18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
SRM Institute of Science and Technology
Ramapuram Campus
Department of Mathematics
Year / Sem: I / II
Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)
Unit 1 – Multiple Integrals
Part – B (Each question carries 3 Marks)
3 2 1
1. Evaluate ∫2 ∫1 𝑑𝑥 𝑑𝑦.
𝑥𝑦
Solution
3 2
31 21
1
∫∫ 𝑑𝑥 𝑑𝑦 = [∫ 𝑑𝑦] [∫ 𝑑𝑥] = [log 𝑦]32[log 𝑥 ]12
𝑥𝑦 2 𝑦 1 𝑥
2 1
3
= (log 3 − log 2)(log 2 − log 1) = (log ) (log 2)
2
𝝅
sin 𝜃
2. Evaluate ∫𝟎 ∫0 𝟐 𝑟 𝑑𝑟 𝑑𝜃.
Solution
𝜋
sin 𝜃
∫0 ∫0
2 𝑟 𝑑𝑟 𝑑𝜃
𝜋 𝜋 𝜋
2 sin 𝜃 2 2
𝑟2 (sin 𝜃 )2 1 1 1 𝜋 𝜋
= ∫( ) 𝑑𝜃 = ∫ [ ] 𝑑𝜃 = ∫ sin2 θ dθ = ∗ ∗ =
2 0 2 2 2 2 2 8
0 0 0
2 2
3. Evaluate ∫0 ∫0 𝑑𝑥 𝑑𝑦 .
Solution
2 2 2 2
∫ ∫ 𝑑𝑥 𝑑𝑦 = ∫[𝑥 ]20𝑑𝑦 = ∫[2 − 0]𝑑𝑦 = [2 y]20 = (2)(2) − 0 = 4
0 0 0 0
SRM IST, Ramapuram. 1 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
3 2
4. Evaluate ∫0 ∫0 (𝑥 2 + 𝑦 2 )𝑑𝑥 𝑑𝑦 .
Solution
3 2 3 2 2
𝑥3 8
𝐼 = ∫ ∫ 𝑥 + 𝑦 𝑑𝑥𝑑𝑦 = ∫ [( ) + 𝑥𝑦 2 ] 𝑑𝑦 = ∫ [ + 2𝑦 2 ] 𝑑𝑦
( 2 2)
3 0
3
0 0 0 0
3 3 3
8y 2y 8∗3 2∗3
=[ + ] = + = 8 + 18 = 26
3 3 0 3 3
𝑎 𝑏 𝑐
5. Evaluate ∫0 ∫0 ∫0 𝑑𝑥 𝑑𝑦 𝑑𝑧.
Solution
𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 𝑏
∫ ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫ ∫ (𝑥 )𝑐0 𝑑𝑦 𝑑𝑧 = ∫ ∫ (𝑐 − 0)𝑑𝑦 𝑑𝑧
0 0 0 0 0 0 0
𝑎 𝑎 𝑎
= 𝑐∫ (𝑦)𝑏0 dz = 𝑐 ∫ (𝑏 − 0)𝑑𝑧 = 𝑏 𝑐 ∫ 𝑑𝑧 = 𝑏𝑐 (𝑧)𝑎0
0 0 0
= bc(a − 0) = abc
𝝅 𝑎
6. Evaluate ∫𝟎 ∫0 𝑟 𝑑𝑟 𝑑𝜃.
Solution
𝜋 𝑎 𝜋 𝑎 𝜋 𝜋
𝑟2 (𝑎) 2 𝑎2 𝑎2
∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃 = ∫ ( ) 𝑑𝜃 = ∫ [ − 0] 𝑑𝜃 = ∫ 𝑑𝜃 = (𝜃 )𝜋0
