Integration
Integration
Pinaki Pal
                                   Department of Mathematics
                             National Institute of Technology Durgapur
                                        West Bengal, India
                                  pinaki.pal@maths.nitdgp.ac.in
                                  ˆ                                          n
                                                                             X
                                        f (z)dz = lim                                f (ζk )(zk − zk −1 ).
                                    C                       ||P||→0
                                                                             k =1
                                                                                                  ˛
    If C is a closed path the integral is denoted by                                                       f (z)dz.
                                                                                                      C
Theorem
    If f is continuous on a contour C, then f is integrable along C.
    If f = u + iv is continuous on a contour C : z(t) = x(t) + iy (t), t ∈ [a, b] then
                            ˆ                 ˆ b                            ˆ b                      ˆ b
                                                             0
                                  f (z)dz =         f (z(t))z (t)dt =              (udx − vdy ) + i         (vdx + udy ).
                              C                a                              a                        a
                                                ˆ                ˆ b                   ˆ bq
                                                                         0
                                      L(C) :=           |dz| =         |z (t)|dt =            x 2 (t) + y 2 (t) dt
                                                    C             a                     a
          ˆ              ˆ                 ˆ
                 dz            |dz|      1           1         2π
               2
                       =      2
                                      ≤      |dz| = × 4π =        .
           C z + 10       C |z + 10|     6 C         6          3
                        ˆ
Example: Find                  3z 2 dz from z = 0 to z = 4 + 2i along the curve C
                           C
given by
(a) z(t) = t 2 + it             (b) the line from z = 0 to 2i and then line from
z = 2i to 4 + 2i.
Solution: Let f (z) = 3z 2 and F (z) = z 3 . Then F 0 (z) = f (z). Thus
               ˆ
                  3z 2 dz = F (4 + 2i) − F (0) = (4 + 2i)3
                         C
Proof:
     Let f (z) = u(x, y ) + iv (x, y ). By C-R equation, we have
     ux = vy , & uy = −vx for x, y ∈ D.
     Since f 0 (z) = ux + ivx is continuous, all these partial derivatives are
     continuous.
     Let C be a simple closed contour.
     Then by Green’s Theorem
      ˆ             ˆ                      ˆ                 ˆ
         f (z) dz = (u + iv )(dx + idy ) = (udx − vdy ) + i (vdx + udy )
       C
                    ¨C                     ¨C                 C
Corollary
Let f be analytic ˆin a simply connected domain D and a ∈ D. Then the
                             z
function F (z) =                 f (ξ) dξ, z ∈ D is analytic in D such that F 0 (z) = f (z) for
                         a
all z ∈ D.
   ˆ
   But            ˆ              ˆ
      f (z) dz =      f (z) dz +      f (z) dz =
   ˆC             ˆC1             −C2
       f (z) dz −      f (z) dz
    C1                  C2
           ˆ                   ˆ
   Thus           f (z) dz =        f (z) dz.
             C1                C2
   Pinaki Pal (NIT Durgapur)            MA331; Odd Semester, 2022-23          11 / 84
Cauchy’s Theorem
Remark-2: Suppose that f (z) is analytic
                                   ˆ in a multiply connected domain D
and on its boundary C. Then we have                                        f (z) dz = 0, where the integration is
                                                                  C
performed along C in the positive sense.
                                                   ‰                 n ‰
                                                                     X
                                                        f (z) dz =             f (z) dz
                                                    C                k =1 Ck
Solution:
       If a lies outside C then 1/(z − a)n is analytic inside and on C.
                               ‰
                                     dz
       By Cauchy’s theorem                  = 0.
                                C (z − a)n
     We know that
                           ‰                      (
                                      dz              2πi,   n=1
                                              =
                             C0    (z − a)n           0,     n 6= 1
     Thus
                            ‰                     (
                                     dz               2πi, n = 1
                                              =
                               C   (z − a)n           0,   n=6 1
                                                               ez
(b)    Let C : |z| = 1 and so z = 2 lies outside C. If f (z) =     then
                                                             z −2
f (z) is analytic within and on C. Then by Cauchy’s integral theorem
                        ˛            ˛
                             ez
                                dz =    f (z) dz = 0.
                         C z −2       C
                                        1             1             1
                                    =     × 2πif (2) − × 2πif (−1) − × 2πif 0 (−1)
                                        9             9             3
                                        2πi 2                  2πi 2
                                    =      (e − e−1 − 3e−1 ) =    (e − 4e−1 )
                                         9                      9
   Pinaki Pal (NIT Durgapur)             MA331; Odd Semester, 2022-23                   21 / 84
Cauchy’s Integral
               ˛ Formula
                                        z +4
Example: Evaluate                                dz where C is the circle
