Control of PE
Control of PE
Building Blocks
Switch Mode Converter
                IIN                                                    IOUT
                       +                                        +
        Input                    Power Processing
                      VIN                                       VOUT          Load
      Voltage                        Circuitry
                        –                                       –
          Switch Drive Signals               Voltage, Current
                                             Error Amplifier/
                            Modulator          Compensator    Reference
                                                              Voltage
      Comm
                            Protection, Status Monitoring,
         Bus/
                                    Communication
      Signals
                                                                                     2
Switch Mode Converter
                IIN                                                    IOUT
                       +                                        +
        Input                    Power Processing
                      VIN                                       VOUT          Load
      Voltage                        Circuitry
                        –                                       –
          Switch Drive Signals               Voltage, Current
                                             Error Amplifier/
                            Modulator          Compensator    Reference
                                                              Voltage
      Comm
                            Protection, Status Monitoring,
         Bus/
                                    Communication
      Signals
                                                                                     3
Switch Mode Converter
• Overcurrent, Overvoltage,
  Overtemperature, Etc.                                                      IOUT
• Status Reporting
                           +                                         +
  • OK/Not OK Signal                Power Processing
                                                                      VOUT          Load
  • Voltage, Current,Temperature         Circuitry
    Power, etc.            –                                         –
• Command Input
   • e.g. Remote On/Off                          Voltage, Current
• Configuration
  • e.g. Startup Sequencing                      Error Amplifier/
                               Modulator           Compensator      Reference
                                                                    Voltage
              Comm
                                Protection, Status Monitoring,
                 Bus/
                                        Communication
              Signals
                                                                                           4
Switch Mode Converter
                     IIN                                                   IOUT
                      +                                             +
• Compares Output To                 Power Processing
                   VIN reference     Circuitry                      VOUT          Load
• Generates An Error S–ignal                                        –
• Processes Error Signal To Create               Voltage, Current
  Control Signal
                                                 Error Amplifier/
• Shapes Frequency Response to                     Compensator    Reference
  Achieve Stable Control Loop And                                 Voltage
  Desired Dynamic Response
           Comm
                           Protection, Status Monitoring,
              Bus/
                                   Communication
           Signals
                                                                                         5
Switch Mode Converter
                IIN
                                                    Converts The Control Signal
                       +                                          From The
        Input                    Power Converter
                      VIN
      Voltage                           Circuitry      Error Amplifier /Compensator
                        –                             To Driving– Signals For The
                                                      Power Switching Devices
          Switch Drive Signals                Voltage, Current
                                              Error Amplifier/
                            Modulator           Compensator    Reference
                                                               Voltage
      Comm
                            Protection, Status Monitoring,
         Bus/
                                    Communication
      Signals
                                                                                      6
Switch Mode Converter
                IIN                            Collectively CommonIOUTly Known As
                       +                                 The Co+ntroller
        Input               Power Converter
                      VIN          Circuitry                           OUT
      Voltage
                        –                                          –
          Switch Drive Signals                  Voltage, Current
                                                Error Amplifier/
                              Modulator           Compensator    Reference
                                                                 Voltage
      Comm
                              Protection, Status Monitoring,
         Bus/
                                      Communication
      Signals
                                                                                    7
Transfer Functions
 And Bode Plots
Transfer Function
                               System
          x(t)                   h(t)                  y(t)
                                    
           y (t ) = h (t ) x (t ) =  h ( ) x (t − )d
                                    −
                                                              9
Transfer Function
                               System
          x(t)                   h(t)                  y(t)
                                    
           y (t ) = h (t ) x (t ) =  h ( ) x (t − )d
                                    −
                                                              10
Transfer Function
      Use LaPlace transform to convert to frequency domain
                                 System
            X (s)                 H(s)                  Y (s)
            H(s)
                          Y (s) = H (s)  X (s)
           Is The                                    Describes The
                                      Y (s)       Frequency Response
                              H (s) =
         “Transfer
         Function”                    X (s)          Of The System:
                                                          Gain
                                                         Phase
                                                                       11
Transfer Function
      If There Is Some
      Use LaPlace transform to convert to frequency domain
         Frequency sZ
        Which Makes               System
           Y(sZ )=0                H(s)                Y(s)
             Then
           H(sz) = 0
        Z
              And         Y (s) = H (s)  X (s)
        Sz is a “Zero”
            of the                   Y0(s)
           Of The            H (s) =
          Transfer                   X (s)
          Function
                                                              12
Transfer Function
     Use LaPlace transform to convert to frequency domain
                                                     If There Is Some
                                 System                Frequency sP
                                                       which makes
            X(s)                  H(s)                     X(sP) = 0
                                                             Then
                                                          H(sP) → 
                          Y (s) = H (s)  X (s)               And
                                                        sP Is A “Pole”
                                       Y (s)                Of The
                             H (s) =
                                       X (s)
                                                           Transfer
                                        0                 Function
                                                                         13
Simple Pole Transfer Function HP(s)
                                           1
                              Z F = RF ||
                                         s C
                                           1
                                    RF 
                                 =       s C  s C
                                            1 s C
                                   RF +
                                          s C
                                         RF
                                 =
                                   1+ s  RF  C
                     ZF
        H P (s ) = −
                     ZS
                                     ZS = RS
                                                       14
Simple Pole Transfer Function
                                                                         Standard Form
                                                        1               With DC Gain Term
        H P (s) = −
                    ZF              H P (s ) = G0 
                                                          s              And Frequency
                    ZS                                1+
                                                         P             Dependent Term
                                                  RF
                                        G0 = −
                      RF                          RS                      DC Gain
                 1+ s  R  C
  H P (s ) = −            F
                                        P = 2   f P =
                                                                1
                     RS                                       RF  C
                 RF       1
          =−                            fP =
                                                       1
                                                                          Pole
                 RS 1+ s  RF  C               2    RF  C
                                                                       Frequency
                                                                                      15
Simple Pole Transfer Function: Magnitude
                                                                                                1
 H P ( j  ) = H P ( j  ) H P* ( j  )                        H P ( j  ) = G0 
             2
                                                                                              
                                                                                                        2
                 = H P ( j  ) H P (− j  )                                            1+    
                                                                                               
                                                                                              P
                                                         
                             1                  1                          = G0 
                                                                                             1
                 =  G0                G0              
                              j               − j                                     f 
                                                                                                        2
                          1+                    1+                                        1+  
                   
                              P               P      
                                                                                             fP 
                            1              1
                 = G02            
                             j           j 
                         1+          1−                         Consider The Case When f = f P
                               P        P
                               1                                                            1                     1
                 = G02                                         H P ( j P ) = G0                     = G0 
                               
                                    2
                                                                                             f 
                                                                                                    2
                                                                                                                 1+12
                           1+                                                          1+  P 
                               P                                                          fP 
                                                                                       1          2
                                                                             = G0        = G0     = −3dB
                                                                                        2        2
                                                                                                                        16
 Simple Pole Transfer Function: Phase
                                                                               Im (H P ( j  ))
                                                 H P ( j  ) = tan     −1
                                                                               Re(H P ( j  )) 
                                                                                                
                                                               j                                                                             j    
                                                               1−                                                                                  1−
                                                               P                                                                              P     
Im (HP ( j  )) = Im  G0                                                        Re(HP ( j  )) = Re G0 
                                1                       1                                                        1                          1
                                         = Im G0                                                                        = Re G0                     
                               j                   j       j                                          j                      j       j    
                             1+                      1+        1−                                             1+                         1+        1−
                                P                    P       P                                            P                       P       P     
                                                                                                                                                      
                                 j                                                                                 j  
                             1−                                                                                 1−           
                                                                                                                       
                = Im  G0          P     
                                         2 
                                                                                                     = Re  G0           P    
                                                                                                                              2 
                                                                                                                 
                      
                             1+                                                                         
                                                                                                                  1+         
                                 P                                                                                P   
                           −
                                                                                                                 1
                                                                                                     = G0 
                               P                                                                                
                                                                                                                       2
                = G0                                                                                       1+       
                                                                                                              P 
                                    2
                         1+     
                             P 
                                                                                                                                                       17
Simple Pole Transfer Function: Phase
                          Im (H ( j  ))
    H ( j  ) = tan −1                              Consider The Case When f = f P
                          Re(H ( j  )) 
                                            
                                                                               f 
                                  −                      H ( j  P ) = tan −1  − P 
                                     P                                          fP 
                          G0                
                                                                   = tan−1 (−1)
                                           2
                                1+ 
                         
                      −1           P                                  
                = tan                                                 =−       = −45
                         G         1                                     4
                           0              2 
                                      
