading to increased adverse consequences.[17][18][19] Conditioning
the CO2 with humidity, in combination with heat, has been shown to decrease peritoneal damage by
reducing the capacity of CO2 to carry moisture away from the tissue.[3][4] Temperature loss during
surgery, due to tissue drying, can be prevented by adequately humidifying and heating the
CO2.[4][6][7][10][13][20]
Open (abdominal) surgery humidification
During open surgery the surgeon exposes the peritoneal cavity to the ambient air. Exposure to ambient air
results in evaporation and cooling. Current studies have shown that the use of surgical humidification
during open abdominal surgery (laparotomy) have warmer core body temperatures and reduced risk of
operative hypothermia.[21][22] As with any operation, maintaining patient normothermia is a critical
process to prevent surgical site infections, additional respiratory distress and surgical bleeding.[23][24]
Respiratory humidification during surgery
Anesthesia causes vasodilatation, which increases blood flow to the surface of the body and thus
increases heat loss from the body. During anesthesia, blood flow to the surface may maintain skin
temperature (which is normally lower than the core temperature), even while the core temperature is
falling.[25] Barring preventive interventions, hypothermia occurs in more than half of all surgical patients
undergoing anesthesia.[26]
The risk of a loss of body temperature and hypothermia increase with the duration of surgery, especially
for surgery that lasts more than one hour. Surgical hypothermia, defined as a core temperature below
36.0 °C, is associated with increased risk of infectious and non-infections complications,[27] longer post-
operative ICU and overall hospital recovery, and more frequent requirement of transfusions.[28][29]
Elderly persons, especially those with lower muscle and body mass are at greater risk of hypothermia.[30]
Respiratory humidification during surgery helps maintain body temperature and normal function of the
respiratory mucosa.[31][32] In the same way that some animals pant to lose excess body heat, heat is lost
through the lungs during mechanical or assisted ventilation. Heated humidification of respiratory gases
during surgery has been demonstrated to reduce the fall in core body temperature, especially in surgeries
lasting longer than one hour. The lungs can be insufflated with respiratory gases that are heated to near
body temperature and humidified to 90 to 100% relative humidity(RH). Normally, air in the lungs is at
core body temperature and at close to 100% RH. Especially when cold dry gases (such as anhydrous
compressed gas from oxygen tanks) are used, it cool and can dry the airway. The body then utilizes
energy to evaporate sufficient water from the lungs to maintain lung gas temperature and humidity. It is
generally estimated that 10 percent of the loss of body heat during surgery is from the respiratory
tract.[33] Especially in open surgery (rather than endoscopic/robotic surgery), respiratory humidification
can be used in concert with forced air warming blankets or gowns, warmed IV, and irrigation fluids to
prevent hypothermia.
References
 1. United States Pharmacopoeia and the National Formulary Supplements. 26-NF 21. 3rd ed
    (United States Pharmacopeial Convention: 2003, NJ). 2003. {{cite journal}}: Missing
    or empty |title= (help)
 2. Puttick, M; Scott-Coombes D; Dye J; Nduka C; Menzies-Gow N; Mansfield A; Darzi A
    (1999). "Comparison of immunologic and physiologic effects of CO2 pneumoperitoneum at
    room and body temperatures". Surg Endosc. 13 (6): 572–575. doi:10.1007/s004649901043
    (https://doi.org/10.1007%2Fs004649901043). PMID 10347293 (https://pubmed.ncbi.nlm.nih.
    gov/10347293). S2CID 21301841 (https://api.semanticscholar.org/CorpusID:21301841).
 3. Erikoglu, M; Yol S; Avunduk MC; Erdemli E; Can A (2005). "Electron-microscopic alterations
    of the peritoneum after both cold and heated carbon dioxide pneumoperitoneum". J Surg
    Res. 125 (1): 73–77. doi:10.1016/j.jss.2004.11.029 (https://doi.org/10.1016%2Fj.jss.2004.1
    1.029). PMID 15836853 (https://pubmed.ncbi.nlm.nih.gov/15836853).