                               C   z2   + 2z + 5
|z + 1 − i| = 2.
Solution: The integrand is not analytic at z = −1 ± 2i. Note that the
point −1 + 2i lies inside C and the point −1 − 2i lies outside C.
            z +4
Let f (z) =          . Then f (z) is analytic within and on C.
          z + 1 + 2i
Then by Cauchy’s integral formula we have
      ˛                     ˛
            z +4                           z +4
          2
                       dz =                               dz
       C z + 2z + 5           C (z + 1 + 2i)(z + 1 − 2i)
                            ˛
                                     f (z)
                          =                   dz = 2πi f (−1 + 2i)
                              C (z + 1 − 2i)
                                                 −1 + 2i + 4      π
                                        = 2πi                    = (3 + 2i).
                                                −1 + 2i + 1 + 2i  2
                                                     Mn!
                                     |f (n) (a)| ≤       , n ∈ N.
                                                     rn
Proof: By Cauchy integral formula for derivatives, we have
                        ˛
            (n)      n!        f (z)
           f (a) =                     dz, C : |z − a| = r
                    2πi     (z − a)n+1
                                       C
Then
                         ˛                                      ˛
     (n)          n!             |f (z)|           Mn!                           Mn!         Mn!
|f         (a)| ≤                      n+1
                                           |dz| ≤                      |dz| =           2πr = n .
                  2π          |z − a|             2πr n+1                       2πr n+1       r
                         C                                      C
Proof:
    Let f (z) be a bounded entire function.
    Then there exists a positive constant M such that |f (z)| ≤ M for all
    z ∈ C.
    Let a be any point of the complex plane and C be the
    circumference of the circle |z − a| = R.
                                                           M
    Then, by Cauchy’s inequality, we have |f 0 (a)| ≤ .
                                                           R
    Since f (z) is an entire function, R may be taken arbitrarily large
    and, therefore, |f 0 (a)| ≤ M
                                R → 0 as R → ∞.
    Thus f 0 (a) = 0. Since a is arbitrary, f 0 (z) = 0 for all z ∈ C.
    Thus f is constant.
Example:
    The function sin z is an entire function and it is not bounded.
    The function cos z is an entire function and it is not bounded.
  Pinaki Pal (NIT Durgapur)   MA331; Odd Semester, 2022-23            26 / 84
Power Series
    A series of the form
                  ∞
                  X
                         an (z − a)n = a0 + a1 (z − a) + a2 (z − a)2 + · · ·
                  n=0
No general statement can be made about the convergence of a power series on the circle of convergence.
We write R = ∞ if the power series convergence for all z ∈ C and R = 0 if the power series convergence only at z = a.
                 1       an+1         n!           1
                   = lim      = lim         = lim      = 0.
                 R  n→∞   an   n→∞ (n + 1)!  n→∞ n + 1
Thus the radius of convergence is R = ∞ and the series converges for all
z ∈ C.
                                                            ∞
                                                            X      n
Example: Find the radius of convergence of the power series       2
                                                                         zn.
                                                               4n + 1
                                                                       n=0
                       n
Solution: Here an =   2
                           and a = 0. Then
                    4n + 1
                1       an+1          n+1        4n2 + 1
                  = lim      = lim        2
                                               ×         = 1.
                R  n→∞   an   n→∞ 4(n + 1) + 1      n
Thus the radius of convergence is R = 1 and the series converges for |z| < 1
and diverges for |z| > 1.
   Pinaki Pal (NIT Durgapur)            MA331; Odd Semester, 2022-23                  29 / 84
Power Series
                 1                         1       1
                    = lim |an |1/n = lim      =√ .
                R n→∞               n→∞ 3 + i      10
                                         √
Thus the√ radius of convergence is R√  = 10 and the series converges
for |z| < 10 and diverges for |z| > 10.
                           1             1/n        1     1
                             = lim |an |     = lim      =√ .
                           R  n→∞             n→∞ 3 + i   10
                      ∞
                      X                                                                   √
Thus the series                an w n convergence is converges for |w| <                      10 and
                       n=0
                         √
diverges for |w| >             10.
                                     ∞
                                     X
Hence the power series                     (3 + i)−n z 3n convergence is converges for
                                     n=0
|z| < 101/6 and diverges for |z| > 101/6 . Thus the radius of convergence of
the given series is R = 101/6 .
   Pinaki Pal (NIT Durgapur)                MA331; Odd Semester, 2022-23                                31 / 84
Power Series
Theorem
                                                              ∞
                                                              X
Let R be the radius of convergence of the power series              an (z − a)n
                                                              n=0
and it converges to the function f (z) in |z − a| < R. The f (z) is analytic
in |z − a| < R, i.e., a power series represents an analytic function
inside its circle of convergence.
            f (n) (a)
where an =            are called Taylor’s coefficients of f (z) and δ is the
                n!
distance from a to the nearest point of C.
Remark:
   The infinite series is called the Taylor’s series and
                                     ‰
                      f (n) (a)    1              f (z)
                an =            =                        dz.
                          n!      2πi |z−a|=δ (z − a)n+1
     If a = 0 then the Taylor’s series is called Maclaurin’s series.
   Pinaki Pal (NIT Durgapur)              MA331; Odd Semester, 2022-23          33 / 84
Taylor Series
When D is a disk then Taylor’s theorem can be written as:
Taylor’s theorem: Let f (z) be analytic in the disk |z − a| < R. Then
for all z in the disk
                                     ∞ (n)
                                     X f (a)
                       f (z) =                      (z − a)n ,        |z − a| < R.
                                             n!
                                     n=0
                               ∞ (n)
                               X f (a)
The Taylor series                            (z − a)n converges to f (z) in the disk
                                      n!
                               n=0
|z − a| < R.
Remark:
   Any function f (z) which is analytic at a point z0 must have a
   Taylor’s series about z0 valid in some nbd of z0 .
   If f is an entire function then the radius of convergence can be
   chosen arbitrary large, i.e., the region of validity of the Taylor’s
   series becomes |z − z0 | < ∞.
   Pinaki Pal (NIT Durgapur)               MA331; Odd Semester, 2022-23                34 / 84
Taylor Series
                                                                                   1
Example: Find the Taylor series of f (z) =                                            about z = 0.
                                                                                  1−z
Solution: Clearly,
              0           1                00           1.2             000            1.2.3              (n)               n!
             f (z) =              ,    f (z) =                  ,   f         (z) =              ,...,f         (z) =
                       (1 − z)2                      (1 − z)3                         (1 − z)4                          (1 − z)n+1
                                                                          1
Example: The Taylor series of f (z) =                                        about z = 0 is
                                                                         1+z
                               ∞ (n)                                             ∞
                               X f (0)                                           X
                  f (z) =                              (z − 0)n =                  (−1)n z n ,                   |z| < 1.
                                                n!
                               n=0                                               n=0
                                                             z +2
Example: Find the Taylor series of f (z) =                          about z = 0.
                                                             1 − z2
Solution: Here
                         z +2    3 1     1 1
               f (z) =       2
                               =       +
                         1−z     21−z    21+z
                            ∞           ∞
                                 !                 !
                         3 X n       1 X
                       =       z   +      (−1)n z n ,                     |z| < 1
                         2           2
                              n=0                  n=0
= 2 + z + 2z 2 + z 3 + · · · , |z| < 1.
where the first series is valid in |z| < 3 and the second series is valid in
|z| < 2. Thus both series are valid in |z| < 2. Hence
                               ∞            
                               X    1    1
                       f (z) =         −       zn,                  |z| < 2.
                                   2n+1 3n+1
                               n=0
with                                   ‰
                                  1              f (z)
                         an =                            dz         and     bn = a−n
                                 2πi     C    (z − a)n+1
where C is any simple closed contour lying in D that makes a complete
counterclockwise revolution about a.
  Alternatively,                             y
                    ∞
                                                                            R2
                    X
        f (z) =            cn (z − a)n ,
                  n=−∞
                                                                                 a C
  where                                                                     R1
                   ‰                                                        z
             1              f (z)
       cn =                         dz.                                                x
            2πi      C   (z − a)n+1
   Pinaki Pal (NIT Durgapur)                 MA331; Odd Semester, 2022-23                  38 / 84
Laurent Series
Remark:
    Suppose f (z) is analytic inside the disk |z − a| < R1 . Then by
    Cauchy’s theorem
                                ‰
                             1         f (z)
                      bn =                       dz = 0
                           2πi C (z − a)−n+1
                                 ∞
                                 X        1
                           =−                 ,        1 < |z| < ∞.
                                        z n+1
                                 n=0
                                                   1
 Example: Find the Laurent’s series of f (z) =          in |z| > 1.
                                                 1+z
Solution:
                                                     ∞          n    ∞
                            1            1        1 X        n  1     X        n 1
                 f (z) =         =            =       (−1)        =     (−1)        ,   1 < |z| < ∞.
                           1+z       z 1 + z1     z n=0         z     n=0
                                                                                z n+1
                                                      z2    z3
                                                                    