                                1+       
                                   P  
                                             
                                             
                      −1             −1     f 
                = tan  −         = tan  − 
                             P            fP 
                                                                                           18
Simple Pole Bode Plot
                               fP =1kHz
                         60
55
                         50
        Magnitude (dB)
45
40
35
30
25
                         20
                          0
     Phase (deg)
-45
                         -90
                             1             2          3          4    5
                           10             10         10         10   10
                                               Frequency (Hz)
                                                                          19
Simple Pole Bode Plot
                         fP =1kHz                                          ‐20 dB/Decade
                        60
55
                        50
       Magnitude (dB)
45
                        40
                                G0
                        35
                        30
                                         Down By 3 dB
                        25
                        20
                         0
-45
                                                                                                     20
Simple Op‐Amp Pole
                RF
                                         ZFEEDBACK (s)
                C     HOP− AMP (s) = −
                                         ZSOURCE (s)
           RS
   VIN
                     VOUT
         VREF
                        As Frequency 
                     Capacitor Impedance 
                      ZFEEDBACK  Gain 
                                                         21
Simple Zero Transfer Function HZ(s)
                                           1
                             Z S = RS ||
                                         s C
                                           1
                                    RS 
                                 =       s C  s C
                                            1 s C
                                   RS +
                                          s C
                                         Rs
                   ZF            =
      H Z (s ) = −                 1+ s  Rs  C
                   ZS
                             Z F = RF
                                                       22
Simple Zero Transfer Function
                   Z
    H Z (s ) = −                                              s 
                       F
                                           H Z (s) = G0  1+     
                   ZS                                         Z 
                   RF
            =−                                        R
                                               G0 = − F
                    Rs                                 RS
               1+ s  Rs  C
                                                                   1
                                              Z = 2   fZ =
                       (1+ s  RS  C )
                   RF                                            RS  C
            =−
                   RS
                                                           1
                                                fz =
                                                     2   RS  C
                                                                          23
Simple Zero Transfer Function: Magnitude
                                                                                   2
H Z ( j  ) = H Z ( j  ) H                                              
           2                     *
                                 Z ( j  )         H Z ( j  ) = G0  1+    
                                                                             
                                                                            Z
               = H Z ( j  ) H Z (− j  )
                                                                          f 
                                                                                  2
                         j          − j                = G0  1+  
               = G0  1+           
                                0 1+
                                   G            
                         Z            Z                             fZ 
                        2 
               = G  1 + 
                   2
                             
                   0
                       Z  
                             
                                                    Consider The Case When f = f Z
                                                                                f 
                                                                                       2
                                                     H Z ( j Z )   = G0  1+  Z 
                                                                                fZ 
                                                                     = G  1+12
                                                                        0
= G0  2  +3dB
                                                                                           24
Simple Zero Transfer Function: Phase
                         Im(H ( j  ))                          G         
      H ( j  ) = tan −1
                                                                   0         
                         Re(H ( j  ))      H ( j  ) = tan 
                                                                −1
                                                                                
                                        
                                                                         Z
                                                                    G0         
                                 j                                       
   Im (H ( j   ))= Im  G0  1+                                           
                                   Z                                      −1  f 
                                                         = tan −1        = tan     f 
                   = G0                                            Z              Z
                            Z
                                  j      Consider The Case When f = fZ
   Re (H ( j   ))= Re  G0   1+      
                                    Z 
                                                                           f 
                   = G0                            H ( j  Z ) = tan −1  Z  = tan−1 (1)
                                                                           fZ 
                                                                    
                                                                =       = 45
                                                                    4
                                                                                              25
Simple Zero Bode Plot
                          fZ = 1kHz
                     40
35
                     30
    Magnitude (dB)
25
20
15
10
                      0
                     90
    Phase (deg)
45
                      0
                        1              2          3          4    5
                      10              10         10         10   10
                                           Frequency (Hz)
                                                                      26
Simple Zero Bode Plot
                          fZ = 1kHz
                                                                       +20 dB/Decade
                     40
35
                     30
    Magnitude (dB)
25
                     20
                                         Up By 3 dB
                     15
                     10
                             G0
                      5
                      0
                     90
                     45
                                                                         Phase Shift: +90 °
                            0°
                      0
                        1                    2               3               4                 5
                      10                    10              10              10                10
                                                      Frequency (Hz)
                                                                                                   27
Simple Zero
             As Frequency 
          Capacitor Impedance 
            ZSOURCE  Gain 
                                  28
Example: Simple Transfer Function
                   vout (s)
         H (s) =
                   vin (s)
                                                     in                        out
                       R2 + 1 
                      
                            s C 
         vOUT (s) =                      vIN (s)
                                      
                    R1+  R2 +
                                  1
                               s C 
                                                                                       1
                                                                   s       Z =
                v (s)       1+ s  R2 C
                                                              1+
                                                                   Z                R2  C
         H (s) = out    =                           H (s) =
                 vin (s) 1+ s  (R1+ R2) C                   1+
                                                                   s
                                                                   P
                                                                                    1
                                                                        P =
                                                                               (R1+ R2)C
                                                                                              29
Simple Transfer Function Bode Plot
                   FPOLE
                                      ‐20 dB/Decade
‐90°
                            FZERO
                                                                 30
What If System Has
Pole And Zero At Same Frequency?
                  They Cancel
                  Each Other!
                                   31
Compensator
Type I Compensator
             VOUT
                          C
                    R1
                                  VEA
             VREF
                    R2
                         Simple Integrator
                         No Phase Boost
                                             33
Type I Compensator
             VOUT
                              C
                    R1
                                         VEA
             VREF
                    R2
                                  Under Closed Loop Control.
                                 The Steady State Value Of VEA
                          Will Be Whatever Value Is Needed To Drive
                         VOUT Such That The Op‐Amp Differential Input
                               Voltage (V+ ‐ V‐) Is Essentially Zero
                                                                   34
Type I Compensator
                VOUT
                                 C
                       R1
                                            VEA
                VREF
                                                                      35
 Type I Compensator: DC
VEA = AOL  (V+ −V− )             Op‐Amp Output Voltage At DC
              1              Is The Differential Input Voltage (V+ ‐ V‐)
 V− = V+ −       VEA           Times The DC Open Loop Gain (AOL)
             AOL
 V+ = VREF
                1
 V− = VREF   −     V EA
               AOL
            1                     Typical Op‐Amp Open Loop Gain Is 40 dB (10,000)
AOL  10 
        4
               VEA  50V
           AOL                         And Assuming Error Amp Output At 5V
 V− = VREF − 50V  VREF
                                                                               36
 Type I Compensator: DC
    I (R1 ) = I (R2 ) + I (V− )  I (R2 )
 VOUT −V− VOUT −VREF = V− VREF
         =                =
    R1         R1      R2   R2
VOUT −VREF VREF
          =
    R1      R2
     VOUT VREF VREF R1 + R2
         =    +    =         VREF
      R1   R2   R1   R1  R2
                                             This Relationship Is True For All
              R1 + R2                       Compensators With An Integrator
     VOUT =           V REF
                R2
                                                                                 37
Type I Compensator Transfer Function H1(s)
VOUT
                C                              ZF                     1
       R1                          H1 (s ) = −           H1 (s ) = −
                                               ZS                     s
                             VEA                1                    P
VREF
                                          = − s C              =−
                                                                     P
       R2                                       R                     s
                        ZF
             H1 (s ) =−                   =− 1              P = 2    fP =
                                                                               1
                        ZS                    s  R C                        R C
                   1                                        fP =        1
            ZF =                                                   2   R  C
                 s C
            ZS = R
                                                                                     38
Type I Compensator Transfer Function
                    P                                               Im (H ( j  ))
  H1 ( j  ) = −                                H1 ( j  ) = tan
                                                                  −1
                                                                     Re(H ( j  )) 
                    j                                                             
            = Re(H ( j  )) + Im(H ( j  ))                         − P
                                  2          2
                                                                              
                                                                             
                                                             = tan−1         = tan (−)
                                                                                     −1
                     
                              2
            = 02 +  − P                                             0      
                                                                          
             
            = P =
                  2   f P                                 =−  = −90
               2   f                                        2
              f
            = P
               f
20
10
-10
-20
                             -30
                             -89
                    -89.5
  Phase (deg)
-90
                    -90.5                                           Constant
                             -91
                                                                   ‐90° Phase
                                                                      Shift
                                 -1      0                     1                  2
                               10       10                    10                 10
                                             Frequency (Hz)
                                                                                      40
Type I Compensator Bode Plot
                             fP =10Hz
                             50
40
                             30
            Magnitude (dB)
20
10
-10
-20
                             -30
                             -89
                    -89.5
                                        Note 20 dB
  Phase (deg)
                             -90        Gain At 1 Hz
                    -90.5
                             -91
                                 -1          0                           1    2
                               10           10                          10   10
                                                       Frequency (Hz)
                                                                                  41
Type I Compensator Bode Plot
         fP =1kHz                                                               Crossover
                             50                                                 (Gain = 1)
                             40
                                                                                 At 1 kHz
                             30
            Magnitude (dB)
20
10
-10
-20
                             -30
                             -89
                        -89.2
                        -89.4
                                          Higher fP
                        -89.6        Means More Gain At
  Phase (deg)
                        -89.8
                             -90      Low Frequencies
                        -90.2
                        -90.4           40 dB @ 1 Hz
                        -90.6
                        -90.8
                             -91
                                 1              2                           3                 4
                               10              10                          10                10
                                                          Frequency (Hz)
                                                                                                  650
Type II Compensator
                                               652
Type II Compensator Transfer Function H2(s)
                                   1                 1          1      1+ s  R1  C1
                           ZF =         ||  R1 +          =         ||
                                s  C2             s  C1  s  C2         s  C1
                                    1 1+ s  R1  C1
                                         