 4. Peng, Y; Zheng M; Ye Q; Chen X; Yu B; Liu B (2009). "Heated and humidified CO2 prevents
    hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged
    laparoscopic insufflations". J Surg Res. 151 (1): 40–47. doi:10.1016/j.jss.2008.03.039 (http
    s://doi.org/10.1016%2Fj.jss.2008.03.039). PMID 18639246 (https://pubmed.ncbi.nlm.nih.go
    v/18639246).
 5. Volz, J; Koster S; Spacek Z; Paweletz N (1999). "Characteristic alterations of the
    peritoneum after carbon dioxide pneumoperitoneum". Surg Endosc. 13 (6): 611–614.
    doi:10.1007/s004649901052 (https://doi.org/10.1007%2Fs004649901052). PMID 10347302
    (https://pubmed.ncbi.nlm.nih.gov/10347302). S2CID 22338506 (https://api.semanticscholar.
    org/CorpusID:22338506).
 6. Mouton, W G; Bessell JR; Otten KT; Maddern GJ (1999). "Pain after laparoscopy". Surg
    Endosc. 13 (5): 445–448. doi:10.1007/s004649901011 (https://doi.org/10.1007%2Fs004649
    901011). PMID 10227938 (https://pubmed.ncbi.nlm.nih.gov/10227938). S2CID 21450398 (h
    ttps://api.semanticscholar.org/CorpusID:21450398).
 7. Sajid, M; Mallick A; Rimpel J; Bokari S; Cheek E; Baig M (2008). "Effect of heated and
    humidified carbon dioxide on patients after laparoscopic procedures: a meta-analysis". Surg
    Laparosc Endosc Percutan Tech. 18 (6): 539–546. doi:10.1097/SLE.0b013e3181886ff4 (htt
    ps://doi.org/10.1097%2FSLE.0b013e3181886ff4). PMID 19098656 (https://pubmed.ncbi.nl
    m.nih.gov/19098656). S2CID 5927215 (https://api.semanticscholar.org/CorpusID:5927215).
 8. Wills, VL; Hunt DR (2000). "Pain after laparoscopic cholecystectomy" (https://doi.org/10.104
    6%2Fj.1365-2168.2000.01374.x). Br J Surg. 87 (3): 539–546. doi:10.1046/j.1365-
    2168.2000.01374.x (https://doi.org/10.1046%2Fj.1365-2168.2000.01374.x).
    PMID 10718794 (https://pubmed.ncbi.nlm.nih.gov/10718794). S2CID 313322 (https://api.se
    manticscholar.org/CorpusID:313322).
 9. Bessel, J; Karatassas A; Patterson J; Jamieson G; Maddern G (1995). "Hypothermia
    induced by laparoscopic insufflation. A randomized study in a pig model". Surg Endosc. 9
    (7): 791–796. doi:10.1007/bf00190083 (https://doi.org/10.1007%2Fbf00190083).
    PMID 7482186 (https://pubmed.ncbi.nlm.nih.gov/7482186). S2CID 11045850 (https://api.se
    manticscholar.org/CorpusID:11045850).
10. Bessell, J; Ludbrook G; Millard S; Baxter P; Ubhi S; Maddern G (1999). "Humidified gas
    prevents hypothermia induced by laparoscopic insufflation: a randomized controlled study in
    a pig model". Surg Endosc. 13 (2): 101–105. doi:10.1007/s004649900914 (https://doi.org/1
    0.1007%2Fs004649900914). PMID 9918606 (https://pubmed.ncbi.nlm.nih.gov/9918606).
    S2CID 10775676 (https://api.semanticscholar.org/CorpusID:10775676).
11. Noll, E; Schaeffer R; Joshi G; Diemunsch S; Koessler S; Diemunsch P (2012). "Heat loss
    during carbon dioxide insufflation: comparison of a nebulization based humidification device
    with a humidification and heating system". Surg Endosc. 26 (12): 3622–5.
    doi:10.1007/s00464-012-2385-2 (https://doi.org/10.1007%2Fs00464-012-2385-2).
    PMID 22722768 (https://pubmed.ncbi.nlm.nih.gov/22722768). S2CID 22446856 (https://api.
    semanticscholar.org/CorpusID:22446856).