             1                               1    z
            = (1 − z + z 2 − z 3 + · · · ) −    1− +     −     + ···
             2                               6    3   9    27
                1 4   13 2
            =    − z+    z − ··· .
                3 9   27
This is a Taylor’s series valid for |z| < 1.
   Pinaki Pal (NIT Durgapur)        MA331; Odd Semester, 2022-23                           41 / 84
Laurent Series
(ii) Let 1 < |z| < 3. Then
                                                                                            −1
                                    1                   1                 1             1               1     z −1
                                                                                                              
                     f (z) =                  −                     =              1+             −        1+
                               2(z + 1)             2(z + 3)             2z             z               6     3
                                                                                                                z2       z3
                                                                                                                                         !
                               1              1         1           1                       1           z
                                                                                   
                          =             1−          +           −        + ···          −       1−          +        −           + ···
                               2z             z         z2          z3                      6           3        9       27
                                                                                                                         2
                                                                                                                                  z3
                                                                                                                                               !
                                    1         1             1            1                          1       z        z
                                                                                       
                          =              −          +               −          + ···        +   −       +        −           +         − ···       .
                                   2z        2z 2       2z 3            2z 4                        6       18       54          162
                                         1                      1              1        1 −1    1      3 −1
                                                                                                      
                        f (z) =                     −                    =           1+      −      1+
                                    2(z + 1)            2(z + 3)               2z       z      2z      z
                                    1      1    1     1           1     3    9    27
                                                                                         
                               =        1−   +     −     + ··· −     1−   +     −     + ···
                                    2z     z   z 2   z 3         2z     z   z 2   z 3
                                    1         4         13
                               =         −          +           − ··· .
                                    z2        z3        z4
                        u u2 u3
                                          