2 0 2 2 2
0 0 0 0 0
2 2
𝑎 𝜋𝑎
= (𝜋 − 0) =
2 2
2 2
7. Evaluate ∫0 ∫0 𝑒 𝑥 + 𝑦 𝑑𝑥 𝑑𝑦 .
Solution
2 2 2 2
∫ ∫ 𝑒 𝑥+𝑦 𝑑𝑥𝑑𝑦 = ∫ 𝑒 𝑥 𝑑𝑥 ∫ 𝑒 𝑦 𝑑𝑦 = [𝑒 𝑥 ]20 [𝑒 𝑦 ]20
0 0 0 0
SRM IST, Ramapuram. 2 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
= (𝑒 2 − 𝑒 0)(𝑒 2 − 𝑒 0)=(𝑒 2 − 1)2
2 2−𝑦
8. Evaluate ∫1 ∫0 𝑥𝑦 𝑑𝑥 𝑑𝑦.
Solution
2−𝑦
2 2−𝑦 2 𝑥2 1 2
∫1 ∫0 𝑥𝑦 𝑑𝑥 𝑑𝑦 = ∫1 ( 𝑦 ( )) 𝑑𝑦 = ( ) ∫1 (𝑦(2 − 𝑦)2𝑑𝑦
2 2
0
2 2
1 1
= ∫ 𝑦(4 + 𝑦 2 − 4𝑦)𝑑𝑦 = ∫(4𝑦 + 𝑦 3 − 4𝑦 2 )𝑑𝑦
2 2
1 1
2
1 𝑦2 𝑦4 𝑦3
= [4 ( ) + ( ) − 4 ( )]
2 2 4 3 1
1 4 16 8 1 1 1
= {[4 ( ) + ( ) − 4 ( )] − [4 ( ) + ( ) − 4 ( )]}
2 2 4 3 2 4 3
1 5 5
= { }=
2 12 24
1 1 𝑥
9. Evaluate ∫0 ∫𝑦 𝑑𝑥 𝑑𝑦.
𝑥 2 +𝑦 2
Solution
1 1𝑥 1 𝑥 𝑥 1 𝑦 𝑦 =𝑥
−1
∫ ∫ 2 2 𝑑𝑥𝑑𝑦 = ∫ ∫ 2 2 𝑑𝑦𝑑𝑥 = ∫ (𝑡𝑎𝑛 ( ) ) 𝑑𝑥
0 𝑦 𝑥 +𝑦 0 0 𝑥 +𝑦 0 𝑥 𝑦 =0
1
= ∫ (𝑡𝑎𝑛−1 (1) − 𝑡𝑎𝑛−1 (0)) 𝑑𝑥
0
𝜋 1 𝜋 1 𝜋 𝜋 𝜋
= ∫ ( − 0) 𝑑𝑥 = ∫ 𝑑𝑥 = (𝑥)10 = (1 − 0) =
0 4 4 0 4 4 4
SRM IST, Ramapuram. 3 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
32
10. Evaluate x y x y dy dx .
00
Solution
32 32
x y x y dy dx x y x y dy dx
2 2
00 00
2
x2 y2
3
y3
x dx
0
2 3 0
3
8
2 x 2 x dx
0
3
3
x3 8 x 2
2 30
3 3 2 0
1 1
11. Evaluate ∫0 ∫0 (𝑥 + 𝑦) 𝑑𝑥 𝑑𝑦 .
Solution
1 1 1 1
𝑥2
∫ ∫ (𝑥 + 𝑦) 𝑑𝑥 𝑑𝑦 = ∫ [( + 𝑥𝑦)] 𝑑𝑦
2 0
0 0 0
1 1
= ∫0 (2 + 𝑦) 𝑑𝑦
1
𝑦 𝑦2
= (2 + )
2 0
1 1
= (2 + 2) − (0 + 0)
=1
𝜋 1
12. Find the value of ∫0 ∫0 (𝑥 2 sin 𝑦) 𝑑𝑥 𝑑𝑦 .
Solution
𝜋 1 1 𝜋
∫ ∫ (𝑥 2 sin 𝑦) 𝑑𝑥 𝑑𝑦 = ∫ 𝑥 2 𝑑𝑥 ∫ sin 𝑦 𝑑𝑦
0 0 0 0
SRM IST, Ramapuram. 4 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
𝑥3 1
= ( ) (−cos 𝑦)𝜋0
3 0
1
= ( − 0) (−cos 𝜋 + cos 0)
3
1
= ( − 0) (1 + 1)
3
2
=
3
c b a
13. Evaluate ( x y z ) dx dy dz .
0 0 0
Solution
a
c b a c b
x2
( x y z) dx dy dz x y x z dy dz
2
0
0 0 0 0 0
c b
a2
2 a y a z dy dz
0 0
c
a2 b2
ba a z b dz
0
2 2
b
c
a2 y2
2 y a a z y dz
0 2 0
c
a2 b2 z2
b z a z a b
2 2 2 0
a b c (a b c)
2
4 x x y
14. Evaluate z dx dy dz .
0 0 0
Solution
4 x xy
I=
x=0 y=0 z=0
z dz dy dx
x y
4xz2
= dydx
0 0 2 0
SRM IST, Ramapuram. 5 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
1 4x
= x y dydx
2 00
x 4
1 4 y 2 1 2 x
4 2
34 2 3 x 3
= xy dx = x dx = x dx 16
2 0 2 2 0 2 40 4 3
0 0
1 1 y 2
dx dy
15. Evaluate 1 x2 y2
.
0 0
Solution
1 1 y 2
dx dy
I
0 0 1 x2 y2
1 y 2
1 1
tan 1 x dy
1 y 1 y
2 2
0 0
dy
1
1
tan 1 (1) tan 1 (0)
1 y
2
0
1
dy
log (1 2 )
0
4 1 y2 4
a ay
16. Evaluate x y dx dy .
0 0
Solution
a2 x2 ay
a
x2 a
y dy dx y 2 dy
0 0 0 0
a
1 a4
2 0
y a y dy
6
SRM IST, Ramapuram. 6 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
a a2 x2 a2 x2 y2
dz dy dx
17. Evaluate
0 0
0 a x2 y2 z2
2
.