                                 s  C2         s  C1        s  C1 s  C2
                              =                                    
                                   1        1+ s  R1  C1 s  C1 s  C2
                                         +
                                s  C2           s  C1
                      ZF                 1+ s  R1  C1
         H 2 (s ) = −         =
                      ZS        s  C1 + s  C2  (1+ s  R1  C1 )
ZS = R2
                                                                                      44
Type II Compensator Transfer Function H2(s)
             ZF
 H 2 (s ) =−
             ZS
                 1          1+ s  R1  C1
                         
           s  (C1 + C2 ) 1+ s  R  C1  C2
                                     C1 + C2
                                  1
        =−
                           R2                          Zero
                     1           1+ s  R1  C1
        =−                    
           s  R2  (C1 + C2 ) 1+ s  R  C1  C2
                                       1
                                          C1 + C2
 Integrator Pole
                                                    Second Pole
                                                                  45
Type II Compensator Transfer Function H2(s)
                                                               1
                              P 0 = 2   fP 0      =
                                                        R2  (C1 + C2 )
                         s                        1
                     1+        f P0   =
                 1      Z              2   R2  (C1 + C2 )
   H 2 (s ) = −
                 s       s
                     1+                                  1
                P 0    P1   Z = 2   fZ =
                                                       R1  C1
                   s                      1
                   1+
                 Z           fZ =
          = − P0                    2   R1  C1
              s 1+ s
                  P1                                       1
                              P1 = 2   f P1 =
                                                           C C
                                                       R1  1 2
                                                           C1 + C2
                                                 1
                               f P1 =
                                                      C1  C2
                                        2   R1 
                                                      C1 + C2
                                                                          656
Type II Compensator Bode Plot
                             fP 0 =100Hz   fZ =100Hz                    fP1 = 10kHz
                     60
50
40
                     30
    Magnitude (dB)
20
10
-10
-20
                     -30
                     -40
                       0
    Phase (deg)
-45
                     -90
                         0             1     2                3                4       5    6
                       10             10    10               10               10      10   10
                                                       Frequency (Hz)
                                                                                                47
Type II Compensator Bode Plot
                             fP 0 =100Hz   fZ = 100Hz                    fP1 = 10kHz
                     60
50
40
20
10
-10
-20
                     -30
                     -40
                       0
    Phase (deg)
-45
                     -90
                         0             1      2                3                4       5    6
                       10             10     10               10               10      10   10
                                                        Frequency (Hz)
                                                                                                 48
Type II Compensator Bode Plot
                             fP 0 =100Hz      fZ = 100Hz                    fP1 = 10kHz
                     60
50
40
                     30                                                       Maximum Phase
    Magnitude (dB)
20
                     10                                                        Boost = 78.6°
                       0
                     -10
                                                                                 At 1 kHz
                     -20
-45
                     -90
                         0             1         2                3                4       5    6
                       10             10        10               10               10      10   10
                                                           Frequency (Hz)
                                                                                                    49
Type III Compensator
           VOUT
                              R3        C3
                   R1
                        R2         C2
                   C1
                                             VEA
            VREF
                        R4
                             Integrator, Zero, Zero , Pole, Pole
                             Up To 180° Phase Boost
                                                              52
  Type III Compensator Transfer Function H3(s)
VOUT
                                                              1                1        1       1+ s  R3 C3 
                  R3        C3
                                                  Z F (s ) =       ||  R3 +        =        ||                
        R1                                                  s C2            s C3  s C2          s C3      
             R2        C2                                      1 1+ s  R3 C3
                                                                    