           1    1
        =    −      1− +       −     + ···
          2u 4          2    4    8
                             (z + 1) (z + 1)2 (z + 1)3
                                                                
             1        1
        =          −      1−         +          −          + ··· .
          2(z + 1) 4            2          4           8
(i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2.
Solution: We have
                                                              1                         z                   1            2
                                        f (z) =                          =                            =          −               .
                                                    z 2 − 3z + 2              (z − 1)(z − 2)              1−z        2−z
                                                                                                      −1        ∞       ∞  n
                                        1             2                                           z                         z
                                                                                        
                                                                               −1                                    n
                                                                                                                X       X
                        f (z) =                 −                 = (1 − z)         −       1−              =       z −         .
                                    1−z             2−z                                           2             n=0     n=0
                                                                                                                            2
                                                                             −1                      −1          ∞  n                ∞  n
                            1               2             1              1                        z              1 X  1                     z
                                                                                                                                       X
              f (z) =               −             =−              1−                −       1−              =−                       −                   .
                        1−z             2−z               z              z                        2              z n=0       z           n=0
                                                                                                                                                 2
                                                                         −1                          −1          ∞  n                  ∞  n
                        1               2            1               1              2             2              1 X  1                  2 X  2
                                                                                       
           f (z) =              −               =−            1−               +            1−              =−                       +                       .
                     1−z            2−z              z               z              z             z              z n=0       z           z n=0       z
                                         f (n) (0)   MR k   M
                              |an | =              ≤      = n−k
                                             n!       Rn   R
Theorem
Every polynomial of degree n has exactly n (not necessarily distinct)
zeros in C.
              f (n) (z0 )
where an =                .
                  n!
If a0 = a1 = a2 = · · · = am−1 = 0 but am = 6 0 then f (z) can be written
as
                             ∞
                             X
          f (z) = (z − z0 )m    an (z − z0 )n−m = (z − z0 )m φ(z),
                                     n=m
where φ(z) is analytic at z0 and φ(z0 ) 6= 0 and we say that f (z) has a
zero of order m at z = z0 .
            1        1           π           2
      cos     = 0 =⇒   = (2n + 1) =⇒ z =           ,                    n ∈ Z.
            z        z           2       (2n + 1)π
Let z = z0 be an isolated singularity of an analytic function f (z). Then in a deleted nbd of z = z0 , f (z) has a Laurent series
expansion of the form
                                      ∞                     ∞
                                                       n                     −n
                                      X                     X
                             f (z) =      an (z − z0 ) +         bn (z − z0 ) , 0 < |z − z0 | < δ.
                                             n=0                   n=1
           ∞
                                −n
           X
The term         bn (z − z0 )        is called the principal part of f (z) at z = z0 . Now there are three possibilities.
           n=1
1. Removable singularity:
        If the principal part in Laurent expansion of f (z) does not contain any term, that is bn = 0 for all n ∈ N then z0 is called a
        removable singularity of f (z).
        If a function f (z) is not defined at z0 but lim f (z) exist then z0 is called a removable singularity of f (z).
                                                         z→z0
        In this case, if we define f (z) at z0 as equal to lim f (z) then f (z) will be analytic at z0 .
                                                                z→z0
2. Pole:
    If the principal part has only a finite number of terms, that is bn = 0 for all n > m for some m ∈ N and bm 6= 0 then z0 is
    called a pole of order m of f (z).
                                                                     m
                                                      lim (z − z0 ) f (z) = A 6= 0
                                                     z→z0
                                                      z − zn          0
                       lim (z − zn )f (z) = lim                   (     form)
                      z→zn                    z→zn     cot z          0
                                                         1
                                          = lim                = −1
