0% found this document useful (0 votes)
23 views10 pages

Unit 1 - Part B

The document contains a series of mathematical problems and solutions related to multiple integrals, as part of the Advanced Calculus and Complex Analysis course at SRM Institute of Science and Technology. Each problem is presented with its corresponding solution, demonstrating various techniques for evaluating double and triple integrals. The problems cover a range of topics, including integration in Cartesian and polar coordinates, as well as applications of integrals in different contexts.

Uploaded by

nnmm12256t
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views10 pages

Unit 1 - Part B

The document contains a series of mathematical problems and solutions related to multiple integrals, as part of the Advanced Calculus and Complex Analysis course at SRM Institute of Science and Technology. Each problem is presented with its corresponding solution, demonstrating various techniques for evaluating double and triple integrals. The problems cover a range of topics, including integration in Cartesian and polar coordinates, as well as applications of integrals in different contexts.

Uploaded by

nnmm12256t
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

SRM Institute of Science and Technology


Ramapuram Campus
Department of Mathematics
Year / Sem: I / II
Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)
Unit 1 – Multiple Integrals

Part – B (Each question carries 3 Marks)


3 2 1
1. Evaluate ∫2 ∫1 𝑑𝑥 𝑑𝑦.
𝑥𝑦

Solution
3 2
31 21
1
∫∫ 𝑑𝑥 𝑑𝑦 = [∫ 𝑑𝑦] [∫ 𝑑𝑥] = [log 𝑦]32[log 𝑥 ]12
𝑥𝑦 2 𝑦 1 𝑥
2 1
3
= (log 3 − log 2)(log 2 − log 1) = (log ) (log 2)
2
𝝅
sin 𝜃
2. Evaluate ∫𝟎 ∫0 𝟐 𝑟 𝑑𝑟 𝑑𝜃.

Solution
𝜋
sin 𝜃
∫0 ∫0
2 𝑟 𝑑𝑟 𝑑𝜃
𝜋 𝜋 𝜋
2 sin 𝜃 2 2
𝑟2 (sin 𝜃 )2 1 1 1 𝜋 𝜋
= ∫( ) 𝑑𝜃 = ∫ [ ] 𝑑𝜃 = ∫ sin2 θ dθ = ∗ ∗ =
2 0 2 2 2 2 2 8
0 0 0

2 2
3. Evaluate ∫0 ∫0 𝑑𝑥 𝑑𝑦 .

Solution
2 2 2 2

∫ ∫ 𝑑𝑥 𝑑𝑦 = ∫[𝑥 ]20𝑑𝑦 = ∫[2 − 0]𝑑𝑦 = [2 y]20 = (2)(2) − 0 = 4


0 0 0 0

SRM IST, Ramapuram. 1 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

3 2
4. Evaluate ∫0 ∫0 (𝑥 2 + 𝑦 2 )𝑑𝑥 𝑑𝑦 .

Solution
3 2 3 2 2
𝑥3 8
𝐼 = ∫ ∫ 𝑥 + 𝑦 𝑑𝑥𝑑𝑦 = ∫ [( ) + 𝑥𝑦 2 ] 𝑑𝑦 = ∫ [ + 2𝑦 2 ] 𝑑𝑦
( 2 2)
3 0
3
0 0 0 0
3 3 3
8y 2y 8∗3 2∗3
=[ + ] = + = 8 + 18 = 26
3 3 0 3 3

𝑎 𝑏 𝑐
5. Evaluate ∫0 ∫0 ∫0 𝑑𝑥 𝑑𝑦 𝑑𝑧.

Solution

𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 𝑏
∫ ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫ ∫ (𝑥 )𝑐0 𝑑𝑦 𝑑𝑧 = ∫ ∫ (𝑐 − 0)𝑑𝑦 𝑑𝑧
0 0 0 0 0 0 0
𝑎 𝑎 𝑎
= 𝑐∫ (𝑦)𝑏0 dz = 𝑐 ∫ (𝑏 − 0)𝑑𝑧 = 𝑏 𝑐 ∫ 𝑑𝑧 = 𝑏𝑐 (𝑧)𝑎0
0 0 0
= bc(a − 0) = abc

𝝅 𝑎
6. Evaluate ∫𝟎 ∫0 𝑟 𝑑𝑟 𝑑𝜃.

