Zhou 2019
Zhou 2019
Received 26 April 2019; revised 12 June 2019; accepted 3 July 2019; posted 3 July 2019 (Doc. ID 366071); published 9 August 2019
Active control of metamaterial properties with high tunability of both resonant intensity and frequency is es-
sential for advanced terahertz (THz) applications, ranging from spectroscopy and sensing to communications.
Among varied metamaterials, plasmon-induced transparency (PIT) has enabled active control with giant sensi-
tivity by embedding semiconducting materials. However, there is still a stringent challenge to achieve dynamic
responses in both intensity and frequency modulation. Here, an anisotropic THz active metamaterial device with
an ultrasensitive modulation feature is proposed and experimentally studied. A radiative-radiative-coupled PIT
system is established, with a frequency shift of 0.26 THz in its sharp transparent windows by polarization ro-
tation. Enabled by high charge-carrier mobility and longer diffusion lengths, we utilize a straightforwardly spin-
coated MAPbI3 film acting as a photoactive medium to endow the device with high sensitivity and ultrafast speed.
When the device is pumped by an ultralow laser fluence, the PIT transmission windows at 0.86 and 1.12 THz
demonstrate a significant reduction for two polarizations, respectively, with a full recovery time of 561 ps. In
addition, we numerically prove the validity that the investigated resonator structure is sensitive to the optically
induced conductivity. The hybrid system not only achieves resonant intensity and frequency modulations simul-
taneously, but also preserves the all-optical-induced switching merits with high sensitivity and speed, which en-
riches multifunctional subwavelength metamaterial devices at THz frequencies. © 2019 Chinese Laser Press
https://doi.org/10.1364/PRJ.7.000994
Table 1. Some Reported Active Modulation of the Optically Controlled THz Modulator
Maximum Modulation Pump Wavelength and
Year Active Material Depth Minimum Working Fluence Ref.
2018 310 nm Ge 29% 800 nm, 254 μJ∕cm2 [20]
2017 300 nm GaAs nanodisks 35% 800 nm, 310 μJ∕cm2 [61]
2017 400 nm, drop coated MoS2 film ∼20% 800 nm, 12.7 μJ∕cm2 [18]
2012 500 nm Si 49% 800 nm, 35 μJ∕cm2 [50]
2018 284 nm VO2 film 138 deg (phase shifting) 800 nm (cw laser), 3.5 W∕cm2 [13]
2018 50 nm high-Tc YBCO 42% 800 nm, 64 μJ∕cm2 [62]
This work 55 nm MAPbI3 film 25% 400 nm, 5 μJ∕cm2 This work
Fig. 11. Simulated results with a phonon mode at 1.0 THz in the
Fig. 7. Normalized linear absorption and PL spectra of the spin- perovskite thin film as a function of optical conductivity of the per-
coated perovskite (CH3 NH3 PbI3 ) film. The PL and absorption peaks ovskite thin film.
are located at 760 and 740 nm, respectively.
ω−2
1 p̈ t Γ1 ω−1
1 p_ t pt f t − κqt,
ω−2
2 q̈ t Γ2 ω−1
2 q_ t qt −κpt, (A1)
where κ is the linear coupling strength between the two reso-
nators. Γ1 , Γ2 , ω1 , and ω2 are damping factors and resonance
frequencies of the two bright (CRR and SRR) resonators. Γ1
and Γ2 are defined by the excitation pt and qt, respectively.
f t is the external motivating force that projects Γ2 . We could
express the susceptibility χ̃ e as a function of the above-
mentioned parameters, and then the transmission amplitude
Fig. 8. Intrinsic THz spectra of SRR and CRR resonators along can be calculated from the susceptibility [56].
(a) x and (b) y directions. The near-field coupling effect between In order to explain the relative lower modulation depth
CRR and SRR is the origin of PIT resonance. along the x polarization, a Lorentz–Drude model is used here
to determine the material properties as
σω −iε0 ωε∞ − 1
X ε0 ω2p,m ω σ
2 2 i , (A2)
m1
iω 0,m − ω ωΓ m ωε 0
perovskite thin film is only 55 nm thick. If the thickness of the 14. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active
control of resonant cloaking in a terahertz MEMS metamaterial,”
film is appropriately increased, the modulation depth of our
Adv. Opt. Mater. 6, 1800141 (2018).
device may be better. 15. L. Cheng, Z. Jin, Z. Ma, F. Su, Y. Zhao, Y. Zhang, T. Su, Y. Sun, X. Xu,
Z. Meng, Y. Bian, and Z. Sheng, “Mechanical terahertz modulation
Funding. National Natural Science Foundation of China based on single-layered graphene,” Adv. Opt. Mater. 6, 1700877
(NSFC) (11802339, 11804387, 11805276, 61801498, (2018).