                                              z→zn    − sec2 z
Thus all the singularities of f (z) are simple pole.
z = 0 & ez = 1 =⇒ z = 0, 2nπi, n ∈ Z.
with                            ‰
                          1             f (z)
                    an =                        dz           and bn = a−n
                         2πi     C   (z − a)n+1
where C is any simple closed contour lying in the nbd of z0 that makes
a complete counterclockwise revolution about z0 .
The coefficient b1 is called the residue of f (z) at z0 and is denoted by
Res [f (z); z0 ]. Thus
                                                ‰
                                              1
                     Res [f (z); z0 ] = b1 =       f (z) dz.
                                             2πi C
Let C be any simple closed contour lying in the nbd of ∞ that makes a
complete clockwise revolution about ∞. Then
                          ∞                    ∞     
      1                 1 X                   1 X
            f (z) dz =        an     n
                                    z dz +          bn    z −n dz = −b1 .
     2πi C             2πi        C          2πi        C
                                              n=0                              n=1
Remark:                                                                      
                                                     1                       1
                               Res [f (z); ∞] = −Res    f                      ;0 .
                                                     z2                      z
                                          1          d m−1
                  Res [f (z); z0 ] =             lim        [(z − z0 )m f (z)].
                                       (m − 1)! z→z0 dz m−1
                                   (z 2 + 4)(2z − 2) − (z 2 − 2z)(2z)   14
                       = lim                                          =− .
                              z→−1              (z 2 + 4)2              25
                                                                  z 2 − 2z       7+i
   Res [f (z); 2i] = lim (z − 2i)f (z) = lim                          2
                                                                               =     .
                              z→2i                     z→2i   (z + 1) (z + 2i)    25
                                                                         z 2 − 2z       7−i
 Res [f (z); −2i] = lim (z + 2i)f (z) = lim                                  2
                                                                                      =     .
                              z→−2i                     z→−2i        (z + 1) (z − 2i)    25
  Pinaki Pal (NIT Durgapur)           MA331; Odd Semester, 2022-23                         60 / 84
Residue
Example: Find the singularities in the complex plane and the residue
                                              2
                                           ez
at those singular points of the function          .
                                         (z − i)3
Solution: The function f (z) has a pole of order 3 at z = i. Therefore
                                 1         d2                  1     d2 2
       Res [f (z); i] =                lim 2 [(z − i)3 f (z)] = lim 2 ez
                              (3 − 1)! z→i dz                  2 z→i dz
                     1             2    2       1
                       lim (2z 2 ez + ez ) = − .
                          =
                     2 z→i                      e
Example: Find the singularities in the complex plane and the residue
                                                  sin z − z
at those singular points of the functions f (z) =           .
                                                      z3
Solution: The function f (z) has pole of order 3 at z = 0. Therefore,
Therefore
                                1     d2 3            1
          Res [f (z); 0] =        lim      [z f (z)] = lim (sin z − z) = 0
                                2 z→0 dz 2            2 z→0
  Pinaki Pal (NIT Durgapur)         MA331; Odd Semester, 2022-23             61 / 84
Residue
                                                                                                                           1/z
Example:˛ Find the singularities in the complex plane and the residue at those singular points of the function f (z) = e         and
                  1/z
evaluate        e     dz.
          |z|=1
                                          ˛
                                                          1/z
                                                      e         dz = 2πi × Res [f (z); 0] = 2πi.
                                           |z|=1
                                                                                                                          1
Example: Find the singularities in the complex plane and the residue at those singular points of the function f (z) = sin    and
         ˛                                                                                                                z2
                      1
                        
evaluate        sin        dz.
          |z|=1       z2
                                          ˛
                                                                1
                                                      sin           dz = 2πi × Res [f (z); 0] = 0.
                                              |z|=1         z2
                                                                                   1
                                                             f (1/z) =
                                                                           z n−1 (1 + z)
                                                                                                           n           n
                                         Res [f (z); −1] =     lim (z + 1)f (z) =                 lim     z = (−1)
                                                             z→−1                               z→−1
We know that
                                                                                       1         1
                                                                                                         