Solution

𝜋 𝑎 𝜋 𝑎 𝜋 𝜋
𝑟2 (𝑎) 2 𝑎2 𝑎2
∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃 = ∫ ( ) 𝑑𝜃 = ∫ [ − 0] 𝑑𝜃 = ∫ 𝑑𝜃 = (𝜃 )𝜋0
2 0 2 2 2
0 0 0 0 0
2 2
𝑎 𝜋𝑎
= (𝜋 − 0) =
2 2
2 2
7. Evaluate ∫0 ∫0 𝑒 𝑥 + 𝑦 𝑑𝑥 𝑑𝑦 .

Solution
2 2 2 2

∫ ∫ 𝑒 𝑥+𝑦 𝑑𝑥𝑑𝑦 = ∫ 𝑒 𝑥 𝑑𝑥 ∫ 𝑒 𝑦 𝑑𝑦 = [𝑒 𝑥 ]20 [𝑒 𝑦 ]20


0 0 0 0

SRM IST, Ramapuram. 2 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

= (𝑒 2 − 𝑒 0)(𝑒 2 − 𝑒 0)=(𝑒 2 − 1)2

2 2−𝑦
8. Evaluate ∫1 ∫0 𝑥𝑦 𝑑𝑥 𝑑𝑦.

Solution
2−𝑦
2 2−𝑦 2 𝑥2 1 2
∫1 ∫0 𝑥𝑦 𝑑𝑥 𝑑𝑦 = ∫1 ( 𝑦 ( )) 𝑑𝑦 = ( ) ∫1 (𝑦(2 − 𝑦)2𝑑𝑦
2 2
0
2 2
1 1
= ∫ 𝑦(4 + 𝑦 2 − 4𝑦)𝑑𝑦 = ∫(4𝑦 + 𝑦 3 − 4𝑦 2 )𝑑𝑦
2 2
1 1
2
1 𝑦2 𝑦4 𝑦3
= [4 ( ) + ( ) − 4 ( )]
2 2 4 3 1
1 4 16 8 1 1 1
= {[4 ( ) + ( ) − 4 ( )] − [4 ( ) + ( ) − 4 ( )]}
2 2 4 3 2 4 3
1 5 5
= { }=
2 12 24

1 1 𝑥
9. Evaluate ∫0 ∫𝑦 𝑑𝑥 𝑑𝑦.
𝑥 2 +𝑦 2

Solution
1 1𝑥 1 𝑥 𝑥 1 𝑦 𝑦 =𝑥
−1
∫ ∫ 2 2 𝑑𝑥𝑑𝑦 = ∫ ∫ 2 2 𝑑𝑦𝑑𝑥 = ∫ (𝑡𝑎𝑛 ( ) ) 𝑑𝑥
0 𝑦 𝑥 +𝑦 0 0 𝑥 +𝑦 0 𝑥 𝑦 =0
1
= ∫ (𝑡𝑎𝑛−1 (1) − 𝑡𝑎𝑛−1 (0)) 𝑑𝑥
0

𝜋 1 𝜋 1 𝜋 𝜋 𝜋
= ∫ ( − 0) 𝑑𝑥 = ∫ 𝑑𝑥 = (𝑥)10 = (1 − 0) =
0 4 4 0 4 4 4

SRM IST, Ramapuram. 3 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

32
10. Evaluate   x y x  y  dy dx .
00

Solution

 
32 32

  x y x  y  dy dx    x y  x y dy dx
2 2

00 00

2
 x2 y2
3
y3 
    x  dx
0
2 3 0

3
 8 
   2 x 2  x  dx
0
3 

3
 x3 8 x 2 
  2    30

 3 3 2 0
1 1
11. Evaluate ∫0 ∫0 (𝑥 + 𝑦) 𝑑𝑥 𝑑𝑦 .

