Unit-2 2
Unit-2 2
Oscillators generate periodic signals in the time domain. They convert DC power into
AC signal power. Signal generation implies production of self-sustained oscillations.
According to the types of waveforms produced oscillators can be classified into one of
four generic types:
V0
(s ) = G (s )
V1 1 − G (s )H (s )
-1-
The expression:
1 − G (s )H (s ) = 0 … (1)
G ( jω ) ⋅ H ( jω ) = 1 … (2)
This is Barkhausen’s criterion for oscillations. The left hand member is a complex
number and consists of a real and an imaginary part. Thus, we may write the equation:
Re(ω ) + j Im(ω ) = 1 + j 0
Re(ω ) = 1
Im(ω ) = 0
Im(ω) equated to zero will generally give the frequency of oscillation. Re(ω) equated to
unity will yield the conditions to be met for oscillations.
If we open the loop at the input of block G(s) in Fig.1 and inject a probe signal VT(s) at
this point, the output from block H(s) would be:
VL (s ) = VT (s ) ⋅ G (s )H (s )
V L (s )
AL (s ) = = G (s )H (s )
VT (s )
This is the loop gain of our system. Barkhausen’s criterion then states that the
oscillator’s loop gain must be unity for oscillations to develop in the circuit.
-2-
Some Phase-Shift Oscillators
The most simple RC phase-shift oscillator configuration uses three buffered RC cells
and a voltage amplifier with very high input impedance and very low output impedance.
Fig.2 shows a typical schematic.
Because the RC cells won’t load each other, the loop gain may be found to be:
3
sRC
AL (s ) = G (s )H (s ) = A ⋅
sRC + 1
s 3 R 3C 3
= A⋅ 3 3 3 2 2 2
s R C + 3 s R C + 3 sRC + 1
− jω 3 R 3 C 3 1
= … (3)
( 2 2 2
) (
2 2 2
1 − 3ω R C + jωRC 3 − ω R C A )
Equating the real part of the denominator to zero will yield the frequency of oscillation:
1
1 − 3ω 2 R 2 C 2 = 0 ⇒ ω 0 =
3RC
This result fed back into expression (3) will render information on amplifier gain A.
Accordingly:
A = −8
The phase shift introduced by each RC cell can be obtained from its transfer function:
jωRC
F ( jω ) =
jωRC + 1
-3-
j
3
F ( jω 0 ) =
j
+ 1
3
Then:
1
φ = 90º − tan −1 = 90º −30º = 60º
3
The total phase shift introduced by the RC network at ω = ω 0 will be three times φ , or
180º.
-4-
Fig.4 Equivalent circuit for loop-gain calculation
The node-potential set of equations in the Laplace domain can be written as:
VA
− h fe I b' = + (V A − V B )sC
RC
VB
0= + (V B − V A )sC + (V B − VC )sC
R
V
0 = C + (VC − V B )sC + (VC − V D )sC
R
V
0 = D + (V D − VC )sC
R
1
− h fe I b' = V A + sC − V B ⋅ sC ... (4.a )
RC
1
0 = −V A ⋅ sC + V B + 2 sC − VC ⋅ sC ... (4.b )
R
1
0 = −V B ⋅ sC + VC + 2 sC − V D ⋅ sC ... (4.c )
R
1
0 = −VC ⋅ sC + V D + sC ... (4.d )
R
( )
V D = RI b ≈ R ' + hie I b ... (4.e )
From Eq.(4.d):
1
VC = V D + 1
sRC
-5-
Substituting into Eq.(4.c):
1 1
0 = −V B ⋅ sC + V D + 1 + 2 sC − V D ⋅ sC
sRC R
which simplifies to:
1 3
VB = VD 2 2 2 + + 1
s R C sRC
1 3 1 1