                                                   Res [f (z); ∞] = −Res                    f             ;0 .
                                                                                       z2         z
            1         1             1
                      
If g(z) =        f         =                   then z = 0 is a pole of order n + 1 of g(z). Thus
            z2        z        z n+1 (1 + z)
                                                                     1          dn          n+1                  1          dn               −1
                      Res [f (z); ∞] = −Res [g(z); 0] = −                 lim          [z         g(z)] = −           lim          (1 + z)
                                                                     n!   z→0   dz n                             n!   z→0   dz n
                                                                    1       1
             Res [f (z); 1] = lim (z − 1)f (z) = lim                      =
                                  z→1                      z→1 z 2 (z+ 1)   2
                                                                            sin z
Solution: The singularity of the function f (z) = tan z =                         are given by
                                                                            cos z
                                                    π
                           cos z = 0 =⇒ z = (2n + 1) ,                   n ∈ Z.
                                                    2
The singular points zn = (2n + 1) π2 are simple poles of f (z).
                                         π
Note that only the pole z0 =  and z−1 = − π2 of f (z) lies inside |z| = 2. Now
                                         2
                                              z − π2
                                                     
              π            π                                   1
  Res [f (z); ] = limπ z −      tan z = limπ           = limπ         =1
              2   z→ 2      2            z→ 2  cot z      z→ 2 csc2 z
                                                 z + π2
                                                        
              π              π                                      1
 Res [f (z); − ] = lim π z +      tan z = lim π           = lim π          = 1.
              2   z→− 2       2           z→− 2   cot z      z→− 2 csc2 z
Now
                                           1         1
      Res [f (z); 3] = lim (z − 3)f (z) = lim   = n       ,
                           z→3          zn − 1     3 −1  z→1
                                                      z n−1
                                                                 
                            1     1
    Res [f (z); ∞] = −Res      f    ; 0 = Res                      ; 0  = 0.
                            z2    z             (1 − 3z)(1 − z n )
Therefore,                     ˆ
                                                     dz                      2πi
                                               n − 1)(z − 3)
                                                                  dz =            .
   Pinaki Pal (NIT Durgapur)        |z|=2   (zMA331; Odd Semester, 2022-23
                                                                           1 − 3n     69 / 84
Problem set
Example: Discuss continuity of the function
                              
                               Re z , z 6= 0
                                  z
                      f (z) =
                              0,      z = 0.
Example: Determine where the following functions satisfy the Cauchy Riemann equations and where the functions are
differentiable.
                2
(i) f (z) = z       (ii) f (z) = zRe z   (iii) f (z) = 2z + 4z + 5       .
Thus f (z) satisfy the C-R equation only at the origin. Hence f (z) is not differentiable at all non zero points.
(ii) We have
                                                              z(z + z)
                                           f (z) = zRe z =                   =⇒ fz (z) = z/2.
                                                                     2
Thus f (z) satisfy the C-R equation only at the origin. Hence f (z) is not differentiable at all non zero points.
f (z) = 2z + 4z + 5 =⇒ fz (z) = 4.
Thus f (z) does not satisfy the C-R equation at any points of the complex plane. Hence f (z) is not differentiable at at any points of
                               ux = vy =⇒ 1 = −c =⇒ c = −1
                               uy = −vx =⇒ a = b.
(ii) If f (z) = a(x 2 + y 2 ) + ibxy + c is entire then it must satisfy the C-R
equation at all points. Here u(x, y ) = a(x 2 + y 2 ) + c and v (x, y ) = bxy . Then
                         ux = vy =⇒ 2ax = bx =⇒ 2a = b
                         uy = −vx =⇒ 2ay = −by =⇒ 2a = −b.
Thus a = b = 0.
                                                             ˆ
                                                   f (z) =       [u1 (z, 0) − iu2 (z, 0)] dz.
Substituting y = 0, we get
                                                      0
                                                     f (x) = u1 (x, 0) − iu2 (x, 0).
Replacing x by z, we get                                                      ˆ
                                 0
                                f (z) = u1 (z, 0) − iu2 (z, 0) =⇒                 [u1 (z, 0) − iu2 (z, 0)] dz.
                                              ∂v                         ∂v
Example: Let f (z) = u + iv be analytic. If         = v1 (x, y ) and          = v2 (x, y ) then show that
                                              ∂y                         ∂x
                                                             ˆ
                                                   f (z) =       [v1 (z, 0) + iv2 (z, 0)] dz.
Thus
                                                                   1−i 3
F (z) = (1 + i)f (z) = (1 − i)z 3 + c =⇒ f (z) =                       z + c 0 = −iz 3 + c 0
                                                                   1+i
   Pinaki Pal (NIT Durgapur)        MA331; Odd Semester, 2022-23                         77 / 84
Problem set
                                                                     ∞
                                                                     X nk
Example: Find the radius of convergence of the power series                     zn.
                                                                           an
                                                                     n=1
                                k
                               n
Solution: Here an =               .
                               an
                                                          k
                             (n + 1)k an
                                                  