        C1                                                   s C2        s C3        s C2 s C3
                                                          =                                
                                                               1       1+ s  R3 C3 s C2 s C3
                                                                   +
                                                            s C2          s C3
                                            VEA
 VREF                                                               1+ s  R3 C3
                                                          =
                                                            s C3 + s C2  (1+ s  R3 C3 )
             R4
                                                                  1+ s  R3 C3
                                 Z F (s )         Z F (s) = 
                                                           1
                  H 3 (s ) = −                             s C3 + C2  (1+ s  R3 C3 )
                                 Z S (s )
                                                                                                                     54
  Type III Compensator Transfer Function H3(s)
VOUT
                                                                             1              1+ s  R1  C1
                  R3        C3                    Z S (s ) = R2 ||  R1 +           =  R  ||
                                                                                                s  C1
                                                                                         2
        R1                                                                s   C 1 
             R2        C2
                                                                    1+ s  R1 C1 
        C1                                                   R2                    
                                                                        s  C1                       1+ s  R1  C1
                                                           =                             = R2 
                                                                     1+ s  R1  C1           1+ s  R1  C1 + s  R2 C1
                                            VEA              R2 +                     
 VREF                                                                    s  C 1      
             R4                                                        1+ s  R1  C1
                                                           = R2 
                  H3 (s ) = −
                                 Z F (s )                         1+ s  (R1 + R2 ) C1
                                 ZS (s )
                                                                                                                  55
  Type III Compensator Transfer Function H3(s)
VOUT
                                                     Z F (s )
                                       H 3 (s ) =−
                  R3        C3
                                                     Z S (s )
        R1
                                                       1            1+ s  R3 C3
             R2        C2                                       
        C1                                       s  (C2 + C3 ) 1+ s  R  C2 C3
                                                                         3
                                                                            C2 + C3
                                              =−
                                                              1+ s  R1 C1
                                                      R2 
                                 VEA                       1+ s  (R1 + R2 )C1
 VREF
                                                             1          1+ s  R3 C3 1+ s  (R1 + R2 )C1
                                       H 3 (s ) =−                                  
                                                   s  R2  (C2 + C3 ) 1+ s  R1 C1 1+ s  R  C2 C3
             R4
                                                                                                  C2 + C3
                                                                                               3
                                                                                                      56
 Type III Compensator Transfer Function H3(s)
                                     Z 2 =
                                                           1
                1+         1+                   (R1 + R2 )C1
H (s) = − P0 
                   Z1         Z2 
                                                              1
 3
                                    fZ 2 =
                                                     2   (R1 + R2 )C1
                1+     1+  
                     P1          P2                1
                                           P1 =
                 1                                   R1 C1
P0 =
          R2  (C2 + C3 )                   f P1 =
                                                           1
                     1                               2   R1 C1
 f P0 =
          2   R2  (C2 + C3 )           P 2 =
                                                          1
                                                         C C
            1                                        R3  2 3
Z1 =                                                    C2 + C3
          R3 C3
                                                               1
                1                          fP 2 =
 f Z1 =                                                             C 2C 3
          2   R3 C3                              2    R3 
                                                                    C2 + C3
                                                                              57
Type III Bode Plot
        fP 0 =1000Hz               fZ1 =100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
     Magnitude (dB)
40
30
20
10
                      -10
                       90
                      45
     Phase (deg)
-45
                      -90
                          0    1         2        3                     4         5         6         7
                        10    10        10       10                    10        10        10        10
                                                      Frequency (Hz)
                                                                                                          58
Type III Bode Plot
       fP 0 =1000Hz                    fZ1 = 100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
     Magnitude (dB)
40
30
20
10
                      -10
                               Integrator
                       90
                              Pole Sets Low
                      45       Frequency
                                  Gain
     Phase (deg)
-45
                      -90
                          0        1           2       3                     4         5         6         7
                        10        10          10      10                    10        10        10        10
                                                           Frequency (Hz)
                                                                                                               59
Type III Bode Plot
       fP0 =1000Hz                 fZ1 = 100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
                                                                                      At fZ1,
                                                                                     Slope Of
     Magnitude (dB)
40
                      30
                                                                                   Gain Flattens
                      20
10
                      -10
                       90
                      45                                                              At fZ1,
                                                                                   Phase Boost
     Phase (deg)
                                                                                    About 45°
                      -45
                      -90
                          0    1          2        3                     4         5         6         7
                        10    10         10       10                    10        10        10        10
                                                       Frequency (Hz)
                                                                                                           60
Type III Bode Plot
         fP 0 =1000Hz              fZ1 = 100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
                                                                                            At fZ2,
                                                                                          Slope Of
     Magnitude (dB)
40
                      30                                                                Gain Turns Up
                      20
10
                      -10
                       90
                      45
                                                                                          At fZ2,
     Phase (deg)
                        0                                                              Phase Boost
                                                                                       About 123°
                      -45
                      -90
                          0    1         2         3                     4         5          6          7
                        10    10        10        10                    10        10         10         10
                                                       Frequency (Hz)
                                                                                                             61
Type III Bode Plot
       fP0 =1000Hz                 fZ1 = 100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
     Magnitude (dB)
40
30
20
10
                      -10
                                                                                        Maximum
                       90
                                                                                       Phase Boost
                      45                                                               About 130°
     Phase (deg)
-45
                      -90
                          0    1          2        3                     4         5         6         7
                        10    10         10       10                    10        10        10        10
                                                       Frequency (Hz)
                                                                                                           62
Type III Bode Plot
       fP0 =1000Hz                 fZ1 = 100Hz     fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50               At fP1
                                   Slope Of Gain
     Magnitude (dB)
40
                      30
                                      Flattens
                      20
10
                      -10
                       90
                                      At fP1,
                      45           Phase Boost
                                   Back To 123°
     Phase (deg)
-45
                      -90
                          0    1          2          3                     4         5         6         7
                        10    10         10         10                    10        10        10        10
                                                         Frequency (Hz)
                                                                                                             63
Type III Bode Plot
       fP 0 =1000Hz                 fZ1 = 100Hz   fZ 2 = 1000Hz                  fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50                At fP2,
                                       Slope Of
     Magnitude (dB)
40
                      30
                                   Gain Turns Down
                      20
10
                      -10
                       90
                                                                                         At Higher
                                                                                       Frequencies,
                                         At fP2,
                      45
                                                                                      No Phase Boost
     Phase (deg)
                        0            Phase Boost
                      -45
                                   Back To About 45°
                      -90
                          0    1           2           3                     4         5         6         7
                        10    10          10         10                     10        10        10        10
                                                           Frequency (Hz)
                                                                                                               64
Basic Feedback Loop
       Review
Basic Feedback Review
                          Plant P
In Response To Input X X P Y
       So How Do We Set
       Input X To Get The
                               X      P      Y
       Desired Output Y?
         +           E           X
     U           +       C            P         Y
             –
Basic Feedback Review
         Subtract Actual Output Y From Command U
           To Generate Difference (Error) Signal E
                          E=U‐Y
         +            E                  X
     U           +             C                 P   Y
             –
Basic Feedback Review
                             Process Error Signal E In
                            Controller/Compensator C
                         To Generate Plant Input Signal X
         +           E                   X
     U           +            C                  P          Y
             –
Basic Feedback Review
                              For This Discussion Let An
                         Increase In X Cause An Increase In Y
                                   (And Vice Versa)
         +           E                     X
     U           +              C                  P            Y
             –
Basic Feedback Review
             To Start The Description Of How The Feedback Works
                 Suppose Y Is Greater Than The Desired Value
         +            E                  X
     U           +             C                 P           Y
             –
Basic Feedback Review
      Then The Error, E, Is
           Negative
           E=U‐Y
            +             E       X
     U              +         C       P   Y
                –                         Y>U
Basic Feedback Review
                        Negative Error
                     Causes The Output
     E=U–Y<0         Of The Controller To
                          Decrease
         +           E                      X
     U           +             C                P   Y
             –                                      Y>U
Basic Feedback Review
                        Negative Error
                     Causes The Output              Decreasing X
                     Of The Controller To           Causes Y To
     E=U–Y<0
                          Decrease                   Decrease
         +           E                      X
     U           +             C                P             Y
             –                                               Y>U
Basic Feedback Review
         Step By Step Starting With Output Too High
         +           E               X
     U           +          C               P         Y
             –
Basic Feedback Review
         Step By Step Starting With Output Too Low
         +           E              X
     U           +          C              P         Y
             –
Basic Feedback: The Math
     Y = P X                        Y = P C  E
            X =CE                      = P  C  (U − Y )
                 E =U −Y
                                        = P  C U − P  C Y
                           Y + P  C Y = P  C U
                                         P C
                                     Y=         U
                                        1+ P C
          +           E                X
     U            +          C                 P             Y
              –
Basic Feedback: The Math
                      Small Signal
                                     P (s) C (s)
                      Y (s) =                        U (s )
                                1 + P (s)  C (s )
                               Y (s)    P (s)  C (s)
         HCLOSED _ LOOP (s ) =       =
                               U (s ) 1 + P (s)  C (s)
          +               E                             X
     U            +                      C                     P   Y
              –
Basic Feedback: The Math
          +       E          X
     U        +         C         P
         This Is The “Closed Loop Gain”   Y
              –
Basic Feedback: Open Loop Gain
                                                         If Denominator Is Zero
   HCLOSED _ LOOP (s) = Y (s) = P (s)  C (s)
                                                       Then The Loop Is Unstable
                        U (s ) 1+ P (s )  C (s)
                                                              P(s) ∙ C(s) = ‐1
   HOPEN _ LOOP (s) = T (s) = C (s)  P (s)
                                                   When Designing The Feedback
   HCLOSED _ LOOP (s ) = Y (s) = T (s)              Loop We Will Focus On The
                         U (s ) 1 + T (s )               Open Loop Gain
                 +               E                 X
        U                +                    C            P          Y
                     –
Buck Converter
                           Buck         1.8 V
          12 V                                        Load
                         Converter
                                     VOUT = D VIN
                         D = 0.15
                                          = 0.15 12 V
                                          = 1.8V
          What Happens If:
       Input Voltage Changes?
           Load Changes?
                                                Output
                                                Voltage
                                                Changes
                                                             91
Buck Converter With Feedback
                                                     VIN
           VERROR =VREF − K VOUT
                       Error    VEA             D           VOUT
                                                    Power
    VREF               Amp/           PWM
           +    –   Compensator
                                                    Stage
                K VOUT                 K
                                      Voltage
                                      Divider
                                                                   92
Buck Converter With Feedback
                                                    VIN
           VERROR =VREF − K VOUT
                       Error    VEA             D                 VOUT
                                                          Power
    VREF               Amp/           PWM
           +    –   Compensator
                                                          Stage
                                        K
                                      Voltage
                                      Divider
                          Output Voltage Too High 
                          Error Voltage Is Negative 
                          Duty Cycle Is Decreased 
                                                                         224
                          Output Voltage Is Reduced
Buck Converter With Feedback
                                                    VIN
           VERROR =VREF − K VOUT
                       Error    VEA             D                 VOUT
                                                          Power
    VREF               Amp/           PWM
           +    –   Compensator
                                                          Stage
                                        K
                                      Voltage
                                      Divider
                          Output Voltage Too Low 
                          Error Voltage Is Positive 
                          Duty Cycle Is Increased 
                          Output Voltage Is Increased                    225
Feedback Concerns
Tracking
                    Disturbance
                     Rejection
Stability
                                              95
Feedback Concerns
Tracking
                   Disturbance
               How Close Is The
                   Output
                   To The
                                  Stability
              Commanded Value?
                                              96
Feedback Concerns
Tracking
                     Disturbance
                      Rejection
Stability
                                             98
Loop Gain
                                                       VIN
          VERROR =VREF − K VOUT
                                   VEA             D                  VOUT
   VREF               HEA(s)             GPWM(s)             GVD(s)
          +    –
                                           K
K(s)
                                                       VIN
          VERROR =VREF − K VOUT
                                   VEA             D                  VOUT
   VREF               HEA(s)             GPWM(s)             GVD(s)
          +    –
                                           K
K(s)
                                                        VIN
           VERROR =VREF − K VOUT
                                    VEA             D                  VOUT
    VREF               HEA(s)             GPWM(s)             GVD(s)
           +    –
                                            K
                          A0         = A0∙(V+ – V–)
                                                      vout (s) =    A(s)  v (s)
                                                                            cmd
                                                                                                Let The
                                                                   1+ A(s)
                                                                                             Op-amp Gain
                                                       A(s) >>1                              Be Very Large
     What Is       —
  This Voltage,
  VIN = V+ – V–?                     VOUT
       VCMD        +             VOUT =1V
                       A0
                            A0 = 40dB =100
                                             104
    Op‐Amp Buffer/Follower Example
           What Is       —
        This Voltage,
        VIN = V+ – V–?                                   VOUT
                               V
1V = A0 VIN     VCMD    +                          VOUT =1V
    = 100 VIN
                                      A0
             1             VCMD = V OUT +V IN
    = 100      V                              = 40dB =100
             100                 = 1V +10 mV
VIN = 10 mV                        = 1.01V  VOUT
                                                                105
Op‐Amp Buffer/Follower Example
     What Is       —
  This Voltage,
  VIN = V+ – V–?                 VOUT
       VCMD        +        VOUT =1V
                       A0   A0 = 80dB =10,000
                                                106
    Op‐Amp Buffer/Follower Example
            What Is            —
         This Voltage,
         VIN = V+ – V–?                     VOUT
1V = A0 VIN    VCMD           +        VOUT =1V
    = 10, 000 VIN
                                   A0   A0 = 80dB =10,000
                 1        
    = 10, 000          V
                 10, 000 
VIN = 100 V
                                                            107
   Op‐Amp Buffer/Follower Example
                                             109
How To Get Good Tracking?
                                                 VIN
         VERROR =VREF − K VOUT
                                  VEA                           VOUT
  VREF               HEA(s)                            GVD(s)
         +                              Gain G
              –
                                         K
K(s)
                                                                       110
How To Get Good Tracking?
                                                 VIN
         VERROR =VREF − K VOUT
                                  VEA                           VOUT
  VREF
         +
                     HEA(s)             Gain G         GVD(s)
              –
                                         K
K(s)
                                                  VIN
          VERROR =VREF − K VOUT
                                   VEA                           VOUT
   VREF
           +
                      HEA(s)             Gain G         GVD(s)
               –
                                          K
K(s)
                                   VEA             D                  VOUT
   VREF               HEA(s)             GPWM(s)             GVD(s)
          +    –
                                           K
K(s)
                                                                             113
Loop Gain And Tracking
                  VOUT (s) = GVD (s) D (s) = GVD (s)GPWM (s) VEA (s)
                   VEA (s) = H EA (s)(VREF − K (s)VOUT (s ))
                  VOUT (s ) = GVD (s) GPWM (s) HEA (s)(VREF − K (s)VOUT (s ))
                           = GVD (s )GPWM (s ) HEA (s )VREF
                            −K (s )GVD (s) GPWM (s ) HEA (s )VOUT (s )
      VOUT (s) + K (s)GVD (s)GPWM (s) HEA (s)VOUT (s) = GVD (s )GPWM (s ) HEA (s )VREF
                                                                                                114
  Loop Gain And Tracking
                1    T (s)
VOUT (s) =                  VREF
              K (s) 1+ T (s)                        Let The Loop Gain
  T (s) >>1                                              Be Large
                1             T (s)
VOUT (s)                           VREF
              K (s) 1 + T (s)
                1         T (s)
                              VREF
              K (s)       T (s)
                                                      Feedback Divider
VOUT (s)       1     VREF
              K (s)                                   Usually Constant
  K (s) = K                                           (Just Resistors)
VOUT (s) 
              1
                V REF                          With Large Loop Gain
              K
                                               Output Voltage Tracks
                                             The Reference Voltage/Input
                                                                           115
Loop Gain T(s)
               T (s) →  VOUT
                                  1
      |T(s)|                     → VREF
                                  K         High
                                           Loop
                                            Gain
                                           Means
                                           Small
                                           Error
                          Frequency
                                                   116
Assuring Steady State Tracking
                                                    VIN
           VERROR =VREF − K VOUT
                                    VEA
                                                D         Power   VOUT
    VREF            Integrator            PWM
           +    –
                                                          Stage
                                          K
                      Any Steady State (DC) Error,
                         No Matter How Small,
                        Is Integrated Over Time
                     To Make An Error Amp Output
                     That Corrects The Duty Cycle To
                         Drive The Error To Zero                         245
Analog Integrator
                                                              1 t vin ( ) −VREF
     vOUT (t ) = VREF − vC (t )          vOUT (t ) = VREF   −                    d
                                                              C   0        R
                        1 t
              = VREF   −   iC ( )d                      −
                                                                1      t
                                                                      vERROR ( )d
                        C 0                       = VREF
                                                              R C 0
                                                                                        118
Analog Integrator
                                                        As
                                                      s→0
                                                    Gain → 
                                                   DC Error → 0
                             1
     vOUT (s)   Z (s)                               
                       = − s C = −
                                        1       1              1
              =− F                           =−   =− P   P =
      vIN (s)   ZS (s)       R      s  R C    s    s        R C
                                            P
                                                                     119
Crossover Frequency, FC
               Generally Speaking,
       The Higher The Crossover Frequency,
   0 dB The Faster The Transient Response
                               Frequency
                                                              120
Response Time Vs. Bandwidth
                                                Step Response
                 10
                  8
                               1000 Hz
                  7
                          500 Hz
                  6
     Amplitude
                  5
                           200 Hz
                  4
                  3           100 Hz
                  2
                  0
                      0                  0.05                    0.1   0.15
                                                Time (seconds)
                                                                              121
Loop Phase
     |T(s)|                   There Is Also A            T(s)
                        Phase Shift That Varies With
                     Frequency To Signals Going Around
                                 The Loop
         Generally Speaking,
          The Phase At The
        Crossover Frequency
      Indicates Stability Margin
                               Frequency
                                                                 122
Stability
              Controller       Plant
  R           Gain: 1.6      Gain: 1.5     Y
      +                     Phase: ‐120°
          –   Phase: ‐60°
                                               123
Stability
                        To Be Stable,
                    At Frequency When
                       Loop Gain = 1
               Total Phase Shift Must be
   R
       +
               less than -360°                Y
           –   Phase: ‐60°     Phase: ‐120°
                                                  124
Stability
      Note: Inverting Error Amplifier
        Phase Shift Equals –180°
                Controller              Plant
  R              Gain: 1.6                       Y
      +                    So Phase Shift
          –     Phase: ‐60°       Phase: ‐120°
                      In The Rest Of The Loop
                      Must Be Less Than –180°
                                                     125
Step Response vs. Phase Margin
                                 Step Response
                1.4
1.2
                0.8
                                                  Phase Margin
    Amplitude
                                                            20°
                0.6
                                                            45°
                0.4
                                                            70°
                0.2
                                                            90°
                 0
                      0   0.05                        0.1         0.15
                                 Time (seconds)
                                                                         126
Stability vs. Phase Margin
                                  Step Response
                1.4
1.2
                0.4
                                (70o Phase Margin)
                0.2
                                                         90°
                 0
                      0    0.05                    0.1         0.15
                                  Time (seconds)
                                                                      127
   Buck Converter
With Feedback Control
Buck Converter With Feedback
                                                        VIN
           VERROR =VREF − K VOUT
                       Error        VEA             D                     VOUT
                                                                Buck
    VREF               Amp/               PWM
           +    –   Compensator
                                                              Converter
                                            K
                                          Voltage
                                          Divider
                                                                                 129
Loop Gain T(s)
                                                    VIN
    So That    = VREF − K VOUT
        VERRORT(s)
   Gives Desired                 We             D                   VOUT
   Performance HEA(s)
                                 EA
                                Design
                                     GPWM (s)             Power
                                                           GVD (s) Stage
              –                 H    (s)                  Design Sets
   And Stability                   EA
                                                              GVD(s)
                                       K(s)
                             Loop Gain
           T (s) = K  H EA (s) GPWM GVD (s)
                                                                           130
Compensator Design
                   T (s)
                                                                        K
 H EA (s) =                                                           Voltage
              K GPWM GVD (s)                                        Divider
Choose T(s)
                                                                                                      131
              Loop Gain T(s)
                                               VIN
       VERROR = VREF − K VOUT
                    Error    VEA           D                     VOUT
                                                       Buck
VREF                Amp/         PWM
        +    –   Compensator
                                                     Converter
                                   K
                                 Voltage
                                 Divider
                                                                        260
Ideal T(s): Simple Integrator?
           |T(s)|                      T(s)
                               
