Sujit Ratio I
Sujit Ratio I
x66-3:2
Comparison of Ratios
()(a : b) > c: d) ad > bc.
d
(ü) (a :b) = (c : d) * = ad = bc.
When more than two fractions are given, we convert them into equivalent fractions with
the same denominator, and then compare them.
SOLVED EXAMPLES
nd B_6
A A
15
A:C= 8: 15.
Hence, A: C = 8: 15.
Example 3. IfA:B= 3: 4 and B:C =6:5, find A: B:C.
Solution: A:B = 3:4 and B: C = 6:5
’ A: B= 3:4 and B: C = 1: 6
= 6: 4 : 3.
Hence, A: B: C = 6:4: 3.
A B C = k. Then,
(ü) Let 3
=
4
and C = 5k.
A = 3k, B= 4k
..A: B:C= 3k: 4k :
5k = 3:4:5.
Hence, A: B: C = 3:4:5.
A:B:C.
and 4B - 5C, find (i) A: Cand (ü)
Example 5. If 2A = 3B
A
Solution: 2A = 3B ’
B 2
B 5
4B = 5C ’ =
C 4
:8.
Hence, A: B:C= 15: 10
(2002)
76).
Example 6. Ifa :b =
5:3, find (5a + 86) : (6a
Then
Solution: Let a 5k andb = 3k.
5a + 8b 25k + 24k 49k 49
=
30k - 21k 9 9
6a -76
76) = 49: 9,
.. (5a + 86) : (6a -
+ 5b) = 11: 17, find
a:b.
If (4a + 36): (6a
Example 7.
56) = 11: 17.
Solution: (4a + 36) : (6a +
4a + 3b 11
6a + 56 17
66a + 555
68a + 516 =
4 2 ’ a:b= 2:1
2a= 4b ’ * =
’ 62 1
Foundation Mathematics for Class X
Example 8. If (4x t xy): (3xy -
y') = 12 : 5, find x : y.
Solution:
(4x2 + xy): (3xy - y') = 12 : 5
2
4
4x + xy 12
+
12
3xy - y 5 (On dividing Nr & Dr by y)
3 1
4a +a 12
-, where
3a -1 5
20a² + 5a = 36a - 12
’ 20a' - 31a + 12 = 0
’ 20a2 16a
l5a + 12 = 0 ’ 4a (5a - 4) - 3(5a - 4) =0
’ (5a - 4) (4a - 3) = 0
5a 4= 0 or 4a - 3 = 0 4 3
a= Or a =
5 4
4 3
5 ’ x : y= 4:5 or x:y = 3: 4.
y 4
Hence, (x: y) = (4 : 5) or (x: y) = (3: 4).
’ (13 : 20) < (17 : 25) << (7: 10) < (11:
15).
Hence, the given ratios in ascending order are :
(13 : 20), (17 : 25), (7 : 10) and (11: 15).
Alternative Method :
7 11
7: 10 = -| = 0.7: 11: 15 = = 0.733;
10 15
13 17
13: 20 = = 0.65; 17: 25 = =0.68.
20 25
.i. 0,65 < 0.68 < 0.7 < 0.733,
Hence, (13 : 20) <(17:25) <(7: 10) <(11: 15).
EXERCISE 7A
1. Find the ratio between :
() 60 paise and 1.35 (iü) 1.8 m and 75 cm
3
(iüü) 1.5 kg and 600 g (iv) 35 min and 1 hrs
4
2. If A: B = 5:6 and B :C=9: 11, find (i) A: C (ü) A: B: C.
3. If P:Q=7:4 and Q: R= 5: 14, find (i) R: P (ü) P:Q:R.
4. If 3A = 5B = 6C, find A: B: C.
5. Ir A B C find A: B:C.
2 3 6
6. If a:b=8: 5. find (7a + 55): (8a 96).
I. f*:y = 3:2, find (5x - 3y) : (7x + 2y).
b. If *:y = 10 : 3, find (3¢2 + 2y2) : (3¢- 2y).
O. lf a:b= 2: 5. fnd (3a2 - 2ah + 562) : (a2 + 7ab - 26).
10, If (5x + 2y): (7x + 4y) = 13 : 20, find x:y.
d lf (3x + 5y) : (3* - 5y) =7:3, find x : y.
89
V.
