0% found this document useful (0 votes)
6 views3 pages

Test 1 Datasheet

The document provides a comprehensive list of built-in Python functions, NumPy operations, and Pandas operations used for data handling, manipulation, and visualization. It includes functions for importing and exporting files, as well as methods for data merging and concatenation. Additionally, it covers data visualization techniques using Matplotlib and Seaborn.

Uploaded by

mjhmeh2003
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views3 pages

Test 1 Datasheet

The document provides a comprehensive list of built-in Python functions, NumPy operations, and Pandas operations used for data handling, manipulation, and visualization. It includes functions for importing and exporting files, as well as methods for data merging and concatenation. Additionally, it covers data visualization techniques using Matplotlib and Seaborn.

Uploaded by

mjhmeh2003
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Built-in Python Functions Used in the Notebooks

1. print(value) – Displays output to the console.

2. type(variable) – Returns the data type of a variable.

3. all(iterable) – Returns True if all elements in an iterable are True.

4. filter(function, iterable) – Filters elements based on a condition.

5. format(value, format_spec) – Formats a value according to a specified


format.

6. help(object) – Displays the documentation for a function or module.

7. object() – The base class for all Python objects.

8. display(value) – Displays rich outputs (used in Jupyter notebooks).

9. del variable – Deletes a variable from memory.

10. True / False – Boolean values used in logical operations.


NumPy Operations (Arrays & Matrices)
1. import numpy as np – Imports the NumPy library.
2. np.array([values]) – Creates a NumPy array.
3. np.arange(start, stop, step) – Generates a sequence of numbers as an array.
4. np.reshape(array, (rows, cols)) – Reshapes a 1D array into a 2D matrix.
5. array[row, col] – Accesses an element in a 2D array.
6. array[row, :] – Accesses an entire row.
7. array[:, col] – Accesses an entire column.
8. array[start_row:end_row, start_col:end_col] – Extracts a sub-matrix.

________________________________________

Pandas Operations (Data Handling)


9. import pandas as pd – Imports the Pandas library.
10. pd.Series([values]) – Creates a Pandas Series (1D data structure).
11. pd.DataFrame({'column': [values]}) – Creates a DataFrame from a dictionary.
12. df.head(n) – Displays the first n rows of the DataFrame.
13. df.tail(n) – Displays the last n rows of the DataFrame.
14. df.info() – Displays column names, data types, and missing values.
15. df.describe() – Provides summary statistics of numerical columns.
16. df.shape – Returns the number of rows and columns.
17. df.columns – Lists column names.
18. df.dtypes – Lists the data types of all columns.
19. df['column_name'] – Selects a single column.
20. df[['col1', 'col2']] – Selects multiple columns.
21. df.iloc[row_index, col_index] – Selects data using index positions.
22. df.loc[row_label, col_label] – Selects data using label names.
23. df.sort_values(by='column', ascending=True) – Sorts the DataFrame.
24. df['new_col'] = df['col1'] + df['col2'] – Creates a new column based on
existing ones.
25. df.drop(columns=['col1', 'col2']) – Removes columns.
26. df.drop(index=[row1, row2]) – Removes rows.
27. df.fillna(value) – Fills missing values with a specific value.
28. df.dropna() – Removes rows with missing values.
29. df.isnull().sum() – Counts missing values in each column.
30. df.duplicated() – Checks for duplicate rows.
31. df.drop_duplicates() – Removes duplicate rows.
32. df.groupby('column_name').agg({'col1': 'sum', 'col2': 'mean'}) – Groups data
and applies aggregations.
33. df.to_csv("file.csv", index=False) – Saves the DataFrame as a CSV file.
34. df.to_excel("file.xlsx", index=False) – Saves the DataFrame as an Excel file.

________________________________________

File Importing & Exporting


35. df = pd.read_csv("file.csv") – Reads a CSV file into a DataFrame.
36. df = pd.read_excel("file.xlsx") – Reads an Excel file into a DataFrame.
37. df = pd.read_json("file.json") – Reads a JSON file into a DataFrame.
38. df.to_json("file.json") – Saves a DataFrame as a JSON file.
39. df = pd.read_html("https://example.com") – Reads tables from a webpage into a
DataFrame.
40. df.to_html("file.html") – Saves a DataFrame as an HTML table.

________________________________________
Data Manipulation
41. df['column'].str.lower() – Converts text to lowercase.
42. df['column'].str.upper() – Converts text to uppercase.
43. df['column'].str.contains("word") – Checks if a column contains a specific
word.
44. df['date_column'] = pd.to_datetime(df['date_column']) – Converts a column to
datetime format.
45. df['year'] = df['date_column'].dt.year – Extracts the year from a datetime
column.
46. df['month'] = df['date_column'].dt.month – Extracts the month from a datetime
column.
47. df['day'] = df['date_column'].dt.day – Extracts the day from a datetime column.

________________________________________

Data Merging & Concatenation


48. pd.concat([df1, df2], axis=0) – Concatenates DataFrames vertically.
49. pd.concat([df1, df2], axis=1) – Concatenates DataFrames horizontally.
50. pd.merge(df1, df2, on='key', how='inner') – Merges two DataFrames with an inner
join.
51. pd.merge(df1, df2, on='key', how='left') – Left join, keeps all rows from df1.
52. pd.merge(df1, df2, on='key', how='right') – Right join, keeps all rows from
df2.
53. pd.merge(df1, df2, on='key', how='outer') – Outer join, keeps all rows from
both.

________________________________________

Matplotlib & Seaborn (Data Visualization)


54. import matplotlib.pyplot as plt – Imports Matplotlib for plotting.
55. import seaborn as sns – Imports Seaborn for statistical visualization.
56. plt.figure(figsize=(width, height)) – Creates a figure with a specific size.
57. sns.histplot(df['column'], bins=20) – Creates a histogram of a column.
58. sns.boxplot(x='col1', y='col2', data=df) – Creates a box plot.
59. sns.scatterplot(x='col1', y='col2', data=df) – Creates a scatter plot.
60. sns.countplot(x='column', data=df) – Creates a count plot for categorical data.
61. sns.heatmap(df.corr(), annot=True) – Plots a correlation heatmap.
62. plt.xlabel("X-axis Label") – Sets the x-axis label.
63. plt.ylabel("Y-axis Label") – Sets the y-axis label.
64. plt.title("Plot Title") – Sets the title of the plot.
65. plt.show() – Displays the plot.

You might also like