16. P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, and R.
61805282); Scientific Researches Foundation of National
Singh, “Chalcogenide phase change material for active terahertz
University of Defense Technology (ZK16-03-59, ZK18-01- photonics,” Adv. Mater. 31, 1808157 (2019).
03, ZK18-03-22, ZK18-03-36); Natural Science Foundation 17. H. Cai, Q. Huang, X. Hu, Y. Liu, Z. Fu, Y. Zhao, H. He, and Y. Lu,
of Hunan Province (2016JJ1021); Open Director Fund of “All-optical and ultrafast tuning of terahertz plasmonic metasurfaces,”
State Key Laboratory of Pulsed Power Laser Technology Adv. Opt. Mater. 6, 1800143 (2018).
18. Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C.
(SKL2018ZR05); Open Research Fund of Hunan Provincial Kloc, and R. Singh, “MoS2 for ultrafast all-optical switching and modu-
Key Laboratory of High Energy Technology (GNJGJS03); lation of THz Fano metaphotonic devices,” Adv. Opt. Mater. 5,
Opening Foundation of State Key Laboratory of Laser 1700762 (2017).
Interaction with Matter (SKLLIM1702); Youth Talent 19. A. Kumar, Y. K. Srivastava, M. Manjappa, and R. Singh, “Color-
Lifting Project (17-JCJQ-QT-004). sensitive ultrafast optical modulation and switching of terahertz plas-
monic devices,” Adv. Opt. Mater. 6, 1800030 (2018).
20. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar,
†
These authors contributed equally to this work. K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of
germanium-based flexible metaphotonic devices,” Adv. Mater. 30,
1705331 (2018).
REFERENCES 21. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, A. S. Maier, Z.
1. G. P. Neupane, K. Zhou, S. Chen, T. Yildirim, P. Zhang, and Y. Lu, Tian, K. Azad, A. Chen, H.-T. Chen, A. Taylor, J. Han, and W.
“In-plane isotropic/anisotropic 2D van der Waals heterostructures for Zhang, “Active control of electromagnetically induced transparency
future devices,” Small 15, 1804733 (2019). analogue in terahertz metamaterials,” Nat. Commun. 3, 1151
2. W. Zhou, J. Chen, H. Gao, T. Hu, S. Ruan, A. Stroppa, and (2012).
W. Ren, “Anomalous and polarization-sensitive photo-response of 22. L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and S. Ranjan,
Td-WTe2 from visible to infrared light,” Adv. Mater. 31, 1804629 “All-optical active THz metasurfaces for ultrafast polarization switch-
(2018). ing and dynamic beam splitting,” Light Sci. Appl. 7, 28 (2018).
3. J. Liu, Y. Zhou, Y. Lin, M. Li, H. Cai, Y. Liang, M. Liu, Z. Huang, F. Lai, 23. H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee,
F. Huang, and W. Zheng, “Anisotropic photo-response of the ultrathin “Electrical control of electromagnetically induced transparency by
GeSe nanoplates grown by rapid physical vapor deposition,” ACS terahertz metamaterial funneling,” Adv. Opt. Mater. 7, 1801205
Appl. Mater. Interfaces 11, 4123–4130 (2019). (2018).
4. Z. Zhou, M. Long, L. Pan, X. Wang, M. Zhong, M. Blei, J. Wang, J. 24. Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I.
Fang, S. Tongay, W. Hu, J. Li, and Z. Wei, “Perpendicular optical re- Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, “Graphene con-
versal of the linear dichroism and polarized photodetection in 2D trolled Brewster angle device for ultra-broadband terahertz modula-
GeAs,” ACS Nano 12, 12416–12423 (2018). tion,” Nat. Commun. 9, 4909 (2018).
5. S. Yoo, S. Lee, and Q.-H. Park, “Loss-free negative-index metamate- 25. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee,
rials using forward light scattering in dielectric meta-atoms,” ACS B. Min, and S. Zhang, “Electrically tunable slow light using graphene
Photon. 5, 1370–1374 (2018). metamaterials,” ACS Photon. 5, 1800–1807 (2018).
6. R. Schittny, M. Kadic, T. Buckmann, and M. Wegener, “Invisibility 26. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and
cloaking in a diffusive light scattering medium,” Science 345, 427– R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoac-
429 (2014). tive switching in terahertz metamaterial devices,” Adv. Mater. 29,
7. R. Macedo, T. Dumelow, R. E. Camley, and R. L. Stamps, “Oriented 1605881 (2017).
asymmetric wave propagation and refraction bending in hyperbolic 27. S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S.
media,” ACS Photon. 5, 5086–5094 (2018). Kamboj, P. Braeuniger-Weimer, S. Hofmann, H. E. Beere, D. A.