0 = −V A sC + V D 2 2 2 + + 1 + 2 sC − V D + 1 sC
s R C sRC R sRC
yielding:
1 5 6
V A = VD 3 3 3 + 2 2 2 + + 1
s R C s R C sRC
1 5 6 1 1 3
− h fe I b' = VD 3 3 3 + 2 2 2 + + 1 + sC − VD 2 2 2 + + 1 sC
s R C s R C sRC RC s R C sRC
1 5 6 1 1 4 3
− h fe I b' = VD 3 3 3
+ 2 2 2
+ + + 2 3 2 + 2 +
s R RC C s R RC C sRRC C RC s R C sR C R
1 5 6 R 1 4
− h fe I b' = I b 3 2 3
+ 2 2
+ + + 2 2 2 + + 3 ... (5)
s R RC C s RRC C sRC C RC s R C sRC
If AL (s ) = 1 , then I b = I b' . For sine wave operation, s = jω and Eq.(5) is rewritten as:
1 6 4 5 1 R
− h fe = j 3 2 3
−j −j − 2 2
− 2 2 2 + +3 ... (6 )
ω R RC C ω RC C ωRC ω RRC C ω R C RC
The frequency of oscillation is obtained equating the imaginary part of the right-hand
member to zero:
1 6 4
0= 3 2 − −
ω 0 R RC C 3 ω 0 RC C ω 0 RC
-6-
Knowing that ω 0 can not be zero we may write:
1 6 4
0= 2 2 2
− −
ω 0 R RC C RC R
in radians per second. The condition for oscillation is obtained equating to − h fe the real
part of the right-hand member of Eq.(6) while making ω = ω 0 :
R 5 1
− h fe = 3 + − 2 2
− 2 2 2
RC ω 0 RRC C ω0 R C
R 6R 4R
= 3+ − 5 + 4 − 6 + C
RC RC R
R R
= −23 − 29 −4 C
RC R
Then:
R R
h fe = 23 + 29 +4 C ... (7)
RC R
The minimum value of h fe required for oscillations is h fe min = 44.5 , and occurs when
R
= 0.37 . If h fe is less than the said value the circuit won’t oscillate, because AL ( jω )
RC
would be less than unity. We can write Eq.(7) in the alternate form:
2
R h fe − 23 h fe − 23 4
= + −
RC 58 58 29
-7-
R
Again, h fe must be greater than 44.5 for to be a real number. If h fe = 44.5 , then
RC
R R
= 0.37 . The design process would be then: Given h fe and ω 0 , find . Then
RC RC
compute the RC product and select convenient values for C and R. Design the DC bias
network for Class-A operation and symmetrical signal excursion. Amplitude distortion
at the output may be reduced by introducing negative feedback in the emitter branch
with a series added small resistor. Of course, a little more gain would be needed to
compensate for the reduction in the effective transconductance g m' of the circuit, i.e.:
gm
g m' =
1 + g m Re
where g m is the transconductance of the transistor and Re is the series added resistor.
A general approach for the passive phase-shift network used in this type of oscillator
can be seen in Fig.6, where Z1 and Z2 are a capacitor C and a resistor R. Either
impedance can be selected to be the capacitor. However, the preferred configuration is
that depicted by Fig.5. Given the JFET’s high input impedance, loading effects
occurring in the gate circuit are virtually eliminated. The amplifying device is biased for
Class-A operation and minimum signal distortion at the output. If needed, negative
feedback may be used for wave shape correction, as in the bipolar transistor case.
-8-
Fig.6 The three-cell RC network general approach