Solution
1 1 1 1
𝑥2
∫ ∫ (𝑥 + 𝑦) 𝑑𝑥 𝑑𝑦 = ∫ [( + 𝑥𝑦)] 𝑑𝑦
2 0
0 0 0

1 1
= ∫0 (2 + 𝑦) 𝑑𝑦
1
𝑦 𝑦2
= (2 + )
2 0

1 1
= (2 + 2) − (0 + 0)

=1

𝜋 1
12. Find the value of ∫0 ∫0 (𝑥 2 sin 𝑦) 𝑑𝑥 𝑑𝑦 .

Solution
𝜋 1 1 𝜋

∫ ∫ (𝑥 2 sin 𝑦) 𝑑𝑥 𝑑𝑦 = ∫ 𝑥 2 𝑑𝑥 ∫ sin 𝑦 𝑑𝑦
0 0 0 0

SRM IST, Ramapuram. 4 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

𝑥3 1
= ( ) (−cos 𝑦)𝜋0
3 0

1
= ( − 0) (−cos 𝜋 + cos 0)
3
1
= ( − 0) (1 + 1)
3
2
=
3
c b a
13. Evaluate    ( x  y  z ) dx dy dz .
0 0 0

Solution
a
c b a c b
 x2 
   ( x  y  z) dx dy dz      x y  x z  dy dz
 2


0
0 0 0 0 0

c b
 a2 
  
 2  a y  a z  dy dz

0 0  
c
 a2 b2 
   ba  a z b  dz
0  
2 2

b
c
 a2 y2 
 
 2 y  a  a z y  dz

0  2 0
c
 a2 b2 z2 
  b z  a z  a b 
 2 2 2 0

a b c (a  b  c)

2

4 x x y
14. Evaluate    z dx dy dz .
0 0 0

Solution
4 x xy

I=   
x=0 y=0 z=0
z dz dy dx

x y
4xz2 
=    dydx
0 0  2  0

SRM IST, Ramapuram. 5 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

1 4x
=   x  y dydx
2 00
x 4
1 4 y 2  1  2 x 
4 2
34 2 3  x 3 
=   xy  dx =   x   dx =  x dx   16
2 0  2  2 0 2  40 4 3 
0  0

1 1 y 2
dx dy
15. Evaluate   1 x2  y2
.
0 0

Solution

1 1 y 2
dx dy
I  
0 0 1 x2  y2

1 y 2
1  1  
  tan 1  x  dy
   
 1 y  1 y
2 2
0  0

 
  dy
1
  1
tan 1 (1)  tan 1 (0)

 1 y
2
0 

 
1
dy
  log (1  2 )
0
4 1 y2 4

a ay
16. Evaluate   x y dx dy .
0 0

Solution
a2  x2 ay
a
 x2  a

  y dy dx   y  2  dy
0 0 0 0

a
1 a4
2 0
 y a y dy 
6

SRM IST, Ramapuram. 6 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

a a2  x2 a2  x2  y2
dz dy dx
17. Evaluate  
0 0
 0 a  x2  y2  z2
2
.

Solution

a a2  x2 a2  x2  y 2
dz dy dx
Let I  
x 0

y 0

z 0 a  x2  y 2  z 2
2

a2  x2  y 2
a a2  x2   z 
  sin 1   dy dx
0 0   a  x  y   0
2 2 2

 
a2  x2 a2  x2

a a a

  1  sin  0 dy dx   2 0


 
a2  x2
sin 1 1
2  0  dy dx  y dx
 
0
0 0 0 0

    2 a2
a
 a
a2  x   x
a2  
 
2 0
 a  x dx  
2
a  x  sin 1      0 
2
  0 
2
0 
2

2 2 2  a  0 2  2 2  8

 (x  y 2 )dy dx over the region R for which x, y  0, x  y  1.