8. Y. S. Jonathan, F. Kebin, and J. P. A. Willie, “Zero-rank, maximum Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically
nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, induced transparency in a terahertz metamaterial array with graphene
1801632 (2019). for continuous resonance frequency tuning,” Adv. Opt. Mater. 6,
9. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, 1800570 (2018).
D. R. Averitt, and X. Zhang, “Optically modulated ultra-broadband all- 28. H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H.
silicon metamaterial terahertz absorbers,” ACS Photon. 6, 830–837 Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable
(2019). molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760
10. Z. Wang, B. Ai, Z. Zhou, Y. Guan, H. Möhwald, and G. Zhang, “Free- (2018).
standing plasmonic chiral metamaterials with 3D resonance cavities,” 29. X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu,
ACS Nano 12, 10914–10923 (2018). L. Liu, A. K. Azad, J. Han, and W. Zhang, “Active control of
11. Q. Yang, J. Gu, Y. Xu, X. Zhang, Y. Li, C. Ouyang, Z. Tian, J. Han, and polarization-dependent near-field coupling in hybrid metasurfaces,”
W. Zhang, “Broadband and robust metalens with nonlinear phase pro- Appl. Phys. Lett. 113, 061111 (2018).
files for efficient terahertz wave control,” Adv. Opt. Mater. 5, 1601084 30. M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang,
(2017). “Tailoring the plasmon-induced transparency resonances in terahertz
12. M. T. Nouman, J. Hwang, M. Faiyaz, G. Lee, D. Y. Noh, and J.-H. metamaterials,” Opt. Express 25, 19844–19855 (2017).
Jang, “Dynamic metasurface based cavity structures for enhanced 31. L. Q. Cong, K. S. Yogesh, S. Ankur, C. S. Tze, and S. Ranjan,
absorption and phase modulation,” ACS Photon. 6, 374–381 “Perovskite as a platform for active flexible metaphotonic devices,”
(2019). ACS Photon. 4, 1595–1601 (2017).
13. Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, 32. T. W. Crothers, R. L. Milot, J. B. Patel, E. S. Parrott, J. Schlipf, P.
“Dynamic photoinduced controlling of the large phase shift of terahertz Müller-Buschbaum, M. B. Johnston, and L. M. Herz, “Photon reab-
waves via vanadium dioxide coupling nanostructures,” ACS Photon. sorption masks intrinsic bimolecular charge-carrier recombination in
5, 3040–3050 (2018). CH3NH3PbI3 perovskite,” Nano Lett. 17, 5782–5789 (2017).
1002 Vol. 7, No. 9 / September 2019 / Photonics Research Research Article
33. S.-F. Leung, K.-T. Ho, P.-K. Kung, V. K. S. Hsiao, H. N. Alshareef, 48. W. Christian, E. E. Giles, B. J. Michael, J. S. Henry, and M. H. Laura,
Z. L. Wang, and J.-H. He, “A self-powered and flexible organometallic “High charge carrier mobilities and lifetimes in organolead trihalide
halide perovskite photodetector with very high detectivity,” Adv. Mater. perovskites,” Energy Environ. Sci. 7, 2269 (2014).
30, 1704611 (2018). 49. W. S. De, J. Holovsky, S. J. Moon, P. L. Per, B. Niesen, M. Ledinsky,
34. L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. D. Girolamo, A. F. J. Haug, J.-H. Yum, and C. Ballif, “Organometallic halide perov-
Agresti, R. Oropesa-Nunez, S. Pescetelli, L. Vesce, E. Calabro, M. skites: sharp optical absorption edge and its relation to photovoltaic
Prato, A. E. D. R. Castillo, A. D. Carlo, and F. Bonaccorso, “MoS2 performance,” J. Phys. Chem. Lett. 5, 1035–1039 (2014).
quantum dot/graphene hybrids for advanced interface engineering 50. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, A. S. Maier,
of a CH3NH3PbI3 perovskite solar cell with an efficiency of over Z. Tian, K. Azad, A. Chen, H.-T. Chen, A. Taylor, J. Han, and
20%,” ACS Nano 12, 10736–10754 (2018). W. Zhang, “Active control of electromagnetically induced transpar-
35. J. Zhen, W. Zhou, M. Chen, B. Li, L. Jia, M. Wang, and S. Yang, ency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151
“Pyridine-functionalized fullerene additive enabling coordination inter- (2012).
actions with CH3NH3PbI3 perovskite towards highly efficient bulk het- 51. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee,
erojunction solar cells,” J. Mater. Chem. A 7, 2754–2763 (2019). J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H.