12. Sammour, T; Kahokehr A; Hill AG (2008). "Meta-analysis of the effect of warm humidified
    insufflation on pain after laparoscopy" (https://doi.org/10.1002%2Fbjs.6304). Br J Surg. 95
    (8): 950–956. doi:10.1002/bjs.6304 (https://doi.org/10.1002%2Fbjs.6304). PMID 18618870
    (https://pubmed.ncbi.nlm.nih.gov/18618870). S2CID 21554055 (https://api.semanticscholar.
    org/CorpusID:21554055).
13. Binda, M; Molinas C; Hansen P; Koninckx P (2006). "Effect of desiccation and temperature
    during laparoscopy on Adhesion formation in mice". Fertil Steril. 86 (166–175): 166–75.
    doi:10.1016/j.fertnstert.2005.11.079 (https://doi.org/10.1016%2Fj.fertnstert.2005.11.079).
    PMID 16730008 (https://pubmed.ncbi.nlm.nih.gov/16730008).
14. Binda, Maria Mercedes; Corona, Roberta; Amant, Frederic; Koninckx, Philippe Robert
    (2014-07-01). "Conditioning of the abdominal cavity reduces tumor implantation in a
    laparoscopic mouse model" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055846).
    Surgery Today. 44 (7): 1328–1335. doi:10.1007/s00595-014-0832-5 (https://doi.org/10.100
    7%2Fs00595-014-0832-5). ISSN 1436-2813 (https://search.worldcat.org/issn/1436-2813).
    PMC 4055846 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055846). PMID 24452508
    (https://pubmed.ncbi.nlm.nih.gov/24452508).
15. Carpinteri, Sandra; Sampurno, Shienny; Bernardi, Maria-Pia; Germann, Markus; Malaterre,
    Jordane; Heriot, Alexander; Chambers, Brenton A.; Mutsaers, Steven E.; Lynch, Andrew C.
    (2015-12-01). "Peritoneal Tumorigenesis and Inflammation are Ameliorated by Humidified-
    Warm Carbon Dioxide Insufflation in the Mouse" (https://www.ncbi.nlm.nih.gov/pmc/articles/
    PMC4687477). Annals of Surgical Oncology. 22 Suppl 3 (1534–4681): 1540–1547.
    doi:10.1245/s10434-015-4508-1 (https://doi.org/10.1245%2Fs10434-015-4508-1).
    PMC 4687477 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687477). PMID 25794828
    (https://pubmed.ncbi.nlm.nih.gov/25794828).
16. Davey, Andrew K.; Hayward, Jessica; Marshall, Jean K.; Woods, Anthony E. (2013-01-01).
    "The effects of insufflation conditions on rat mesothelium" (https://www.ncbi.nlm.nih.gov/pm
    c/articles/PMC3707227). International Journal of Inflammation. 2013 (2090–8040): 816283.
    doi:10.1155/2013/816283 (https://doi.org/10.1155%2F2013%2F816283). PMC 3707227 (htt
    ps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707227). PMID 23864985 (https://pubmed.ncb
    i.nlm.nih.gov/23864985).
17. Benavides, Richard; Wong, Alvin; Nguyen, Hoang (2009-09-01). "Improved outcomes for
    lap-banding using the Insuflow device compared with heated-only gas" (https://www.ncbi.nl
    m.nih.gov/pmc/articles/PMC3015987). Journal of the Society of Laparoendoscopic
    Surgeons. 13 (3): 302–305. ISSN 1086-8089 (https://search.worldcat.org/issn/1086-8089).
    PMC 3015987 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015987). PMID 19793466
    (https://pubmed.ncbi.nlm.nih.gov/19793466).
18. Bessel, J; Maddern G (1998). "Influence of Gas Temperature During Laparoscopic
    Procedures". The Pathophysiology of Pneumoperitoneum. pp. 18–27. doi:10.1007/978-3-
    642-60290-0_3 (https://doi.org/10.1007%2F978-3-642-60290-0_3). ISBN 978-3-642-64339-
    2.
19. Wills, V; Hunt D; Armstrong A (2001). "A randomized controlled trial assessing the effect of
    heated carbon dioxide for insufflation on pain and recovery after laparoscopic
    fundoplication". Surg Endoscopy. 15 (2): 166–170. doi:10.1007/s004640000344 (https://doi.
    org/10.1007%2Fs004640000344). PMID 11285961 (https://pubmed.ncbi.nlm.nih.gov/11285
    961). S2CID 8073491 (https://api.semanticscholar.org/CorpusID:8073491).
