0% found this document useful (0 votes)
42 views8 pages

2) Illumination 2

The document discusses the laws of illumination, including the inverse square law and Lambert's cosine law, which are essential for understanding the distribution of light. It provides calculations for illumination from a lamp at various angles and distances, as well as lamp efficiency and other related factors. The document includes specific examples and formulas for calculating illumination levels in different scenarios.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
42 views8 pages

2) Illumination 2

The document discusses the laws of illumination, including the inverse square law and Lambert's cosine law, which are essential for understanding the distribution of light. It provides calculations for illumination from a lamp at various angles and distances, as well as lamp efficiency and other related factors. The document includes specific examples and formulas for calculating illumination levels in different scenarios.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

LAWS OF

ILLUMINATION
E E 5 4 7 U T I L I Z AT I O N O F E L E C T R I C A L E N E R GY E N G . YA S M I N M O H A M E D
Inverse square law :
𝐴1
→ 𝑓𝑜𝑟 𝐴1 ∶ ω = 2
𝑑
𝐹 𝐴1
𝐼= →𝐹 =𝐼∗ω= 𝐼∗ 2
ω 𝑑
𝐹
𝐸=
𝐴
𝐴1 1 𝐼
𝐸1 = 𝐼 ∗ 2 ∗ = 2
𝑑 𝐴1 𝑑
𝐼
𝐸2 =
(2𝑑)2
𝐼 𝐼 𝐼
𝐸1 ∶ 𝐸2 ∶ 𝐸3 = 2 ∶ ∶
𝑑 (2𝑑)2 (3𝑑)2
Lambert's cosine law :
𝐼 𝐼 ℎ ℎ
𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ , cos θ = →𝑑=
𝑑 ℎ 𝑑 cos θ
Sheet #1:
4) The candle power of a lamp is 120. A plane surface is placed at a distance of 2.5 m from this lamp.
Calculate the illumination on the surface when it is:
i- normal to rays. 𝐴𝑟𝑐
→ 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
ii- inclined to the ray by 45°. 𝑟
𝐴 𝜃
iii- parallel to the rays. → 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos (𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑟 2
𝐹
𝐼 = 120 𝐶𝑃 , 𝑑 = 2.5 𝑚 → 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 = (𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
ω
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
→ 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 = (𝑐𝑑)
ω
𝐹
→ 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
𝐼 120 𝐴
𝐼
𝑖) 𝐸 = 2 = 2
= 19.2 𝑙𝑢𝑥 → 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
𝑑 2.5 𝐴 cos 𝜃
⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
𝐹
𝐼 120 → 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 =
4𝜋
(𝑐𝑑)
𝑖𝑖) 𝐸 = 2 cos θ = cos 45 = 13.58 𝑙𝑢𝑥 𝐹
𝑑 2.52 → 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝑃
→ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
𝑖𝑖𝑖) 𝐸 = 0 𝑈𝐹 =
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
→ 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝐹 =
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
1
→ 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑀𝐹
𝐼 𝐼
→ 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝑑 ℎ
5) A 500 W lamp having MSCP of 800 is suspended 3 m above the working plane. Find:
i- illumination directly below the lamp at the working plane.
ii- lamp efficiency.
iii- illumination at a point on the horizontal plane 2.4 m away from vertically below the lamp.
𝐴𝑟𝑐
→ 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑃 = 500 𝑊 , 𝑀𝑆𝐶𝑃 = 800 𝑐𝑑 , ℎ = 3 𝑚 𝑟
𝐴 𝜃
→ 𝐸 directly below the lamp =? ? ? → η =? ? ? → 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos
𝑟 2
(𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
→ 𝐸 at a point on the horizontal plane 2.4 m =? ? ? → 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 =
𝐹
(𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
ω
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
𝐼 800 → 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 =
ω
(𝑐𝑑)
𝑖) 𝐸 = 2 = 2 = 88.9 𝑙𝑢𝑥 𝐹
ℎ 3 → 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
𝐴
𝐹 𝐼
→ 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
𝑖𝑖) η = 𝐴 cos 𝜃
𝑃 ⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
𝐹 → 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 =
𝐹
(𝑐𝑑)
𝑀𝑆𝐶𝑃 = → 𝐹 = 𝑀𝑆𝐶𝑃 ∗ 4𝜋 4𝜋
4𝜋 𝐹
→ 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝑃
𝐹 = 800 ∗ 4𝜋 = 3200 𝜋 𝑙𝑢𝑚𝑒𝑛𝑠 → 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
𝑈𝐹 =
𝐹 3200 𝜋 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
η= = = 20.1 𝑙𝑢𝑚𝑒𝑛𝑠/𝑤𝑎𝑡𝑡 → 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑃 500 𝑀𝐹 =
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
3 1
𝐼 3
800 3 → 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑖𝑖𝑖) 𝐸 = 2 𝑐𝑜𝑠 θ = 2 = 42.3 𝑙𝑢𝑥 𝑀𝐹
𝐼 𝐼
ℎ 3 32 + 2.42 → 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝑑 ℎ
6) A lamp is mounted 10 m above the center of a circular area of 20 m diameter. If the lamp gives a uniform CP of 800 over the
circular area, determine the maximum and minimum illumination produced on the area.