                        T (s) = C              0°
                                  s
‐90°
0 dB
                                  FC
                      Frequency
                                                      133
Ideal T(s): Simple Integrator?
        |T(s)|                                  T(s)
                                           C
            Phase Shift Of 90° T s  ( )=                0°
          Is Completely Stable             s
      But Not The Fastest Response
‐90°
                                                                    ‐45°
          0 dB
                                                                    ‐90°
                                                                    ‐110°
          0          1
T (s) =                      Phase Margin                          ‐135°
          s 1+            s
                                     = 70 °
                      HFP                           FHFP           ‐180°
                                         Frequency
                                                                            135
 Better T(s)
                   |T(s)|                                   T(s)
                     Adjust 0 Such That                                0°
                        Loop Gain =1         FC
                   At Crossover Frequency
                         T ( j C ) =1                                 ‐45°
          0 dB
                                                                        ‐90°
                                                                        ‐110°
          0
T (s) =
                                                                    2
                      1                                     C  ‐135°
               
          s 1+            s   Phase Margin    0 = C  1+       
                      HFP
                                     =70 °                  HFP 
                                                                        ‐180°
                                        Frequency
                                                                                136
Calculating 0
                                            0
• Ideal Loop Transfer Function   T (s ) =
                                            s 1+
                                                   
                                                       1
                                                           s
                                                       HFP
                                                                          − j  C 1− j C   
                                                               HFP                  HFP    
                                                                                             
                                                                                                    137
Calculating 0
                                                                                
                                         1                            1       
             T ( j C )       = 0                                           
                           2                                         0
                       = 1+      
                   
                  C           
                               HFP 
                              C 
                                                2
                     0
                        = 1+      
                     C        
                              HFP 
                                    C 
                                                        2
                      0 = C  1+       
                                    HFP 
                                                                                       138
Better T(s)
                                FC = 10 kHz
                             FHFP = 27.475 kHz
          0               Phase = ‐110°
T (s) =
                   1
               