Solution
a a2 x2 a2 x2 y 2
dz dy dx
Let I
x 0
y 0
z 0 a x2 y 2 z 2
2
a2 x2 y 2
a a2 x2 z
sin 1 dy dx
0 0 a x y 0
2 2 2
a2 x2 a2 x2
a a a
1 sin 0 dy dx 2 0
a2 x2
sin 1 1
2 0 dy dx y dx
0
0 0 0 0
2 a2
a
a
a2 x x
a2
2 0
a x dx
2
a x sin 1 0
2
0
2
0
2
2 2 2 a 0 2 2 2 8
(x y 2 )dy dx over the region R for which x, y 0, x y 1.
2
18. Evaluate
R
Solution
The region of integration is the triangle bounded by the
lines x 0, y 0, x y 1
Limits of y : 0 to 1 – x ; Limits of x : 0 to 1
1 1 x
( x 2 y 2 )dy dx = x y 2 dydx
2
0 0
R
1 x
1
y3
= x 2 y
3
dx
0 0
1
2 (1 x)3
0 x (1 x )
3
dx
1
x3 x 4 (1 x)4
3 4 12 0
1
2 (1 x)3
0 x (1 x )
3
dx
1
x3 x 4 (1 x)4
3 4 12 0
SRM IST, Ramapuram. 7 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
1 1 1
3 4 12
1
6
19. Find the area bounded by the lines x 0 , y 1 and y x using double integration.
Solution
𝐺𝑖𝑣𝑒𝑛 x 0 , y 1 𝑎𝑛𝑑 y x .
𝐻𝑒𝑛𝑐𝑒 𝑥 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 𝑎𝑛𝑑 𝑦 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 1.
1 1 1 1 1
x2 1 1
𝐼 = ∫ ∫ 𝑑𝑦𝑑𝑥 = ∫[𝑦]1𝑥 𝑑𝑥 ( )
= ∫ 1 − 𝑥 𝑑𝑥 = [x − ] = 1 − =
2 0 2 2
0 𝑥 0 0
20. Find by double integration the area between the parabolas y 2 = 4ax and x2 = 4ay .
Solution
4a 4ax 4a 4a
x2
Area = dydx = y x2 = 4ax - dx
4ax
dx
0
0 x2 0 4a
4a
4a
4a
x 2 1 x3
3
1 2
4a
= 2 a x - x dx = 2 a
1
2
-
4a 3 4a 3
0
2 0
4 a 3 1
= (4a) 2 - (4a)3
3 12a
5
4 a 32 32 1 4 2 42 1
= (4) (a) - 64a 3 = a - 64a 3
3 12a 3 12a
5
(22 ) 2 2 16 2 32 2 16 2
= a - a = a - a
3 3 3 3
16 2
= a
3
SRM IST, Ramapuram. 8 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
21. Find the area of the circle x2 + y2 = a2 using double integration.
Solution
Area of circle = 4 Area in first quadrant
a a2 y2
4 dx dy
0 0
a
4 x 0
a2 y2
dy
0
a
4 a 2 y 2 dy
0
a
y 2 a2 1 y
4 a y2 sin
2 2 a 0
a2
4 a
2
2 2
22. Find the area of the circle x2 + y2 = a2 using polar coordinates.
Solution
x r cos , y r sin
x2 y2 r 2
r 2 a2
2 r a
Area = r dr d
0 r 0
2
a2
= 2
d
0
= a2
SRM IST, Ramapuram. 9 Department of Mathematics
18MAB102T Advanced Calculus and Complex Analysis Multiple Integrals
23. Find the area of the cardioid r = a(1 + cosθ) by using double integration.
Solution
Given the curve in polar co ordinates r = a(1 + cosθ)
Area of the cardioid = 2(Area above the initial line)
θ varies from 0 to π
r varies from 0 to r = a(1 + cosθ)
π a(1+cosθ)
Area = 2 r drdθ
0 0
a(1+cosθ)
r π 2
= 2 dθ
0
2 0
π
= a 2 (1 + cosθ)2 dθ
0
π
= a 2 (1 + 2cosθ + cos 2θ)dθ
0
1 cos
π π
3 1
= a 2 1 + 2cosθ + dθ = a 2 + 2cosθ + cos2θ dθ
0 2 0
2 2
π
3 1 sin2θ
= a θ + 2sinθ +
2
sinnπ = 0, n
2 2 2 0
3 3πa2
= a2 π =
2 2
*****
SRM IST, Ramapuram. 10 Department of Mathematics