          1       an+1                     1            1     1
            = lim      = lim             =    lim   1 +      = .
          R  n→∞   an   n→∞    nk an+1     a n→∞        n     a
                        1                          1/n
                                     1/n
                          = lim |an |    = lim n1/n      = 10 = 1.
                        R  n→∞            n→∞
                                    ˆ
                                             2z + 1      3π
Example: Show that                                  dz ≤    .
                                    |z|=1    5 + z2       2
                                2z + 1
Solution: Let f (z) =                  . On |z| = 1, we have
                                5 + z2
                                                    2|z| + 1   3
                                        |f (z)| ≤           2
                                                              ≤ .
                                                    5 − |z|    4
Then by ML-formula
ˆ                               ˆ                                        ˆ
          2z + 1                           2z + 1        3                                3       3π
                 dz ≤                             |dz| ≤                         |dz| =     ×2π =    .
  |z|=1   5 + z2                |z|=1      5+z  2        4               |z|=1            4        2
                     ˆ
                                 2
Example: Evaluate           |z| dz along the square with vertices 0, 1, 1 + i, i,
                        C                                                                                   C3
Solution: Let C = C1 + C2 + C3 + C4 where C1 : z(t) = t, t ∈ [0, 1],
C2 : z(t) = 1 + it, t ∈ [0, 1], C3 : z(t) = (1 − t) + i, t ∈ [0, 1],                             C4              C2
C4 : z(t) = i(1 − t), t ∈ [0, 1].
C1 x
                 ˆ                       ˆ                ˆ                  ˆ               ˆ
                             2                   2                  2                 2                 2
                         |z| dz =              |z| dz +           |z| dz +        |z| dz +            |z| dz
                    C                     C1                 C2              C3              C4
                                         ˆ 1        ˆ 1                   ˆ 1                         ˆ 1
                                              2                 2                          2                        2
                                     =       t dt +     |1 + it| (i) dt +     |(1 − t) + i| (−1) dt +     |i(1 − t)| (−i) dt
                                          0          0                            0                              0
                                       ˆ 1          ˆ 1                    ˆ 1                              ˆ 1
                                            2                 2                        2                               2
                                     =     t dt + i     (1 − t + 2it) dt −     (−2t + t + 2i(1 − t)) dt − i     (1 − t) dt
                                          0              0                            0                               0
= ....
                                     = ....
     Pinaki Pal (NIT Durgapur)                     MA331; Odd Semester, 2022-23                                           83 / 84
Problem set                    ˆ
Example: Evaluate                  4z 3 dz along the following curves:
                               C