          s 1+         s
                   HFP
                                                 139
Better T(s):
Practical Crossover Frequency
FSW /5 Challenging
                                                          140
     Small Signal Model
Of The Pulse Width Modulator
            GPWM
Small Signal Model Of
Pulse‐Width Modulator
                       Error
                                             Power
   Vref                Amp/       PWM                Vout
            +   –   Compensator
                                             Stage
                                  Voltage
                                  Divider
                                                            142
Pulse Width Modulator
S Q
                                143
Analog Pulse Width Modulator
        Error
         Amp
       Output
        Ramp
        Signal
Clock
       PWM
       Signal
                               144
 Trailing Edge PWM
 Error
  Amp
Output
 Ramp
 Signal
Clock
PWM
Signal
                     145
 Leading Edge And Double Edge PWM
   Double
     Edge
Modulation
  Leading
     Edge
Modulation
                                    146
Small Signal Model Of
Pulse‐Width Modulator
       VRAMP_MAX        2 V  100% Duty Cycle
                                1.25V −1V
                           D=             = 0.25
                                  2V −1V
                                                   147
Small Signal Model Of
Pulse‐Width Modulator
                                                                    vERROR _ AMP −VRAMP _ MIN
    VRAMP_MAX     d (vERROR_ AMP )= (DMAX − DMIN )
                                                                    VRAMP _ MAX −VRAMP _ MIN
                                 GPWM =
                                           (
                                          d d (vERROR _ AMP )   )
   VERROR_AMP                               d (vERROR _ AMP )
                                                                         v           −V           
    VRAMP_MIN                        =
                                                 d
                                                          ( DMAX − DMIN ) ERROR _ AMP RAMP _ MIN
                                       d (vERROR _ AMP )                VRAMP _ MAX −VRAMP _ MIN 
                                            DMAX − DMIN
                                     =
                                       VRAMP _ MAX −VRAMP _ MIN
                                                                                   1
                                                                      GPWM     =
                DMAX = 1     DMIN = 0                                            VRAMP
                                                                                                        148
Control‐To‐Output
Transfer Function
       GVD
Buck Converter GVD
                                                            VIN
              VERROR = VREF − K VOUT
                                        VEA             D                  VOUT
       VREF               HEA(s)              GPWM(s)             GVD(s)
              +    –
                                                K
K(s)
    • Derivation Of Control‐To‐Output
      Transfer Functions Generally Not Trivial
Buck Converter
           vSW (t ) = VIN  d (t )
                                     Q1             L
                    Gate1
     VIN
                                                              ESR
                                     Q2                             R   VOUT
                    Gate2                                      C
                                                    d̂ << D
       d (t ) = D + d̂ (t ) = D + d̂ sin ( t )
                                                     <<SW
                                                                               151
Buck Converter
                   Q1              L
           Gate1
     VIN
                                                                     152
Buck Converter
                                                  v̂OUT (t )
           VIN  d̂ sin ( t )   Q1   L
                     Gate1
     VIN
                                            ESR
                                   Q2                   R      VOUT
                    Gate2                    C
                                                                      153
Buck Converter
                                                                  v̂OUT (t )
           VIN  d̂ sin ( t )   Q1             L
                     Gate1
     VIN
                                                         ESR
                                   Q2    v̂OUT (s) = HLC (s)VIN  d̂(s)       VOUT
                    Gate2
                                             v̂OUT (s)
                                   GVD (s) =           = VIN  H LC (s)
                                                d̂ (s)
                                                                                      154
L‐C Filter Transfer Function
                                                                              1 
        L                                                 RLOAD ||  RC +
                                                                            s C 
             RL
                                        vout (s) =                                          v (s )
                                                                                     1  in
                                                   s  L + RL + RLOAD ||  RC +
              RC                                                                   s C 
  vin                   RLOAD   vout
              C
                                                 RC <<RLOAD           RL <<R LOAD
                  ESR Zero
                                                      1+ s  RC C
                                       H LC (s) 
                                                       L
                                                  1+        s + L C  s2
                                                     RLOAD
                                              LC Double Pole
                                                                                                       155
L‐C Filter Transfer Function
                                                                                                          1 
             L                                                                        RLOAD ||  RC +
                                                                                                        s C 
                           RL
                                                                    vout (s) =                                          v (s )
                                                                                                                 1  in
                                                                               s  L + RL + RLOAD ||  RC +
                                RC                                                                             s C 
   vin                                           RLOAD       vout
                                C
                                                                             RC <<RLOAD           RL ,<<RLOAD
                                                 s
                                          1+
                                               Z                                                   1+ s  RC C
                 H LC (s )                                                    H LC (s) 
                                                                2                                   L
                                  L  s              s                                  1+           s + L C  s2
                               1+ P                +                                         RLOAD
                                 RLOAD  P              
                                                       P
                                            s
                                       1+                                  Z =      1
 Q=
    R LOAD                                  Z
    P  L                =                                                        RC C
                               1+ 1   s  +  s 
                                                         2
                                                                                   1
                                  Q  P   P                          P2 =
                                                                                  L C                                             156
Buck Converter GVD(s)
                                                      1+ s  RC C
          GVD (s) = VIN  HLC (s)  VIN 
                                                       L
                                                  1+        s + L C  s 2
                                                     RLOAD
                                                  s
                                          1+
                                               Z _ ESR
                          = VIN 
                                                    s 
                                                             2
                                    1+ 1   s   + 
                                       Q  LC      LC 
                         1                      1                     RLOAD
          Z _ ESR =                   LC
                                        2
                                           =                     Q=
                       RC C                   L C                   LC  L
                                                                                157
Buck Converter GVD(s)
                                ‐40 dB/Decade
                    Q     FLC
                                                ‐20 dB/Decade
                                  FESR
                                                                158
Buck Converter GVD(s)
        Low Freq Phase
              0°
                            FLC
‐90°
‐135°
                   ‐180°
                                  FESR
                                                 159
Buck Converter GVD(s)
          R=1           R=5   R = 25
                                       160
Buck Converter GVD(s)
          R=1           R=5                 R = 25
                              Higher Load Resistance 
                                     Higher Q 
                                     Larger Peak
                                                         161
Solving For The
 Compensator
Compensator Poles And Zeros
     GVD         LC
                 XX
                        ESR
                         O
                              163
Compensator Poles And Zeros
             Integrator
     HEA                  LC   Double Zero
             Pole
             At s = 0     XX   To Cancel
       X                       LC Poles         Single Pole
                                                To Cancel
                          OO
                                              X ESR Zero
                                                                  HF Pole
                                             ESR
                                                              X   For Desired
                                              O                   Phase Margin
     • Integrator Pole
     • Two Zeros
     • Two Poles
                                                                                 164
Compensator Poles And Zeros
          Integrator
     T    Pole
                       LC   Double Zero
                            To Cancel
      X   At s = 0     XX
                            LC Poles         Single Pole
                                             To Cancel
                       OO
                                           X ESR Zero
                                                               HF Pole
                                          ESR
                                                           X   For Desired
                                           O                   Phase Margin
        We Have Our
         Ideal Loop
      Transfer Function!
                                                                              165
Solving For The Compensator
                                                                                0
           T (s) = K (s) H EA (s)GPWM (s)GVD (s)                   T (s) =
                                                                                         1
                                                                                     
                                                                                s 1+         s
                                                                                         HFP
                                                                                                   C 
                                                                                                              2
                                                                                     0 = C  1+      
                             H EA (s) =        T (s)                                                
                                                                                                   HFP 
                                          K GPWM GVD (s)                           HFP =
                                                                                                      C
                                                                                                 tan (90 − PM )
                                                                     s
                                                             1+
                                                                  Z _ ESR
                                      GVD (s) = VIN 
                               1
    K =1            GPWM =
                                                          1  s        s 
                                                                                 2
                             VRAMP
                                                        1+         +    
                                                          Q  LC        
                                                                       LC 
                                                                                                                  166
Solving For The Compensator
                                                    0      1
      Ideal                                          s 1+        s
      Compensator       H EA (s) =
                                                            HFP
      Transfer                                                     s           
                                                            1+                 
      Function                                                                 
                                              V IN 
                                       1
            Two Zeros                                             Z _ ESR
                                                                              2 
                                     VRAMP
                                                         1    s       s    
                                                        1+         +    
                                                         Q  LC   LC  
                                                
                                                              
                                                                     2
                                       1+ 1   s  +  s 
                                   P0      Q  LC   LC 
                                 =                                                  Two
    Integrator Pole                 s         s          s 
                                                      1+
                                        Z _ ESR    
                                         1+
                                                          HFP 
                                                                                    Poles
                                                                  