Design work requires some knowledge of the JFET’s small-signal parameters. These
are defined by:
v
rds = ds when v gs = 0
id
id
gm = when v ds = 0
v gs
v ds
µ=− when i d = 0
v gs
where v ds , id , v gs are small-signal variations about a quiescent point (please see Fig.7
below).
-9-
By Cramer’s rule:
∆3
I3 =
∆
(Z1 + Z 2 ) − Z2 0
∆= − Z2 (Z 1 + 2 Z 2 ) − Z2
0 − Z2 (Z 1 + 2 Z 2 )
which reduces to:
(Z 1 + 2Z 2 ) − Z2
∆ = (Z 1 + Z 2 ) + Z [(− Z 2 )(Z 1 + 2Z 2 )]
− Z2 (Z 1 + 2 Z 2 ) 2
After performing the indicated algebraic operations we obtain:
3 2 2 3
∆ = Z 1 + 5Z 1 Z 2 + 6 Z 1 Z 2 + Z 2 ... (9)
3
V2 Z2
= 3 ...(10)
V1 Z 1 + 5Z 1 Z 2 + 6Z 1 Z 2 2 + Z 2 3
2
-10-
Observing that:
∆1
I1 = ...(12)
∆
where:
V1 − Z2 0
∆1 = 0 (Z 1 + 2 Z 2 ) − Z2
0 − Z2 (Z 1 + 2 Z 2 )
[
= V1 (Z 1 + 2 Z 2 ) − Z 2
2 2
]
( 2
= V1 Z 1 + 4 Z 1 Z 2 + 3Z 2
2
) ...(13)
3 2 2 3
V1 ∆ Z 1 + 5Z 1 Z 2 + 6Z 1 Z 2 + Z 2
Z IN = = 2 2
...(14)
∆1 Z 1 + 4Z 1 Z 2 + 3Z 2
V2 s 3 R 3C 3
= 3 3 3 ...(15)
V1 s R C + 6 s 2 R 2 C 2 + 5sRC + 1
and:
s 3 R 3C 3 + 6 s 2 R 2 C 2 + 5sRC + 1
Z IN =
3s 3 R 2 C 3 + 4 s 2 RC 2 + sC
s 3 R 3C 3 + 6 s 2 R 2 C 2 + 5sRC + 1
=R ...(16)
3s 3 R 3 C 3 + 4 s 2 R 2 C 2 + sRC
V2 jω 3 R 3 C 3
H ( jω ) = ( jω ) = −
V1 ( )
1 − 6ω 2 R 2 C 2 + jωRC 5 − ω 2 R 2 C 2 ( )
-11-
From Eq.(16), and for s = jω :
Z IN = R
(1 − 6ω 2
) (
R 2 C 2 + jωRC 5 − ω 2 R 2 C 2 ) ...(17)
(
− 4ω 2 R 2 C 2 + jωRC 1 − 3ω 2 R 2 C 2 )
With regards to Fig.5, the expression for the voltage gain of the amplifying device is:
AV ( jω ) = − g m (R0 // Z IN )
AV ( jω ) ⋅ H ( jω ) = − g m (R0 // Z IN ) ⋅ H ( jω ) = 1 + j 0
V2
where H ( jω ) = ( jω ) is the passive network’s transfer function already calculated.
V1
If we assume that the RC network doesn’t load the JFET’s output, a situation that can be
met with an adequate selection of circuit values, Barkhausen’s criterion will read as:
AV ( jω ) ⋅ H ( jω ) = − g m R0 ⋅ H ( jω ) = 1 + j 0
jω 3 R 3 C 3
g m R0 ⋅ = 1 + j0
( ) (
1 − 6ω 2 R 2 C 2 + jωRC 5 − ω 2 R 2 C 2 )
which is satisfied when:
1 − 6ω 2 R 2 C 2 = 0
j 29
Z IN = R ohms
− 4 6 + j3
= (0.83 − j 2.70 )R ohms
= 2.82 R exp(− j 72.9º ) ohms
-12-
An interesting result is noticed here, and is that Z IN is independent of the frequency of
oscillation, depending only upon R.
In order to avoid loading sensibly the JFET’s output, the following should be satisfied
as a rule of thumb:
2.82 R >> R0 ⇒ R >> 0.355 R0 ⇒ R > 3.55 R0
We would now like to consider the effect of the RC network loading the JFET’s output.
Observing Fig.4 we can write the following circuit analogies:
V gs' ⇔ Vbe'
V gs ⇔ Vbe = I b R
for the case in which R ' = 0 . Then:
V gs Vbe I R
'
⇔ '
⇔ b '
g m JFET V gs g m BJT Vbe h fe I b
Finally, the minimum voltage gain required from the JFET stage considering loading
effects is:
2
R R
Av = g m R0 = 4 0 + 23 0 + 29
R R
-13-