20 𝐴𝑟𝑐
ℎ = 10 𝑚 , 𝑟 = = 10 𝑚 , 𝐼 = 800 𝐶𝑃 → 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
2 𝑟
→ 𝐸𝑚𝑎𝑥 =? ? ? → 𝐸𝑚𝑖𝑛 =? ? ? 𝐴 𝜃
→ 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos (𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑟 2
𝐹
→ 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 = (𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
ω
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
→ 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 = (𝑐𝑑)
ω
𝐹
→ 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
𝐴
𝐼
→ 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
𝐴 cos 𝜃
⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
𝐼 800 𝐹
𝐸𝑚𝑎𝑥 = 2 = 2 = 8 𝑙𝑢𝑥 → 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 = (𝑐𝑑)
ℎ 10 4𝜋
𝐹
→ 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝑃
3 → 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝐼 3
800 10 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
𝐸𝑚𝑖𝑛 = 2 𝑐𝑜𝑠 θ = 2 = 2.83 𝑙𝑢𝑥 𝑈𝐹 =
ℎ 10 102 + 102 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
→ 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝐹 =
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
1
→ 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑀𝐹
𝐼 𝐼
→ 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝑑 ℎ
7) A lamp having a uniform CP of 300 in all directions is provided with a reflector which directs 60% of the total light uniformly
on to a circular area of 12 m diameter. The lamp is 5 m above the area. Calculate:
i- the illumination at the center and edge of the surface with and without reflector.
ii- the average illumination over the area without the reflector. 𝐴𝑟𝑐
→ 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝐶𝑃 = 300 𝐶𝑃 , 𝑟𝑒𝑓𝑙𝑐𝑡𝑜𝑟 = 60% , 𝑟 = 12/2 = 6 𝑚 , ℎ = 5 𝑚 𝑟
𝐴 𝜃
→ 𝐸𝑐𝑒𝑛𝑡𝑒𝑟 &𝐸𝑒𝑔𝑑𝑒 =? ? ? 𝑤𝑖𝑡ℎ 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 → 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos (𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑟 2
→ 𝐸𝑎𝑣 =? ? ? 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝐹
→ 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 = (𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
ω
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
→ 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 = (𝑐𝑑)
ω
𝐹
→ 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
𝒊) 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒐𝒓 ∶ 𝐴
𝐼
→ 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
𝐼 300 𝐴 cos 𝜃
⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
𝐸𝑐𝑒𝑛𝑡𝑒𝑟 = 2 = 2 = 12 𝑙𝑢𝑥 𝐹
ℎ 5 → 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 = (𝑐𝑑)
3 4𝜋
𝐼 300 5 𝐹
3 → 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝐸𝑒𝑑𝑔𝑒 = 2 𝑐𝑜𝑠 θ = 2 𝑃
ℎ 5 52 + 62 → 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
𝑈𝐹 =
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
= 3.15 𝑙𝑢𝑥 → 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝐹 =
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
1
→ 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑀𝐹
𝐼 𝐼
→ 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝑑 ℎ
𝐶𝑃 = 300 𝐶𝑃 , 𝑟𝑒𝑓𝑙𝑐𝑡𝑜𝑟 = 60% , 𝑟 = 12/2 = 6 𝑚 , ℎ = 5 𝑚 𝐴𝑟𝑐
→ 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑟
→ 𝐸𝑐𝑒𝑛𝑡𝑒𝑟 &𝐸𝑒𝑔𝑑𝑒 =? ? ? 𝑤𝑖𝑡ℎ 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝐴 𝜃
→ 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos (𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
→ 𝐸𝑎𝑣 =? ? ? 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑟 2
𝐹
→ 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 = (𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
𝒊𝒊)𝑬𝒂𝒗 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒐𝒓 ∶ ω
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
𝐹 → 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 =
ω
(𝑐𝑑)
𝐸𝑎𝑣 = &𝐹 =𝐼∗ω 𝐹
𝐴 → 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
𝛼 5 𝐴
𝐼
ω = 2𝜋 1 − cos = 2𝜋 1 − cos 𝜃 = 2𝜋 1 − → 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
2 52 + 62 𝐴 cos 𝜃
⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
= 1.28𝜋 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠 → 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 =
𝐹
(𝑐𝑑)
4𝜋
𝐹 = 𝐼 ∗ ω = 300 ∗ 1.28𝜋 = 384 𝜋 𝑙𝑢𝑚𝑒𝑛𝑠 → 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝐹
𝑃
𝐴 = 𝜋𝑟 2 = 𝜋 62 𝑚2 → 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
𝑈𝐹 =
𝐹 384 𝜋 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
𝐸𝑎𝑣 = = = 10.67 𝑙𝑢𝑥 → 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝐴 𝜋 62 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝐹 =
𝒊)𝑬𝒄𝒆𝒏𝒕𝒆𝒓 &𝑬𝒆𝒅𝒈𝒆 & 𝑬𝒂𝒗 𝒘𝒊𝒕𝒉 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒐𝒓 ∶ 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
1
ω=4𝜋 → 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑀𝐹
𝐼 𝐼
→ 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝐹 = 𝐼 ∗ ω = 300 ∗ 4𝜋 = 1200 𝜋 𝑙𝑢𝑚𝑒𝑛𝑠 𝑑 ℎ