36. M. H. Laura, “Charge-carrier dynamics in organic-inorganic metal hal- Friend, and T.-W. Lee, “Overcoming the electroluminescence
ide perovskites,” Annu. Rev. Phys. Chem. 67, 65–89 (2016). efficiency limitations of perovskite light-emitting diodes,” Science
37. D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, 350, 1222–1225 (2015).
M. G. Kanatzidis, V. Sundström, and D. G. Cooke, “Intrinsic femtosec- 52. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J.
ond charge generation dynamics in single crystal CH3NH3PbI3,” Snaith, “Efficient hybrid solar cells based on meso-superstructured
Energy Environ. Sci. 8, 3700–3707 (2015). organometal halide perovskites,” Science 338, 643–647 (2012).
38. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. 53. B. Jeong, H. Han, Y. J. Choi, S. H. Cho, E. H. Kim, S. W. Lee, J. S.
Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown Kim, C. Park, D. Kim, and C. Park, “All-inorganic CsPbI3 perovskite
CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015). phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes,”
39. O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. Adv. Funct. Mater. 28, 1706401 (2018).
van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. 54. C. W. Singh, R. Zhang, C. J. G. Han, M. Tonouchi, and W. L. Zhang,
Owen, “Limits of carrier diffusion in n-type and p-type CH3NH3PbI3 per- “Plasmon-induced transparency in metamaterials: active near field
ovskite single crystals,” J. Phys. Chem. Lett. 7, 3510–3518 (2016). coupling between bright superconducting and dark metallic mode
40. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. resonators,” Appl. Phys. Lett. 103, 101106 (2013).
Kanjanaboos, A. F. Nogueira, and E. H. Sargent, “Efficient lumines- 55. X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, and W. L. Zhang,
cence from perovskite quantum dot solids,” ACS Appl. Mater. “Electromagnetically induced absorption in a three-resonator meta-
Interfaces 7, 25007–25013 (2015). surface system,” Sci. Rep. 5, 10737 (2015).
41. F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. 56. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M.
Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal Soukoulis, “Electromagnetically induced transparency and absorption
CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for in metamaterials: the radiating two-oscillator model and its experimen-
display technology,” ACS Nano 9, 4533–4542 (2015). tal confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
42. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. 57. A. S. Roberts, D. Wang, D. Fei, D. Wang, P. K. Kristensen, S. I.
Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based
cesium lead halide perovskite nanocrystals by anion exchange reac- broadband light absorbers for high-temperature applications,” Opt.
tions,” J. Am. Chem. Soc. 137, 10276–10281 (2015). Mater. Express 6, 2704–2714 (2016).
43. K. Wei, T. Jiang, Z. Xu, J. Zhou, J. You, Y. Tang, H. Li, R. Chen, X. 58. C. Laovorakiat, J. M. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam,
Zheng, S. Wang, K. Yin, Z. Wang, J. Wang, and X. Cheng, “Ultrafast J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia,
carrier transfer promoted by interlayer Coulomb coupling in 2D/3D per- “Phonon mode transformation across the orthohombic-tetragonal
ovskite heterostructures,” Laser Photon. Rev. 12, 1800128 (2018). phase transition in a lead-iodide perovskite CH3NH3PbI3: a terahertz
44. H. Li, X. Zheng, Y. Liu, Z. P. Zhang, and T. Jiang, “Ultrafast interfacial time-domain spectroscopy approach,” J. Phys. Chem. Lett. 7, 1–6
energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 (2016).
quantum dot heterostructure,” Nanoscale 10, 1650–1659 (2018). 59. M. Bokdam, T. Sander, A. Stroppa, S. Picozzi, D. D. Sarma, C.
45. K. Wei, Z. J. Xu, R. Z. Chen, X. Zheng, X. A. Cheng, and T. Jiang, Franchini, and G. Kresse, “Role of polar phonons in the photo excited
“Temperature-dependent excitonic photoluminescence excited by state of metal halide perovskites,” Sci. Rep. 6, 28618 (2016).
two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. 60. C. La-o-vorakiat, L. Cheng, T. Salim, R. A. Marcus, M. E. M. Beyerle,
Lett. 41, 3821–3824 (2016). Y. M. Lam, and E. E. M. Chia, “Hybrid tandem quantum dot/organic
46. X. Guichuan, M. Nripan, S. L. Swee, Y. Natalia, L. Xinfeng, S. Dharani, photovoltaic cells with complementary near infrared absorption,” Appl.
G. Michael, M. Subodh, and C. S. Tze, “Low-temperature solution- Phys. Lett. 110, 123901 (2017).
processed wavelength-tunable perovskites for lasing,” Nat. Mater. 61. M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P.
13, 476–480 (2014). Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I.
47. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-
Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
S. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells 62. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V.
containing perovskite compound and polymeric hole conductors,” Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-
Nat. Photonics 7, 486–491 (2013). channel photonic switch,” Adv. Mater. 30, 1801257 (2018).