                                                                           2
                                 VRAMP  0 VRAMP
                         P0 =             =           C  1+  C 
                                    VIN      VIN                 HFP 
                                                                                            167
Practical Compensator
Transfer Function
                                    s         s 
                                1+       1+     
                          P0      Z1       Z2 
               H EA (s) =    
                           s        s         s 
                                1+     1+  
                                    P1        P2 
                                              How Do We
          How Do We
                                              Choose The
           Implement
                                             Pole And Zero
        This In A Circuit?
                                             Frequencies?
                                                             168
Type III Compensator
                       169
Type III Compensator
                          VOUT
                                                 R3        C3
                                    R1
                                            R2        C2
                                    C1
                                                                        Note
                        Reference    VREF
                                                                VEA   No Voltage
                         Votlage
                                                                       Divider
                                            R4
                                                                        Term!
                1          1+ s  R3  C3 1+ s  (R1 + R2 ) C1           Note
   =−                                   
      s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3           R4 Does NOT
                                                   3
                                                      C2 + C3           Appear!
                                                                                   170
 Type III Compensator
                           VOUT
     Integrator
        Pole                                       R3        C3
                                     R1
              1                              R2
P 0 =                                                  C2
       R2  (C2 + C3 )               C1
                                                                  VEA
                         Reference    VREF
                          Votlage
              vEA (s)
                                             R4
H EA (s) =
             vOUT (s)
                      1          1+ s  R3  C3  1+ s  (R1 + R2 ) C1
         =−                    
            s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3
                                                              C2 + C3
                                                           3
                                                                          171
 Type III Compensator
    First Zero            VOUT
            1                                               C3
   Z1 =                                          R3
         R3 C3                     R1
                                            R2         C2
                                    C1
                                                                 VEA
                        Reference    VREF
                         Votlage
            vEA (s)
                                            R4
H EA (s) =
           vOUT (s)
                     1          1+ s  R3  C3  1+ s  (R1 + R2 ) C1
        =−                    
           s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3
                                                             C2 + C3
                                                          3
                                                                         172
 Type III Compensator
     Second Zero          VOUT
               1
  Z 2 =                                          R3        C3
         (R1 + R2 )C1               R1
                                             R2        C2
                                     C1
                                                                 VEA
                         Reference    VREF
                          Votlage
            vEA (s)
                                             R4
H EA (s) =
           vOUT (s)
                     1          1+ s  R3  C3  1+ s  (R1 + R2 ) C1
        =−                    
           s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3
                                                             C2 + C3
                                                          3
                                                                         173
 Type III Compensator
     Second Pole          VOUT
             1                                    R3        C3
     P1 =                          R1
           R1 C1                           R2         C2
                                    C1
                                                                 VEA
                        Reference    VREF
                         Votlage
            vEA (s)
                                            R4
H EA (s) =
           vOUT (s)
                     1          1+ s  R3  C3  1+ s  (R1 + R2 ) C1
        =−                    
           s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3
                                                             C2 + C3
                                                          3
                                                                         174
 Type III Compensator
          Third Pole         VOUT
                 1                                             C3
   P 2   =
                                                     R3
                C C                   R1
            R3  2 3                           R2         C2
                C2 + C3                C1
                                                                    VEA
                           Reference    VREF
                            Votlage
            vEA (s)
                                               R4
H EA (s) =
           vOUT (s)
                        1          1+ s  R3  C3  1+ s  (R1 + R2 ) C1
           =−                    
              s  R2  (C2 + C3 ) 1+ s  R1  C1 1+ s  R  C2  C3
                                                                C2 + C3
                                                             3
                                                                            175
Type III Bode Plot
       fP 0 =1000Hz                fZ1 =100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
     Magnitude (dB)
40
30
20
10
                      -10
                       90
                      45
     Phase (deg)
-45
                      -90
                          0    1         2        3                     4         5         6         7
                        10    10        10       10                    10        10        10        10
                                                      Frequency (Hz)
                                                                                                          176
Type III Bode Plot
       fP 0 =1000Hz                      fZ1 =100Hz   fZ 2 = 1000Hz               fP1 = 10kHz   fP 2 =100kHz
                      70
60
                      50
     Magnitude (dB)
40
30
20
                      10
                                                                                  Peak Phase
                                                                                  Lead 135°
                        0
                      -10
                       90
45
                              -90°                                                               -90°
     Phase (deg)
-45
                      -90
                          0          1         2        3                     4         5         6         7
                        10       10           10       10                    10        10        10        10
                                                            Frequency (Hz)
                                                                                                                177
Choosing Compensator
Poles And Zeroes
                                         s         s                              s          
                                     1+     1+                           1+               
              0              P0                                                     Z _ ESR      
                                          Z1       Z2 
                                                                      VIN 
                   1                                           1
    T (s) =              =                                                                       2
               s 1+ s        s           s         s   VRAMP                            
                                                                                     s        s
                                                                                                 
                                                                                1
                   HFP               1+        1+                        1+       +
                                         P1      P2                    Q  LC   LC  
                                                                                                        178
Choosing Compensator
Poles And Zeroes
                     T (s) = K (s) HEA (s)GPWM (s) GVD (s)
                                        s         s                             s           
                                              
                                         
                                      1+          1+                            1+                
              0                                                                   Z _ ESR       
                                        Z1        Z2            
                   1                                           1
    T (s) =              =  P0                                    VIN                      2 
               s 1+ s        s          s         s   VRAMP                           
                                                                                   s        s
                                               1+                                            
                                                                              1
                   HFP             1+                                    1+       + 
                                       P1       P2                   Q  LC   LC  
                                                                                                       179
Choosing Compensator
Poles And Zeroes
                                           s         s                              s          
                                       1+     1+                           1+               
                0              P0                                                     Z _ ESR      
                                            Z1       Z2 
                                                                        VIN 
                     1                                           1
      T (s) =              =                                                                       2
                 s 1+ s        s           s         s   VRAMP                            
                                                                                       s        s
                                                                                                   
                                                                                  1
                     HFP               1+        1+                        1+       +
                                           P1      P2                    Q  LC   LC  
                                                                                                          180
Calculating Component Values
                                   VOUT
R4
        VREF
 R4 =
        I BIAS                    • If VOUT = VREF:
                                    • R4 Not Used
                                    • Choose Convenient
                                      Value For R2 (10 kΩ)
                                                                                    181
Calculating Component Values
                                          VOUT
         fZ 2
R1 =             R2                                              R3        C3
     fP1 − fZ 2                                      R1
                                                             R2        C2
                                                     C1
           1
C1 =                                     Reference    VREF
                                                                                 VEA
     2   f P1  R1                     Votlage
                                                             R4
               fZ1
C2 =
     2   f P2  f P0  R2               1                                  1
                               C3 =                  − C2         R3 =
                                    2   fP 0  R2                   2   fZ1 C3
                                                                                        182
 Buck Converter Example
VIN = 12Vdc                       1
                          FC =      FSW = 30 kHz
VOUT = 3.3Vdc                    10
IOUT = 1 Adc
                          PM = 70
VREF = 2.5Vdc
                                                                      183
 Buck Converter Example
Choose Compensator Zero Frequencies      FZ1 = FZ 2 = FLC = 5.472 kHz
And One Pole Frequency                   FP1 = FESR = 169.3kHz
                                                                C 
                                                                        2
                                               VRAMP
 Calculate FP0                           FP0 =        FC  1+      
                                                VIN              
                                                                HFP 
                                                                 2  30 kHz 
                                                                                   2
                                               1V
                                            =      30 kHz  1+  2  82.4 kHz 
                                              12 V                              
                                            = 2661kHz                                  309
 Calculating Component Values
• VOUT > VREF Choose                                              VOUT
                                                                                                        C3
  Current (IBIAS) Through                                                    R1
                                                                                              R3
                                                                                         R2
  R2 And R4                                                                  C1
                                                                                                   C2
                  R2 + R4
         VOUT =           VREF = 3.309V
                    R4
Calculate Component Values
         FZ 2
 R1 =             R2 = 269.18  267 
      FP1 − FZ 2
                FZ1
 C2 =                         = 492.7 pF  510 pF
        2   FP2  FP0  R2
             1
 C1 =                 = 3.521nF  3.6 nF
      2   FP1  R1
             1
 C3 =                 = 6.912 nF  6.8 nF
      2   FP0  R2
             1
 R3 =                = 4.277 k  4.22 k
      2   FZ1 C3
                                                    186
Check Actual Compensator
Pole And Zero Frequencies
Desired As Designed
                                                   187
Simulation Schematic
                       188
Simulation Schematic
                       189
Example Bode Plot
                     Power Stage (GVD)   Compensator   Loop T(s)
   Gain (dB)
   Phase (Degrees)
                                          Freq (Hz)
                                                                   190
Example: Bode Plot GVD(s)
                     Power Stage (GVD)   Compensator   Loop T(s)
   Gain (dB)
   Phase (Degrees)
                                                                   316
                                          Freq (Hz)
Example: Compensator Bode Plot
                      Power Stage (GVD)   Compensator   Loop T(s)
    Gain (dB)
    Phase (Degrees)
                                           Freq (Hz)
                                                                    317
Example: Closed Loop Bode Plot
                      Power Stage (GVD)   Compensator   Loop T(s)
    Gain (dB)
    Phase (Degrees)
                                                                    318
                                            Freq (Hz)
Example: Closed Loop Bode Plot
                       Power Stage (GVD)     Compensator    Loop T(s)
                                                              FC = 31.7 kHz
    Gain (dB)
                       Gain Margin = 13 dB
    Phase (Degrees)
                                               We Tried To Cancel
                                               Two Complex Poles
                                       s        s                                s          
                                   1+     1+                            1+               
              0                        Z1       Z2 
                                                                                     Z _ ESR      
                          =  P0                                   VIN 
                   1                                         1
    T (s) =                                                                                     2
               s 1+ s        s         s        s   VRAMP                              
                                                                                    s        s
                                                                                                
                                                                               1
                   HFP             1+       1+                          1+       +
                                      P1      P2                      Q  LC   LC  
                                                                                                       195
Example Bode Plot
                     Power Stage (GVD)   Compensator     Loop T(s)
                                                           FC = 31.7 kHz
   Gain (dB)
   Phase (Degrees)
                                             Freq (Hz)
                                                                           196
K‐Factor Method
• A Popular Cookbook Method For Choosing Compensator Pole
  And Zero Locations
• Published By Dean Venable In 1983
 • "The K Factor: A New Mathematical Tool for Stability Analysis and
   Synthesis”; Proceedings of Powercon 10, March 1983
 • Reprints And App Notes Widely Available Through A Web Search
K‐Factor Method
FZ
FP
FMAX _ BOOST = FZ  FP = FC
                                                              