Proportion
An Important Property
Ifa :b : c: d, then the product of extremes is equal to the product of
means.
Proof : a:b:: c:d ad = bc.
.:. Product of extremes = product of means.
Continued Proportion
We say that a, b, C, d, e, f etc., are in continued proportion, if b =de
b c d e f
Mean Proportion (or Geometric Mean)
Let a, b, c be in continued proportion.
Then, b
or b = 1c or b = Vac
= 224 ...(i)
a
On multiplying the corresponding sides of (i)
and (ii), we get :
ab x -(28 x 28 x 224) b = (28 x 28 x 28 x 2 x 2 x 2)
’b = (28 x 2) =56.
Substituting b = 56 in (), we get :
ax 56 = (28 x 28) ’ a= 28 x 28 = 14.
56
Thus a = 14 and b = 56
Hence, the required numbers are 14 and 56.
Example 6. If b is the mean proportion between a and c, prove that :
a'-b +
=b*.
a-6+e2
Solution: Since b is the mean proportion between a and c, we have b = ac.
a'-6 +? (a'b.2)?-6 +)
1 1.1 6-a?,2 +ab)
(a)- ac +e)
(ae-a2 +a)
(a) - ac + ¢)
acla - ac +c)
Example 7. Ifb is the mean proportion between a and c, show that bla + c) is
the mean
proportion between (a² + b) and (b? + ).
Solution : Since b is the mean proportion between a and c, so we have b = ac.
:. Mean proportion between (a² + b²) and (b + c2)
=Vla+?)l% +) =la +ac)lae+) [:8 =ac
=Vala+o).cla +e) =yacta +e)² =y8 la +e
= bla + c)
Hence, the mean proportion between (a² + 6) and (b² + c) is bla + c).
EXample 8. If a b anda:b is the duplicate ratio of (a + c): (6 + c), prove that cis
the mean proportion between a and b.
Solution : Since the duplicate ratio of (a + c): (6 + c) is a : b, we have
(a+c? a +c + 2ac
(6+c B + + 2bc
[By cross multiplication]
ab'++2bc) =b(a+e +2ac)
(ab- ab²) +
(b-e'a) =0 93
Ratio and Proportion
»ab- ab?)-(ea -b)=0
abla - b) - c(a-b) = 0
’ (a- b) (ab-e)=0 a’a-b 0]
’=ab ’c=ab. b.
and
between a
Hence, c is the mean proportion
prove that
:
Example 9. If x, y, z are in continued
proportion,
(x+y (2010)
(y+z)
continued proportion. Then,
Solution: Let , y, z be in
K:y = y:z ’
y² =
y
.:. LHS. =
(*+y
(y+2)
x+ xz + 2xy
x+y+ 2xy
xz + 2 + 2yz
y++2yz
x(* +2+2y) R.H.S.
z(* +2+ 2y)
(*+y?
Hence,
(y+2)²
prove that the first is to third
Example 10. If three quantities are in continued proportion,
is the duplicate ratioof the first to the second.
Solution : Let a, b, c be in continued proportion. Then,
b
a:b = b:c= =
..i)
C
,6_ a a a?
Now,
C C
a:c = g': 2
b==k
d (say). Then, a= bk and c= dk.
Putting a = bk and c = dk, we get :
(a+b) (bk+ b) b(k +1) b
LHS =
lc+ d) (dk +d) d(k+1) d
RHS = byk² +1
dyk +1 d
.. LHS =RHS.
Hence, (a + b) : (c + d) = va² + b2 : Je + d²
Example 12. If a:b = c:d, prove that :
(abcd)\a +b2 +c2 +d) =(4 +b² +e+d²).
Solution: Since a:b = c: d, we have
C
= k (say). Then, a = bk and c = dk.
Putting a =bh and c = dk, we get:
. LHS = abcdla +62 +e-2 +d2)
= abcd| ,1 1
1 1 1
- (bk)b (dk) d. (Putting a= bk, c = dk]
1 1 1 1
- (6a²2).
62
=d² +d²²+6² +b² =(1+ *²)(a² +6²).
RHS =(a? +b +2 +d?),
-(62² +6² +d? +d²)
[Putting a= bh, c = dk)
= (1 + kX? + b2).
.. LHS = RHS.
.i. ;=-=k
C
(say)
. b ck and a= bk = (ck)k = ck.
