0% found this document useful (0 votes)
10 views13 pages

Successive Differentiation

The document discusses the application of L'Hôpital's Rule and various mathematical functions, including logarithmic and trigonometric functions. It presents different examples and solutions related to derivatives and limits. The content appears to be a mix of mathematical expressions and explanations, likely intended for educational purposes.

Uploaded by

molay kumer das
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
10 views13 pages

Successive Differentiation

The document discusses the application of L'Hôpital's Rule and various mathematical functions, including logarithmic and trigonometric functions. It presents different examples and solutions related to derivatives and limits. The content appears to be a mix of mathematical expressions and explanations, likely intended for educational purposes.

Uploaded by

molay kumer das
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 13
Leibnite'y ad 5 n : ey), Ot ath By, C,%, + Wyo ee Vz, + Yn~s Sy Vet iM + Uy pap eae AS eee } Cy v1 ar te d= ara (oy x) + bain (loge) « Bhos Hat hae + (Qt ey nD ee Sol”: y = Beos(loye) + basin (oq) fd Min Cege)ah rbers Cope i > my = B baos (loyx) - asin ('oqx) : Sy + qeede ~ bsin (loqx) 4 e aicos (logx) DA ea YO Neary o Applying Libnita’s Fbsorem We + day emt Mente : 446") dan +H De + 4, no) a ale + eH atti Ie 4 + Inny 2) tear at + td + Qnvtay + (On! tnaneiyy 7 a Fe) Mon, + CD 141) 4 420 ty gol”! [Prod] = log om Ji ) . Show pall (14 eth (nt iy tyro Given “Faby 4 tow. (et 1). Le x te i. “ya [aa eer ii ) a a =y la Sapiaa | »( Veer Os rT oy freee 7! y yd (ie? Gl anh => oe 8, aye HOd yy, ee “tehieg Linites Vibe Lag + LO Sel + Big + O%J0) 4 Snot fr”) 4, nv a DM Ana py) 2 + lx Pea => Yaw + dy + an =0 Jnei In a eyes bay sel Ye Amar » FA moe er any =0 5 + n =U yY ( 1+!) Sot tent) Sn! oF [showad J = sin (maint) + Sime thet (iat) ge een a + (m= om), Ye sin (omsin 'x)’ > Y= cos (msin'') « murs > y, ee x me0$(msin'%) ! fi \ : »> yaa & yfine =n «sin (nsin i) ie aed > aul 14-2) Eon = > GCS 4, +m de) App ying 2 dibmite’s onan (x) y+ Caney 4 (iy 20 | Im Sy +f 20 => U-*) Sma — (en t Nay =((an an +"), =D > Or + (emar)ay + (ntom')4 (sho wed} 1 OF yet? Lowthat U- 2 a ae is msin "x Soln; J =Q => msin |X wh % d; = 2 - Oy po 1 SLE 2B > sae (6) + YM = 4) pomsin ef Aas ate Faw “Subject Day yee) my > 4) (IX?) Ay, ~ ty eb Aplying Libnile’s soem, engine UD) pgg EOD Sort ey, — met mn my ,° => (ES). =-(2» “Uy ~ (nem n | mS =U 9 (hy). Fy Otay 5, ye (ints) ZI show thal Ce) 4 gg Ces 4 ? 4 fie i Lin > die dd I => 1 + y -2) p-2=0 BD Applying Lrbwitats Taste i = eee een FOOD YL mem ye 1. By ’ DUM, Ome og = ( Lie +n)s Int | mn? => (Ga) Snar 7 (remy, -oty oS n [ee] 6B ysdavtx . Show shat (44, +204 4, +nbeit)y + ' oor ya a Fey Sn ee Sy g(p etter > yj ln + y, (4) ag ? HY nal i 2m, 7 OF) Yere + x mins) sy -0 => (it QD) Year * mV) * (daant iy Cys. K fe + (ts oy 4 ony me) Comoved | Any kabexyar Wat@ Gate) a, ui de yee ae ; (% i anally —— Ee peta: ww diyspue SILI NS = or ths 0 OF (pe vl Tl a= A wy) 4 De (ioe) : G2 aes a : i wy poll Sal gypey Sone, © t + 15, $ B+ 4mq tO a Ayetiying: Limite Hheorueam Oe ns bem oe! 20 te ae DANG, OMIM TSE” ‘Subject Date r ae Tine | > i—_ uccersive .Disf (wn ‘ * Suceersive DIT th doncivative) ‘ @ 4=tagad® OY = OM ® y= log (ax+b) a YF eo a On+ @ y= $m (@x-4b) de then (ax+b 4 *I a @® y = Cos (0x4b) 2 4 = eos (Oxab 4 7) By = Xen, a J L™ sin(bx+e) Wa aS) Fin oes ate) a 8 A OX > & cos (bere) em, In 72" (OEY) 005 (onte 4 rn dont a 3) u ™m oh ? N 4 ie y @x+3) A, 43 Garay (axvss)” e myo ,m>n 5 mmSDd 7 Mon £0 " ne mio ymen nem Gye mle pment JON LOS nto: (exe) A. Find dhe ath” derrmivative. af ot Sol”. Lof + ON Tare I Pae(are- Qe” t ORO - ta CHyeoo ¢ I “I \ 82 ee sey FS Jara Rarvo le wal ¢ yee ye Utd 1 t Leute np (8 “ans =m AW", a A sof" TE Gey”?! 2 find te vt donreivettivg of Bin be, 008 Yx Sol™. Lot 4s cinks cos 4x = [asin Gx ODS tx} [ sino + sinte | wit oat sin (10% + Pe) + 250 (2 v 5 a\- ‘ \ \ oe > cy ‘supyect = hit Stn y eos n fds | i aw q Qsinxcosn) COS ie (in a & 4 2) QOSK 4 st SIM Qy .COS*® 4 ae Gsint20s) QOS oe (1-e0s4%) Cos = + Cosh = cos te | ye Le OF Ene oss) 4, Bind the mt enrivativa. of y= sine Sole Y= Sin Ty s (in *x) . t Lu = Le (2sint) + en\t ace -C~OH ~ 7 Rg (1 = Leos te tae pak q a oe eo 10 Ea = q 2 ; aL aol cos Oa eae tig SF ) ee - Leosta + tee ™ ny LY caret aE) eee Fem a L 2” eos (tas (am) ane = gy. find Fhe nth donirtivat va of yea cost sin Lx Sol Hye a Meosd sin ae zt 2°%e osn( 2. vintan) = + es cosx.(1- 0054.) ot pcos ~ 200320084 x ; = s 1 ek * Cae Eager) ‘Subject © cty p2% ; =yke * (oe 2 A a ee Ke Cee — 1 obbx % = Cos 2 9 = he 0X PES Gut = e?% eotgx _ A | erry CI3%K de ye = ae (Saar) x0% (a daod A») 3 ok a + OR 5 Mes Cie ‘Boas . s 4 ery car OA om BF ca ny ie L EArWOE wen Cer ek) The COE EA we conta _ DM/o: aa a Lig V2 yeas C3% ae der LA A CB

You might also like