Operations on Polynomial Functions - Multiple Choice Test
1. If f(x) =(3x² + 5x - 7) and g(x) (4x² - 2x + 9) Simplify: f(x)+g(x)
a) 7x² + 3x + 2 b) 7x² + 7x + 16 c) 7x² + 3x + 16 d) 7x²
- 3x + 2
2. If h(x)=(5x³ - 2x² + 4) and t(x)= (3x³ + 4x - 7) , what is h(x)-t(x)?
a) 2x³ - 2x² - 4x + 11 b) 2x³ - 2x² + 4x - 11
c) 8x³ + 2x² - 4x + 11 d) 2x³ + 2x² - 4x - 11
3. If n(x)= (x + 3) and m(x) = (x² - 3x + 5), find n(x)·m(x).
a) x³ + 3x² - 9x + 15 b) x³ + 3x² - 9x + 5
c) x³ - 3x² + 5x + 3 d) x³ - 9x² + 3x + 5
4. If z(x)= (2x - 1), what is z(-2)?
a) -5 b) 5 c) 1 d) -1
5. Divide using synthetic division: x³ - 4x² + 5x - 2 ÷ (x - 2)
a) x² - 2x + 1 remainder 0 b) x² - 2x + 1 remainder 0
c) x² - 2x + 1 remainder 0 d) x² - 2x + 1 remainder 0
6. Which of the following represents the degree of (x² + 1)(x³ - 2x + 4)?
a) 2 b) 3 c) 5 d) 6
7. Add: (4x⁴ - 3x³ + 2x - 1) + (-x⁴ + 5x³ - 6x + 7)
a) 3x⁴ + 2x³ - 4x + 6 b) 5x⁴ + 2x³ - 4x + 6
c) 3x⁴ + 2x³ + 4x + 6 d) 3x⁴ + 8x³ - 4x - 6
8. Multiply: (x + 4)(x - 4)
a) x² + 16 b) x² - 16 c) x² - 8x + 16 d) x² + 8x - 16
9. Evaluate f(x) = x³ - 2x + 1 when x = -2
a) –3 b) –7 c) –5 d) –9
10. If f(x) = 3x² - 2x + 4 and g(x) = x - 5, find (f + g)(x)
a) 3x² - x – 1 b) 3x² - x + 9 c) 3x² - 3x – 1 d) 3x² - 3x + 9