Substituting these values, we get:
2a - 5ab+ 762
L.H.S. =
262 - 5bc + 7e
2le2)' -5x ck' xck + 7(ck)'
2(ck) -5x ck xc+ 7¢
202k - 5ck +7e°k? =
(2k' -5k +7)
20242-5e'k+7e2 (22-5k +7)
R.H.S. = = k2.
C C
b
= k (say).
C d
i c= kd, b = ke = klkd) =
k'd and a = kb = klkd) = kd.
L.H.S. =(a' +6 +e)(6² +e+ d')
- (#9 +kd² +a)a +*d
+d)
=ka(k +k+1).d( ++1)=(a\++1.
R.HS. =(ab + be +cdy² =|(*dx k'd) +kdx kd) +(kd x 2
d)
=
d+k-1)Jk.
.:. LH.S. = R.HS.
Hence, Vab + vbe - ycd = a+b-c)(b+c-d).
An Important Property
a+c+e
C
=k., prove that each ratio is equal to b+d+f
Sum of antecedents
Le., each ratio Sum of consequents
Proof : Let h Then, a = bk, c = dk and e = fk.
f
a+c+e bk + dk + fk k(b+ d+f)k.
b+d+f b+d+f (b+d+f)
a+c+e
Hence, each ratio =
b+d+f
*+y y+z
Example 19. If ax + by ay + bz az + 6x'
2
prove that each of these ratios is equal to (a+b)
unless x + y t 2 = 0.
Sum of antecedents
Solution: Clearly, each ratio = Sum of consequents
*+y ytz (x+y) +(y+z) +(2+x)
ax + by ay + bz az + bx (a+b)(*+ y+z)
2(x +y +z) 0.
(a+6)(*+y+z) o+h)' When x+y+z#
1
Example 20. If prove that each fraction is equal to or -1.
(6+c) (c+a) (a +b)
Sum of antecedents
Solution : Clearly, each ratio = Sum of consequents
C a+b+c 1
(6+c) (c+ a) (a +b) 2%a +b +c) 2 when a + b + c0.
Now, when a + 6 + c = 0, we have
b+c =- 4, c + a = -6 anda +b = - c.
b b
b+c
a-1, C+a -b
= -1and
a+b -C
=-1.
-1.
Hence, in this case, each ratio is
(i)
a+b 2a'+762 ma' +ne2 ya+t
(ü)
c+d
J2e+7d2 mb² +nd² J& +dt
la+c ala -c?
(üi)
a'+ ab +b? e+ cd +² (iv)
a-ab+ b? - cd+d? (6+ d) b6- d
Hint : Use k-method.]
99
Ratio and Proportion
15,. If = ,prove that :
(u) 3ryz
a+b* pa+ qb +r abc (2016)
3
(üi)
(+y+ *
(a+h+c
ar- by by - cz
(iv)
(a+b)(r - y) (6+c)(y- z) (c+ alz- *) =3
Hint : Use k-method in each.]
16.I f ì prove that :
(i) (62 + d + f) (a² + + e)= (ab + cd + ef)
(iü) ace a Ce ae
(ùi)
a+b c+d et f
(iv) (baf). b
= 27(a+b)lc+d)le+f)
[(Hint : Use k-method in each.]
7. If a, b, c are in continued proportion, prove that :
a+b a²b-c) a+b+c (a +b+c
() (iü)
b+c b² (a -b) a-b+c (a+b2 +)
a'+ ab + b? (iv) (a + b + c) (a -b + c) = (a² + b2 + c2)
(iüü)
6² +bc + c? c
(w) a622 (a + 6S+) = (a + b +c) (2015)
a
[Hint : ==kh= ck and a =ck']
18. If a, b, c, d are in continued proportion, prove that :
(i) (6 + c) (6 + d) = (c + a) (c + d)
(iü) (a + b) (6 + c) - (a + c) (6 + d) = (6 - c)2
CO ab
19. If ax = by = cz, prove that + +
yz
20. If *+y+
6+c-a C+a-b a+b-c
prove that each ratio is equal to
a+b+c
Also, show that (6 - c) x + (e - a)y+ (a - b)2 = 0.