20. Hazebroek, Eric J.; Schreve, Michiel A.; Visser, Pim; De Bruin, Ron W. F.; Marquet, Richard
    L.; Bonjer, H. Jaap (2002-10-01). "Impact of temperature and humidity of carbon dioxide
    pneumoperitoneum on body temperature and peritoneal morphology". Journal of
    Laparoendoscopic & Advanced Surgical Techniques. Part A. 12 (5): 355–364.
    doi:10.1089/109264202320884108 (https://doi.org/10.1089%2F109264202320884108).
    ISSN 1092-6429 (https://search.worldcat.org/issn/1092-6429). PMID 12470410 (https://pub
    med.ncbi.nlm.nih.gov/12470410).
21. Frey, Joana M.; Janson, Martin; Svanfeldt, Monika; Svenarud, Peter K.; van der Linden, Jan
    A. (2012-11-01). "Local insufflation of warm humidified CO₂increases open wound and core
    temperature during open colon surgery: a randomized clinical trial" (https://doi.org/10.1213%
    2FANE.0b013e31826ac49f). Anesthesia and Analgesia. 115 (5): 1204–1211.
    doi:10.1213/ANE.0b013e31826ac49f (https://doi.org/10.1213%2FANE.0b013e31826ac49f).
    ISSN 1526-7598 (https://search.worldcat.org/issn/1526-7598). PMID 22886839 (https://pub
    med.ncbi.nlm.nih.gov/22886839). S2CID 2331327 (https://api.semanticscholar.org/CorpusI
    D:2331327).
22. Frey, Joana M. K.; Janson, Martin; Svanfeldt, Monika; Svenarud, Peter K.; van der Linden,
    Jan A. (2012-11-01). "Intraoperative local insufflation of warmed humidified CO₂ increases
    open wound and core temperatures: a randomized clinical trial". World Journal of Surgery.
    36 (11): 2567–2575. doi:10.1007/s00268-012-1735-5 (https://doi.org/10.1007%2Fs00268-0
    12-1735-5). ISSN 1432-2323 (https://search.worldcat.org/issn/1432-2323). PMID 22868970
    (https://pubmed.ncbi.nlm.nih.gov/22868970). S2CID 8312155 (https://api.semanticscholar.or
    g/CorpusID:8312155).
23. Baucom, Rebeccah B.; Phillips, Sharon E.; Ehrenfeld, Jesse M.; Muldoon, Roberta L.;
    Poulose, Benjamin K.; Herline, Alan J.; Wise, Paul E.; Geiger, Timothy M. (2015-06-01).
    "Association of Perioperative Hypothermia During Colectomy With Surgical Site Infection" (h
    ttps://doi.org/10.1001%2Fjamasurg.2015.77). JAMA Surgery. 150 (6): 570–575.
    doi:10.1001/jamasurg.2015.77 (https://doi.org/10.1001%2Fjamasurg.2015.77). ISSN 2168-
    6262 (https://search.worldcat.org/issn/2168-6262). PMID 25902410 (https://pubmed.ncbi.nl
    m.nih.gov/25902410).
24. Rajagopalan, Suman; Mascha, Edward; Na, Jie; Sessler, Daniel I. (2008-01-01). "The
    effects of mild perioperative hypothermia on blood loss and transfusion requirement" (http
    s://doi.org/10.1097%2F01.anes.0000296719.73450.52). Anesthesiology. 108 (1): 71–77.
    doi:10.1097/01.anes.0000296719.73450.52 (https://doi.org/10.1097%2F01.anes.000029671
    9.73450.52). ISSN 1528-1175 (https://search.worldcat.org/issn/1528-1175).
    PMID 18156884 (https://pubmed.ncbi.nlm.nih.gov/18156884).
25. Hyungseok Seo; Kyungmi Kim; Eun-a Oh; Yeon-jin Moon; Young-Kug Kim; Jai-Hyun Hwang
    (2016). "Effect of electrically heated humidifier on intraoperative core body temperature
    decrease in elderly patients: a prospective observational study" (https://doi.org/10.17085%2
    Fapm.2016.11.2.211). Anesth Pain Med. 2013 (11): 211–216.
    doi:10.17085/apm.2016.11.2.211 (https://doi.org/10.17085%2Fapm.2016.11.2.211).