𝐹 = 1200 𝜋 ∗ 0.6 = 720 𝜋 𝑙𝑢𝑚𝑒𝑛𝑠


𝐹 720 𝜋 (𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑟𝑒𝑐𝑡 𝑡ℎ𝑒
𝐸𝑎𝑣 = = 2
= 20 𝑙𝑢𝑥 = 𝐸𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐸𝑒𝑑𝑔𝑒 𝑙𝑖𝑔ℎ𝑡 𝒖𝒏𝒊𝒇𝒐𝒓𝒎𝒍𝒚 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
𝐴 𝜋6
8) Two lamps L1 and L2 are hung at a height of 9 m from the floor level. The distance between the lamps is 1 m. Lamp L1 is of
500 CP. If the illumination on the floor vertically below this lamp is 20 lux, find the candle power of the lamp L2.
ℎ = 9 𝑚 , distance between the lamps =1 m , 𝐼1 = 500 𝐶𝑃
𝐴𝑟𝑐
, 𝐸𝐴 = 20 𝑙𝑢𝑥 → 𝑃𝑙𝑎𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ∶ 𝜃 =
𝑟
(𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
→ 𝐼2 =? ? 𝐴
→ 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∶ ω = 2 = 2𝜋 1 − cos
𝜃
(𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
𝑟 2
𝐹
→ 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∶ 𝐼 = (𝐿𝑢𝑚𝑒𝑛Τ𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝑜𝑟 (𝑐𝑑)
𝐼1 𝐼2 ω
𝐸𝐴 = 2 + 2 𝑐𝑜𝑠 3 θ → 𝐶𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝐶. 𝑃 =
𝐼𝑢𝑚𝑒𝑛𝑠(𝐹)
(𝑐𝑑)
ℎ ℎ ω
𝐹
3 → 𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (luminance): 𝐸 = (𝐿𝑢𝑚𝑒𝑛Τ𝑚2 ) 𝑜𝑟 (𝑙𝑢𝑥)
500 𝐼2 9 𝐼
𝐴
20 = 2 + 2 → 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠: 𝐿 = 𝑐𝑑 Τ𝑚2
9 9 92 + 12 𝐴 cos 𝜃
⇒ 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑠ℎ𝑝ℎ𝑒𝑟𝑎 ∶ 𝐸 = 𝜋 𝐿
𝐹
→ 𝑀𝑒𝑎𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 ∶ 𝑀𝑆𝐶𝑃 = (𝑐𝑑)
500 𝐼2 ∗ 0.982 500 + 0.982 ∗ 𝐼2 4𝜋
20 = + = → 𝐿𝑎𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 ∶ η =
𝐹
81 81 81 𝑃
→ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛
(20 ∗ 81) − 500 𝑈𝐹 =
𝐼2 = = 1140.5 𝐶𝑃 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑚𝑒𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒
0.982 → 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∶
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸) 𝑢𝑛𝑑𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝐹 =
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐸)𝑢𝑛𝑑𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡ℎ𝑖𝑛𝑔 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛
1
→ 𝐷𝑒𝑝𝑒𝑟𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∶ 𝐷𝐹 =
𝑀𝐹
𝐼 𝐼
→ 𝐸 = 2 cos θ = 2 𝑐𝑜𝑠 3 θ
𝑑 ℎ

You might also like