2
18. Evaluate
R

Solution

The region of integration is the triangle bounded by the


lines x  0, y  0, x  y  1

Limits of y : 0 to 1 – x ; Limits of x : 0 to 1
1 1 x

 ( x 2  y 2 )dy dx =   x  y 2 dydx
2

0 0
R

1 x
 1
y3


= x 2 y  
3 
dx
0 0
1
 2 (1  x)3 
 0  x (1  x ) 
3 
dx
1
 x3 x 4 (1  x)4 
   
3 4 12  0

1
 2 (1  x)3 
 0  x (1  x ) 
3 
dx
1
 x3 x 4 (1  x)4 
   
3 4 12  0

SRM IST, Ramapuram. 7 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

1 1 1
  
3 4 12
1

6

19. Find the area bounded by the lines x  0 , y  1 and y  x using double integration.

Solution

𝐺𝑖𝑣𝑒𝑛 x  0 , y  1 𝑎𝑛𝑑 y  x .

𝐻𝑒𝑛𝑐𝑒 𝑥 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 𝑎𝑛𝑑 𝑦 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 1.


1 1 1 1 1
x2 1 1
𝐼 = ∫ ∫ 𝑑𝑦𝑑𝑥 = ∫[𝑦]1𝑥 𝑑𝑥 ( )
= ∫ 1 − 𝑥 𝑑𝑥 = [x − ] = 1 − =
2 0 2 2
0 𝑥 0 0

20. Find by double integration the area between the parabolas y 2 = 4ax and x2 = 4ay .

Solution
4a 4ax 4a 4a
 x2 
 Area =   dydx =   y  x2 =   4ax -  dx
4ax
dx
0 
0 x2 0 4a
4a 
4a
4a
 x 2 1 x3 
3
 1 2
4a
=   2 a x - x  dx =  2 a
1
2
- 
 4a   3 4a 3 
0
 2 0
4 a 3 1
= (4a) 2 - (4a)3
3 12a
5
4 a 32 32 1 4 2 42 1
= (4) (a) - 64a 3 = a - 64a 3
3 12a 3 12a
5
(22 ) 2 2 16 2 32 2 16 2
= a - a = a - a
3 3 3 3
16 2
= a
3

SRM IST, Ramapuram. 8 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

21. Find the area of the circle x2 + y2 = a2 using double integration.

Solution
Area of circle = 4  Area in first quadrant
a a2  y2
 4  dx dy
0 0
a
 4   x 0
a2  y2
dy
0
a
 4 a 2  y 2 dy
0
a
y 2 a2 1 y 
 4 a  y2  sin  
 2 2  a  0
a2  
 4   a
2

 2 2

22. Find the area of the circle x2 + y2 = a2 using polar coordinates.

Solution
x  r cos , y  r sin 
x2  y2  r 2
r 2  a2

  2 r  a
Area =   r dr d
 0 r 0
  2
a2
=  2
d
 0

=  a2

SRM IST, Ramapuram. 9 Department of Mathematics


18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals

23. Find the area of the cardioid r = a(1 + cosθ) by using double integration.

Solution

Given the curve in polar co ordinates r = a(1 + cosθ)


 Area of the cardioid = 2(Area above the initial line)
θ varies from 0 to π
r varies from 0 to r = a(1 + cosθ)
π a(1+cosθ)
Area = 2  r drdθ
0 0
a(1+cosθ)
r  π 2
= 2   dθ
0 
2 0
π
=  a 2 (1 + cosθ)2 dθ
0
π
= a 2  (1 + 2cosθ + cos 2θ)dθ
0

 1  cos 
π π
  3 1 
= a 2  1 + 2cosθ +    dθ = a 2   + 2cosθ + cos2θ  dθ
0   2  0 
2 2 
π
3 1 sin2θ 
= a  θ + 2sinθ +
2
sinnπ = 0, n
2 2 2  0
3  3πa2
= a2  π  =
2  2

*****

SRM IST, Ramapuram. 10 Department of Mathematics

You might also like