                                                                   2
    FZ =
           FC                            Phase _ Boost
                FP = FC  K        K = tan             + 45
           K                                   4            
                                                                       323
K‐Factor Method Summary
• Choose Desired FC And Phase Margin (PM)
• Examine GVD(s)
 • Determine Phase Lag At FC
 • Determine Gain At FC
• Calculate Required Phase Boost At FC
 • Phase Boost = PM – Phase (GVD(FC)) ‐ 90°
• Calculate K‐Factor
• Calculate FZ And FP
• Calculate Component Values As Function Of
  FZ, FP, And Required Gain
K‐Factor Example
• FC = 30 kHz, PM = 70°
• GVD(FC): Phase = –167°,
  Gain = ‐7.7 dB (0.412)
• Phase Boost = 70° – (–167°) – 90° = 147°
• Calculate K‐Factor                     
                                                   2
                                      147      
                                K = tan    + 45 = 47.6
                                      4         
• Calculate FZ And FP
        FC 30 kHz
 FZ =      =      = 4.350 kHz    FP = FC  K = 30kHz  47.6 = 206.9kHz
         K   47.6
K‐Factor Example
• Component     • Desired And Actual
  Values Are:     Frequencies
 R2 = 8.04 kΩ     FP0 = 1.527 kHz   FP0 = 1.609 kHz
 R4 = 24.9 k     FZ = 4.35 kHz     FZ1 = 4.292 kHz
 R1 = 174        FP = 206.9 kHz    FZ 2 = 4.495 kHz
 C1 = 4.3nF                         FP1 = 212.7 kHz
 C2 = 270 pF                        FP2 = 195.1kHz
 R3 = 3.09 k
 C3 = 12 nF
                                                       201
K‐Factor Example:
Simulated Compensator
                        202
K‐Factor Example: Simulation Bode Plot
                     Power Stage (GVD)   Compensator     Loop T(s)
   Gain (dB)
   Phase (Degrees)
                                             Freq (Hz)
                                                                     203
K‐Factor Example: Simulation Bode Plot
                      Power Stage (GVD)     Compensator     Loop T(s)
   Gain (dB)                                                  FC = 29.2 kHz
                      Gain Margin = 23 dB
   Phase (Degrees)
                                                          Gain‐Bandwidth Product
                                                                  2 MHz
   Phase (Degrees)
          You MUST Do
                                                You MUST
          Some Kind Of
                                                 Measure
           Worst Case
                                                The Loop
            Analysis
Other Compensators
  And Modulators
Other Standard Compensators           VOUT
                                                  C
                                             R1
                                                                PID
                                      𝑠
                                                               Out
 Error         Integrator            KI
                                               Low
              Differentiator         KD
                                               Pass
        Error
                            VCO
        Amp
                                                                   212
Current Mode Control
      Overview
Analog PWM Reminder
S Q
                              214
Peak Current Mode Control
VIN VOUT
DRIVER
          Q   R
                                Error Amp/
          Latch                                     VREF
                               Compensator
              S
Clock
                                                           215
Peak Current Mode Control
    VIN
                               Current         VOUT
                               Sensing
              DRIVER
          Q   R
                                  Error Amp/
          Latch                                       VREF
                                 Compensator
              S
Clock
                                                             216
Peak Current Mode Control
                               Sawtooth Ramp
    VIN                         Replaced BVy   OUT
                                Current Ramp
              DRIVER
          Q   R
                                  Error Amp/
          Latch                                      VREF
                                 Compensator
              S
Clock
                                                            217
Peak Current Mode Control
         Error Amp Output
    Commands Peak Inductor Current,
    VIN                                          VOUT
           Not Duty Cycle
              DRIVER
          Q   R
                                    Error Amp/
          Latch                                         VREF
                                   Compensator
              S
Clock
                                                               218
Peak Current Mode Control
     Error Amp
        Output
      Current
       Sense
       Signal
        Gate
       Drive
       Signal
                            219
Feed Forward
VIN VOUT
DRIVER
                                        Input Voltage
                                             Changes
      Current                         ErA
                                        rou
                                          r Atmo
                                               p/matically
          Latch Ramp Slope
          Q   R
                                                       V
                                                       REF
               S                     Compensator
        Proportional To                      Changes
         Input Voltage       Clock        Duty Cycle!
                                                             220
Control Characteristic GVC
      Programmable
      Current Source   Filter Capacitor     Load
          I = KI∙vc        And ESR        Resistance
                                                       221
Control Characteristic GVC
       vO (s) = KI  vC (s ) ZO (s)
                    vO (s )
       GVC (s ) =             = K I  ZO (s)
                    vC (s)
                                      1+ s  RC C
       GVC (s) = K I  RO 
                                   1+ s  (RC + RO )C
                           s                             Z =
                                                                  1
                              1+
                          Z                                    RC C
       GVC (s ) = GO 
                           s                                         1         1
                       1+                                P =               
                          P                                    (RC + RO )C RO C
                                                                                     222
                                                            s                        s
                                                       1+                       1+
Control Characteristic GVC            GVC (s) = GO 
                                                            Z
                                                            s
                                                                 = K I  RO 
                                                                                     Z
                                                                                     s
                                                       1+                       1+
                                                            P                       P
                    X
    GVC(RMAX)
                              X
    GVC(RMIN)
                                                                                          223
Compensator HEA
                        X
    GVC(RMAX)
                                  X
    GVC(RMIN)
HEA X X
                       O
                                            O
                                                    224
Loop Gain T(s)
            T(s)
                          XX
    GVC(RMAX)
                                     X
    GVC(RMIN)
      HEA          X                           XX
                          X
                          O
                                               XO
                       FP(RMAX)   FP(RMIN)   FZ(ESR)
                                                       225
Loop Gain T(s)
                        X
    GVC(RMAX)
                                  X
    GVC(RMIN)
      HEA       X                           XX
                       O
                                            O
                                            X
                    FP(RMAX)   FP(RMIN)   FZ(ESR)
                                                    226
Loop Gain T
                                        Loop Characteristics
    GVC(RMAX)
                                       Depend On Output Load
                                           In This Region
GVC(RMIN)
      HEA
        Loop Characteristics
      Converge Above FP(RMIN)
       Crossover Frequency
      Always About The Same
                  FP(RMAX)      FP(RMIN)      FZ(ESR)
                                                               227
Type II Compensator
                      228
Type II Compensator
             ZF
H 2 (s ) = −
             ZS
                1          1+ s  R1  C1
                        
          s  (C1 + C2 ) 1+ s  R  C1  C2
                                    C1 + C2
                                 1
       =−
                          R2                          Zero
                    1           1+ s  R1  C1
       =−                    
          s  R2  (C1 + C2 ) 1+ s  R  C1  C2
                                      1
                                         C1 + C2
Integrator Pole
                                                   Second Pole
                                                                 229
Compensator Frequencies
           c
T (s ) =      = H EA (s )GVC (s )
            s
                      s                    s   
                   1+                     1+
         c  P      ZC                  Z   
T (s ) =   =                    GO          
          s  s 1+ s                    1+
                                              s   
                     PC                  P   
                                               
                      s                          s   
                   1+                           1+
         c  P      ZC                        Z   
T (s ) =   =                    K I  RO          
          s  s 1+ s                          1+
                                                    s   
                     PC                        P   
                                                     
                                                            230
Compensator Frequencies
           c
T (s ) =      = H EA (s )GVC (s )
            s
                                                                           1
            
                                                            ZC   = P 
                       s                    s                         RO C
                   1+                     1+
         c  P      ZC                  Z   
T (s ) =   =                    GO          
          s  s 1+ s                    1+
                                              s   
                     PC                  P            PC = Z
                                               
                      s                          s   
                   1+                           1+
         c  P      ZC                        Z               c
T (s ) =   =                    K I  RO             P =
          s  s 1+ s                          1+
                                                    s             K I  RO
                     PC                        P   
                                                     
                                                                                 231
Sub‐Harmonic Oscillation
CLOCK
vCTRL
iL
        iL
    GATE
    DRIVE
                                        233
Slope Compensation
                     Compensating
    CLOCK               Ramp
                      Subtracted
    RAMP
    SIGNAL               From
                     Control Signal
      vCTRL
        iL
    GATE
    DRIVE
                                      234
Slope Compensation
                       Too Much
    CLOCK
                         Slope
                     Compensation
    RAMP
    SIGNAL            Makes Loop
                        Act Like
      vCTRL          Voltage Mode
                        Control
        iL
    GATE
    DRIVE
                                    235
Why Peak Current Mode Control?
Advantages                       Disadvantages
• Faster Control Loop            • Must Sense The Current
• Feed Forward                   • Noise Sensitivity
• Simpler Compensator As         • “Slope Compensation”
  Inductor Essentially Removed     • Must Add Additional Ramp
  From Loop                          Signal To Current Sense Signal
• Build In Current Limiting          To Avoid Subharmonic
                                     Oscillations
                                                                      236
Why Peak Current Mode Control?
Advantages                          Disadvantages
• Faster Control Loop               • Must Sense The Current
• Feed Forward                      • Noise Sensitivity
• Simpler Compensator As            • “Slope Compensation”
  Inductor Essentially Removed        • Must Add Additional Ramp
  From Loop                             Signal To Current Sense Signal
• Build In Current Limiting             To Avoid Subharmonic
                                        Oscillations
 Are Generally Heavily Outweighed
       By These Advantages!              These Disadvantages
                                                                         237
Average Current Mode Control
                               238
Average Current Mode Control
           Sense The
            Inductor
          (Or Output)
             Current
                                 Current Command
                                    Signal Drives
                               Pulse Width Modulator   240
Average Current Mode Control
                         PWM Output
                          Drives The
                           Switches
                                       241
Why Average Current Mode Control?
Advantages                           Disadvantages
                                                         242
Applications Of Average Current Mode Control