where g m , R0 and R are quantities previously defined during the analysis process of the
JFET oscillator.
The mesh equations for the passive network with input V1 may be written in phasor
form as:
V1 = I 1 (Z 1 + Z 2 ) − I 2 Z 2
0 = − I 1 Z 2 + I 2 (Z 1 + 2 Z 2 ) − I 3 Z 2
0 = − I 2 Z 2 + I 3 (Z 1 + 2 Z 2 ) − I 4 Z 2
0 = − I 3 Z 2 + I 4 (Z 1 + 2 Z 2 ) − I 5 Z 2
0 = − I 4 Z 2 + I 5 (Z 1 + 2 Z 2 )
and V2 = I 5 Z 2 . The system of five equations with five unknowns will be solved using,
again, Cramer’s rule. The determinant of the coefficient matrix is:
(Z 1 + Z 2 ) − Z2 0 0 0
− Z2 (Z 1 + 2Z 2 ) − Z2 0 0
∆= 0 − Z2 (Z 1 + 2 Z 2 ) − Z2 0
0 0 − Z2 (Z 1 + 2 Z 2 ) − Z2
0 0 0 − Z2 (Z 1 + 2 Z 2 )
-14-
which can be reduced to:
(Z1 + 2Z 2 ) − Z2 0 0
(Z 1 + 2 Z 2 ) − Z2 0
− Z2 (Z 1 + 2 Z 2 ) − Z2 0 2
∆ = (Z 1 + Z 2 ) − Z2 − Z2 (Z 1 + 2 Z 2 ) − Z2
0 − Z2 (Z 1 + 2 Z 2 ) − Z2
0 − Z2 (Z 1 + 2 Z 2 )
0 0 − Z2 (Z 1 + 2 Z 2 )
After calculating the determinants and performing the remaining algebraic operations
we arrive to:
5 4 3 2 2 3 4 5
∆ = Z 1 + 9 Z 1 Z 2 + 28Z 1 Z 2 + 35Z 1 Z 2 + 15Z 1 Z 2 + Z 2
∆
Mesh current I5 is calculated from I 5 = 5 . The determinant ∆5 is given by:
∆
(Z 1 + Z 2 ) − Z2 0 0 V1
− Z2 (Z 1 + 2Z 2 ) − Z2 0 0
∆5 = 0 − Z2 (Z 1 + 2 Z 2 ) − Z2 0
0 0 − Z2 (Z 1 + 2 Z 2 ) 0
0 0 0 − Z2 0
(Z 1 + Z 2 ) − Z2 0 V1
− Z2 (Z 1 + 2 Z 2 ) − Z2 0
∆5 = Z 2
0 − Z2 (Z1 + 2Z 2 ) 0
0 0 − Z2 0
(Z 1 + Z 2 ) − Z2 V1
2
= Z2 − Z2 (Z 1 + 2 Z 2 ) 0
0 − Z2 0
3 (Z 1 + Z 2 ) V1
= Z2
− Z2 0
4
= V1 Z 2
Then:
5
∆5 Z
V2 = I 5 Z 2 = Z 2 = 2 V1
∆ ∆
5
V2 Z 2
The RC network’s transfer function is defined as H ( jω ) = = , yielding:
V1 ∆
-15-
5
Z2
H ( jω ) = 5 4 3 2 2 3 4 5
Z 1 + 9Z 1 Z 2 + 28Z 1 Z 2 + 35Z 1 Z 2 + 15Z 1 Z 2 + Z 2
V1
Z IN =
I1
∆1
with current I 1 obtained from I 1 = .
∆
V1 − Z2 0 0 0
0 (Z 1 + 2 Z 2 ) − Z2 0 0
∆1 = 0 − Z2 (Z 1 + 2 Z 2 ) − Z2 0
0 0 − Z2 (Z 1 + 2 Z 2 ) − Z2
0 0 0 − Z2 (Z 1 + 2 Z 2 )
which can be shown to reduce to:
(Z 1 + 2 Z 2 ) − Z2 0
2 − (Z 1 + 2 Z 2 ) Z2
∆ 1 = V1 (Z 1 + 2Z 2 ) − Z2 (Z 1 + 2 Z 2 ) − Z2 − V1 Z 2
Z2 − (Z 1 + 2 Z 2 )
0 − Z2 (Z 1 + 2 Z 2 )
It further simplifies to:
( 3 2 2 3
∆ 1 = −V1 (Z 1 + 2 Z 2 ) − Z 1 − 6 Z 1 Z 2 − 10 Z 1 Z 2 − 4 Z 2 − V1 Z 1 Z 2 + 4 Z 1 Z 2 + 3Z 2 ) ( 2 2 3 4
)
giving:
( 4 3 2
∆ 1 = V1 Z 1 + 8Z 1 Z 2 + 21Z 1 Z 2 + 20 Z 1 Z 2 + 5Z 2
2 3 4
)
Then:
5 4 3 2 2 3 4 5
V V∆ ∆ Z + 9 Z 1 Z 2 + 28Z 1 Z 2 + 35Z 1 Z 2 + 15Z 1 Z 2 + Z 2
Z IN = 1 = 1 = = 1
I1 ∆1 ∆1 4 3 2 2 3
Z 1 + 8Z 1 Z 2 + 21Z 1 Z 2 + 20Z 1 Z 2 + 5Z 2
4
V1
1
When Z1 is a capacitor C and Z 2 a resistor R, the impedances are Z 1 = and
jω C
Z 2 = R . Hence, substituting for Z1 and Z 2 we obtain:
-16-
1 9R 28 R 2 R3 15 R 4
−j + + j − 35 − j + R5
Z IN = ω 5C 5 ω 4C 4 ω 3C 3 ω 2C 2 ωC
1 8R R2 20 R 3
+ j − 21 − j + 5R 4
ω 4C 4 ω 3C 3 ω 2C 2 ωC
Considering the loading effect of the RC network upon the triode’s output yields the
familiar expression for the voltage gain of the vacuum tube:
AV ( jω ) = − g m (R0 // Z IN )
where R0 = rP // RP . The two paralleled resistances here are the plate’s dynamic output
resistance and the external plate bias resistor, respectively. Barkhausen’s criterion for
the oscillator’s loop gain, Eq.(2), gives:
AV ( jω ) ⋅ H ( jω ) = − g m (rP // RP // Z IN ) ⋅ H ( jω ) = 1 + j 0
V2
where H ( jω ) = ( jω ) is the passive network’s transfer function. Substituting for
V1
AV ( jω ) and H ( jω ) their individual expressions we obtain for the loop gain:
5
Z2
AV ( jω ) ⋅ H ( jω ) = − g m (R0 // Z IN ) ⋅ 5 4 3 2 2 3 4 5
Z1 + 9 Z1 Z 2 + 28Z1 Z 2 + 35Z1 Z 2 + 15Z1Z 2 + Z 2
RZ 5
− g m 0 IN Z 2
= 5 R0 + Z IN
4 3 2 2 3 4 5
Z1 + 9 Z1 Z 2 + 28Z1 Z 2 + 35Z1 Z 2 + 15Z1Z 2 + Z 2
RZ 5
− gm 0 IN Z 2
= R0 + Z IN
Z IN ( 4 3 2 2 3
Z1 + 8Z1 Z 2 + 21Z1 Z 2 + 20 Z1Z 2 + 5Z 2
4
)
-17-
After some simple algebraic work and simplification we arrive to:
− g m R0 Z 25
AV ( jω ) ⋅ H ( jω ) =
( ) (
R0 Z 14 + 8Z 13 Z 2 + 21Z 12 Z 22 + 20 Z 1 Z 23 + 5Z 24 + Z 15 + 9 Z 14 Z 2 + 28Z 13 Z 22 + 35Z 12 Z 23 + 15Z 1 Z 24 + Z 25 )
Substituting for Z1 and Z 2 their respective expressions, we get, after some manipulation:
− g m R0 R 5
AV ( jω ) ⋅ H ( jω ) =
−
(
(R0 + 9 R ) 21R0 R 2 + 35 R 3 ) ( 4 5
) 1
+ 5 R0 R + R + j − 5 5 +
(
8 R0 R + 28 R 2
−
) (
20 R0 R 3 + 15 R 4 )
4 4
ω C ω 2C 2 ω C ω 3C 3 ωC
= 1 + j0
The denominator of the fraction above must be a real negative quantity for the loop gain
equation to hold. Then:
−
1
+
(
8 R0 R + 28 R 2
−
) (
20 R0 R 3 + 15 R 4
=0
)
ω 5C 5 ω 3C 3 ωC
Knowing that ωC can not be equal to zero, the above equation simplifies to:
1
− 4 4 +
(
8 R0 R + 28 R 2 ) (
− 20 R0 R 3 + 15 R 4 = 0 )
2 2
ω C ω C
(20R R 0
3
+ 15 R 4 )ω 4 C 4 − (8 R0 R + 28 R 2 )ω 2 C 2 + 1 = 0
R0 R
20 + 15 R 4ω 4 C 4 − 8 0 + 28 R 2ω 2 C 2 + 1 = 0
R R
2
R0 R R
8 + 28 ± 64 0 + 368 0 + 724
R R R K2
ω2 = = 2 2 …(20)
R0 R C
40 + 30 R 2 C 2
R
-18-
This equation gives the radian frequency of oscillation. We keep the positive sign for the
square root above because, as can be shown, the negative sign would not permit
satisfaction of the loop-gain condition.
We now need to calculate the minimum gain for oscillations to occur. The loop-gain
equation dictates that:
− g m R0 R 5
=1
−
(
(R0 + 9 R ) 21R0 R 2 + 35R 3 ) ( 4
+ 5 R0 R + R 5
)
ω 4C 4 ω 2C 2
− g m R0
=1
R0 R0
+ 9 21 + 35
R − R + 5 R 0 + 1
4 4 4 2 2 2
ω R C ω R C R
R0 R
+ 9 21 0 + 35
R
g m R0 = − 4 4 4 + 2 2 2 − 5 0 + 1
R R
…(21)
ω R C ω R C R
This is the minimum value of the product g m R0 for sustained oscillations in the circuit.
R0
Tables I and II below show how the ratio influences results for the frequency of
R
K
oscillation fosc = and the triode’s unloaded-case small-signal voltage gain,
2πRC
R
g m R0 . The particular case 0 → 0 corresponds to situations where the RC network
R
won’t load the vacuum tube’s output.
-19-