*+y+z *+ y+z
[Hint : Each ratio = (6+c-a) +(c+ a-b) +(a+ b-c) a+b+e
Example 1. If Iprove
e 3a- 5b 3c - 5d
d
that (2000)
3a + 56 3c + 5d
Solution :
C 3a 3c 3
bd 5b 5d [Multiplying both sides by
3a + 56 3c + 5d
3a -56 3c - 5d
By componendo & dividendo]
3a - 56 3c-5d
3a + 5b 3c + 5d
(By invertendo]
3a - 5b 3c-5d
Hence,
3a + 56 3c + 5d
Example 2. If a: b::c:d, prove that *0tb0 4a - 96
4c + 9d 4c-9d
Solution : a:b::c:d ’;=
C
4a 4c
96 9d Multiplying both sides byl
4a +9b 4c + 9d
4a -96 4c-9d By componendo & dividendo]
4a +96 4a-96
4c+9d 4c-9d (By alternendo]
4a + 96 4a-96
Hence,
4c + 9d 4c- 9d
101
Ratio and Proportion
8a -55 8a + 56
Example 3. If 8c - 5d 8c + 5d
prove that =
d (2008)
Solution : We have
8a- 56 8a +56
8c -5d 8c +5d (Given]
8a- 5b 8c-5d
8a+56 (By alternendo]
8c+5d
8a+ 5b 8c +5d
(By invertendo]
8a-5b 8c-5d
(8a +5b)+(8a-55) (8c + 5d) +(8c-5d)
(8a +5b)-(8a-5b) (By componendo ÷ndol
(8c + 5d)- (8c - 5d)
16a 16c C
On multiplying each side by 10
10b 10d 16
C
Hence, =
+3ab? 63
Example 4. Given that (2009)
b +3ab 62
Using Componendo and Dividendo, find a :b.
Solution: We have
a +3ab 63
(Given]
b + 3a b 62
(i) m:n
Solution: m'-n2
(i) We have
7m + 2n 5
7m -2n 3 [Given]
(7m + 2n) +(7m -2n) 5+3
(7m + 2n)-(7m-2rn) 5-3 (By Componendo &Dividendol
14m 8 7m m 4 x2 8
=4’
4n 2 2n n 7 7
64
72 49
m+n 64 +49 113
m? 64-49 15 By Componendo & Dwidendol
Example 6. Using componendo and
dividendo, find the value ofx when
/3x +4 +y3r-5
=9
J3x +4 - 3r -5
(2011)
Solution : We have
J3x +4 + 3x- 5 9
J3x + 4- J3x -5 1 IGiven)
/3x +4+ J3r -5 +(J3x+ 4 - V3x -5)
9+1
W3r +4+ 3r - 5)-(J3x +4-N3x -5) 9-1
1
25 +1
*+1 5
x'-1 3* (On taking square root on each sidel
1 ya+l - va -1 (Given)
2 +1) 2a +1)
6 2x
4x
3bx-2ax + 36 = 0.
2ax ’
3ox2 + 36 =
+ 36) =0. for Class X
Hence, (36r'
- 2ax Foundation
Mathematics
Example 10. Given x
Va' - |Givenl
-1
+6² + ya
\By Componendo& Dividendol
2ya +6
2ya -b
(x+1) a +1+ 2x
(x-1)² 2+1 2x |On squaring both sidesl
(x+1+2x) +(x +1 - 2x) (a² +62) +(a2 -62)
(a2 +1+ 2*) -(x +1- 2x) (a' +6²) -(a'-62)
[By Componendo & Dividendol
2( +1) 2a2
x +1
4x 262 2x 62
b2x2 + b' = 2a'x ’ bx2 - 2a'x + b2 = 0.
Hence, b2x2 - 2ax + b2 = 0.
Va+x + va-x
Va+x - Ja-x 1 (Given]
Solution : We have
4xy
p= |Given)
(x+ y)
P 2y and P 2x
2x (x+ y) 2y (x+y)
p+ 2x 2y + (x + y) p+2y 2x + (* + y)
and
p- 2x 2y - (* +y) p- 2y 2x - (* + y)
(By Componendo& Dividendol
p+ 2x 3y + x p+ 2y 3x + y
and
p-2* p- 2y
p+ 2x p+2y 3y +x, 3x +y
p- 2x p- 2y y- *
3x +y_ 3y + * (3x + y)- (3y +x) 2(*- y) - 2
(r- y) (x- y
Hence, for
Cass
Foundation Mathematics
106