Problem 1:
Shannon's Capacity Formula
The formula is:
$$ C = B \cdot \log_2(1 + \text{SNR}) $$
Where:
• ( C ) is the channel capacity in bits per second (bps)
• ( B ) is the bandwidth in Hz
• ( \text{SNR} ) is the signal-to-noise ratio (expressed as a unitless ratio, not in
decibels)
1 — Given SNR = 24 dB
1. Convert SNR from dB to ratio:
$$ \text{SNR} = 10^{\frac{24}{10}} = 251.19 $$
2. Apply Shannon's formula:
$$ C = 2 \times 10^6 \cdot \log_2(1 + 251.19) $$
Use a calculator for the log:
• ( \log_2(1 + 251.19) \approx \log_2(252.19) \approx 7.98 )
So:
$$ C \approx 2 \times 10^6 \cdot 7.98 \approx 15.96 , \text{Mbps} $$
Maximum data rate ≈ 15.96 Mbps
2 — SNR increases to 30 dB
1. Convert SNR to ratio:
$$ \text{SNR} = 10^{\frac{30}{10}} = 1000 $$
2. Apply the formula:
$$ C = 2 \times 10^6 \cdot \log_2(1 + 1000) $$
• ( \log_2(1001) \approx 9.97 )
So:
$$ C \approx 2 \times 10^6 \cdot 9.97 \approx 19.94 , \text{Mbps} $$
Maximum data rate ≈ 19.94 Mbps
Summary Table
SNR (dB) SNR (Ratio) Max Data Rate
24 dB 251.19 ~15.96 Mbps
30 dB 1000 ~19.94 Mbps
Problem 2:
Problem 2: Sliding Window Protocol Performance
Given:
Parameter Value
Window size 4 frames
Frame size 1000 bytes = 8000 bits
Bandwidth 1 Mbps
RTT 100 ms = 0.1 sec
Part 1: Link Utilization
To calculate link utilization (U), we use:
$$ U = \frac{W \cdot T_f}{RTT + T_f} $$
Where:
• ( T_f ) = transmission time per frame = ( \frac{\text{Frame size}}{\text{Bandwidth}} )
So:
$$ T_f = \frac{8000}{10^6} = 0.008 \text{ seconds} $$
Then:
$$ U = \frac{4 \cdot 0.008}{0.1 + 0.008} = \frac{0.032}{0.108} \approx 0.296 $$
Utilization ≈ 29.6%
Part 2: Window Size for Maximum Utilization
To maximize utilization, set:
$$ U = 1 = \frac{W \cdot T_f}{RTT + T_f} $$
Solving for ( W ):
$$ W = \frac{RTT + T_f}{T_f} = \frac{0.108}{0.008} = 13.5 $$
Since we can't send a fraction of a frame, round up:
Optimal Window Size = 14
Summary
Window Size Utilization
4 ~29.6%
14 ~100%