26. Young VL, Watson ME (September–October 2006). "Prevention of perioperative
    hypothermia in plastic surgery" (https://doi.org/10.1016%2Fj.asj.2006.08.009). Aesthet Surg
    J. 5 (26): 551–71. doi:10.1016/j.asj.2006.08.009 (https://doi.org/10.1016%2Fj.asj.2006.08.0
    09). PMID 19338943 (https://pubmed.ncbi.nlm.nih.gov/19338943).
27. Ziolkowski N; Rogers AD; Xiong W; Hong B; Patel S; Trull B; Jeschke MG (December 2017).
    "The impact of operative time and hypothermia in acute burn surgery" (https://www.ncbi.nlm.
    nih.gov/pmc/articles/PMC7865205). Burns. 43 (8): 1673–1681.
    doi:10.1016/j.burns.2017.10.001 (https://doi.org/10.1016%2Fj.burns.2017.10.001).
    PMC 7865205 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865205). PMID 29089204
    (https://pubmed.ncbi.nlm.nih.gov/29089204).
28. Mahoney CB; Odom J. (April 1999). "Maintaining intraoperative normothermia: A meta-
    analysis of outcomes with costs". AANA Journal. 67 (2): 155–63. PMID 10488289 (https://pu
    bmed.ncbi.nlm.nih.gov/10488289).
29. Kurz A, Sessler DI, Lenhardt R (May 9, 1996). "Perioperative normothermia to reduce the
    incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection
    and Temperature Group" (https://doi.org/10.1056%2FNEJM199605093341901). N Engl J
    Med. 334 (19): 1209–15. doi:10.1056/NEJM199605093341901 (https://doi.org/10.1056%2F
    NEJM199605093341901). PMID 8606715 (https://pubmed.ncbi.nlm.nih.gov/8606715).
30. Yi J, Lei Y, Xu S, et al. (June 8, 2017). "Intraoperative hypothermia and its clinical outcomes
    in patients undergoing general anesthesia: National study in China" (https://www.ncbi.nlm.ni
    h.gov/pmc/articles/PMC5464536). PLOS ONE. 12 (6): 0177221.
    Bibcode:2017PLoSO..1277221Y (https://ui.adsabs.harvard.edu/abs/2017PLoSO..1277221
    Y). doi:10.1371/journal.pone.0177221 (https://doi.org/10.1371%2Fjournal.pone.0177221).
    PMC 5464536 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464536). PMID 28594825
    (https://pubmed.ncbi.nlm.nih.gov/28594825).
31. Park HG, Im JS, Park JS, Joe JK, Lee S, Yon JH, Hong KH (July 2009). "A comparative
    evaluation of humidifier with heated wire breathing circuit under general anesthesia" (https://
    doi.org/10.4097%2Fkjae.2009.57.1.32). Korean J Anesthesiol. 57 (1): 32–37.
    doi:10.4097/kjae.2009.57.1.32 (https://doi.org/10.4097%2Fkjae.2009.57.1.32).
    PMID 30625827 (https://pubmed.ncbi.nlm.nih.gov/30625827).
32. Han SB, Gwak MS, Choi SJ, Kim MH, Ko JS, Kim GS, Joo HS (January–February 2013).
    "Effect of active airway warming on body core temperature during adult liver
    transplantation". Transplant. Proc. 45 (1): 251–4. doi:10.1016/j.transproceed.2012.05.088 (h
    ttps://doi.org/10.1016%2Fj.transproceed.2012.05.088). PMID 23375310 (https://pubmed.nc
    bi.nlm.nih.gov/23375310).
33. Sullivan G, Edmondson C (2008). "Heat and Temperature" (https://doi.org/10.1093%2Fbjace
    accp%2Fmkn014). Continuing Education in Anaesthesia, Critical Care & Pain. 8 (3): 104–
    107. doi:10.1093/bjaceaccp/mkn014 (https://doi.org/10.1093%2Fbjaceaccp%2Fmkn014).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Surgical_humidification&oldid=1300777717"