0% found this document useful (0 votes)
34 views8 pages

Practice Sheet (Trigo - I) Q

The document is a practice sheet containing various trigonometry problems, including questions on triangles, angles, and trigonometric identities. Each question presents multiple-choice answers, covering a range of topics from basic trigonometric functions to more complex equations. The problems are designed to test the understanding and application of trigonometric concepts.

Uploaded by

patanahiyadav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views8 pages

Practice Sheet (Trigo - I) Q

The document is a practice sheet containing various trigonometry problems, including questions on triangles, angles, and trigonometric identities. Each question presents multiple-choice answers, covering a range of topics from basic trigonometric functions to more complex equations. The problems are designed to test the understanding and application of trigonometric concepts.

Uploaded by

patanahiyadav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

PRACTICE SHEET

TRIGONOMETRY - I

2
c c
1. a, b, c are the sides of a triangle ABC which is right angled at C, then the minimum value of   
a b
is
(A) 16 (B) 4 (C) 6 (D) 8

2. If x + y = 3 – cos4 and x – y = 4 sin2 then


(A) x4 + y4 = 9 (B) x  y 16
(C) x3 + y3 = 2(x2 + y2) (D) x  y 2

n sin A cos A
3. If tanB = then tan(A + B) equals
1  n cos2 A
sin A ( n  1) cos A sin A sin A
(A) (B) (C) (D)
(1  n ) cos A sin A (n  1) cos A (n  1) cos A

FG  (a  x)IJ = 0 then, which of the following holds good?


4. Given a2 + 2a + cosec2 H2 K
x x
(A) a = 1 ; I (B) a = –1 ; I
2 2
(C) a  R ; x  (D) a , x are finite but not possible to find

5. The minimum value of the function


f (x) = (3sin x – 4 cos x – 10)(3 sin x + 4 cos x – 10), is
195  60 2
(A) 49 (B) (C) 84 (D) 48
2

6. Which value of  listed below leads to


2sin  > 1 and 3cos  < 1?
(A) 70° (B) 140° (C) 210° (D) 280°

7. In the inequality below the value of the angle is expressed in radian measure. Which one of the inequalities
below is true?
(A) sin 1 < sin 2 < sin 3 (B) sin 3 < sin 2 < sin 1
(C) sin 2 < sin 1 < sin 3 (D) sin 3 < sin 1 < sin 2

2 3 6 9 18 27 
8. The exact value of cos cos ec  cos cos ec  cos cos ec is equal to
28 28 28 28 28 28
(A) – 1/2 (B) 1/2 (C) 1 (D) 0

9. If the expression, 2 cos10° + sin 100° + sin 1000° + sin 10000° is simplified, then it simplifies to
(A) cos 10° (B) 3 cos 10° (C) 4 cos 10° (D) 5 cos 10°

1
10. Number of ordered pair(s) of (x, y) where x, y  [–2, 2] satisfying the equation
sin(x  y)  1 2 cos(2x  y)  1 = 6 is
(A) 1 (B) 2 (C) 3 (D) 4

11. If 3 tan A + cot A = 5cosec A, then the value of (sec A + 4sin2A) is equal to
(A) 3 (B) 4 (C) 5 (D) 6

2   2  
12. The maximum value of expression cos   x   sin   x  is equal to
4  4 
3 
(A) 1 (B) 2 (C) (D)
2 2

13. A regular decagon A0, A1, A2......A9 is given in the xy plane. Measure of the A0A3A7 in degrees is
(A) 108° (B) 96°
(C) 72° (D) 54°

14. Number of real solutions to the equation


sin (6x) = x, is
(A) 13 (B) 11 (C) 9 (D) 7

15. The value of x satisfying the equation, x = 2  2  2  x is


(A) 2 cos 10° (B) 2 cos 20° (C) 2 cos 40° (D) 2 cos 80°

16. An equilateral triangle has sides 1 cm long. An ant walks around the triangle, maintaining a distance of
1 cm from the triangle at all time. Distance travelled by the ant in one round is
3
(A) 3  3 3 (B) 3  6 3 (C) 3 + 2 (D) 3 +
2

17. If A, B, C and D denotes the interior angles of a quadrilateral then

 tan A   tan A
(A)
 cot A (B)  tan A   tan A   cot A 
(C)  cot A   tan A   tan A (D)  tan A   tan A   cot A

    3   7 
tan x   cos  x   sin 3   x
 2  2   2  when simplified reduces to
18.
    3 
cos x   tan  x 
 2  2 
(A) sin x cos x (B)  sin2 x (C)  sin x cos x (D) sin2x

cos 96  sin 96


19. The smallest natural 'n' such that tan(107n)° = , is
cos 96  sin 96
(A) n = 2 (B) n = 3 (C) n = 4 (D) n = 5

2
20. If in a ABC, sin3A + sin3B + sin3C = 3 sinA · sinB · sinC then
(A) ABC may be a scalene triangle (B) ABC is a right triangle
(C) ABC is an obtuse angled triangle (D) ABC is an equilateral triangle

2005
 2 n 
21. The value of the sum   2 sin
2
 1 equals
n 1001  
(A) 2007 (B) 2008 (C) 2010 (D) 20113

22. Number of degrees in the smallest positive angle x such that


8 sin x cos5x – 8 sin5x cos x = 1, is
(A) 5° (B) 7.5° (C) 10° (D) 15°

23 Given that the side length of a rhombus is the geometric mean of the lengths of its diagonals. The degree
measure of the acute angle of the rhombus is
(A) 15° (B) 30° (C) 45° (D) 60°

24. In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the
equation, 3 sin x  4 sin3 x  K = 0, 0 < K < 1, then the measure of angle C is
(A) /3 (B) /2 (C) 2/3 (D) 5/6

25. The set of angles btween 0 and 2 satisfying the equation 4 cos2  2 2 cos  1 = 0 is
RS  , 5 , 19 , 23 UV  7 17 23 
(B)  ,
(A)
T12 12 12 12 W ,
12 12
,
12

12 

(C) S
R 5 , 13 , 19 UV RS  , 7 , 19 , 23 UV
T 12 12 12 W (D)
T 12 12 12 12 W
26. If cos ( + ) = 0 then sin ( + 2) =
(A) sin  (B)  sin  (C) cos  (D)  cos 

1  sin 2 1    3   
27. The expression  sin 2   cot  cot     when simplified

cos 2  2  . tan   3
4  4  2 2 2
reduces to
(A) 1 (B) 0 (C) sin2 /2 (D) sin2 

28. The number of ordered pairs (x, y) of real numbers satisfying 4x2 – 4x + 2 = sin2y and x2 + y2  3,
is equal to
(A) 0 (B) 2 (C) 4 (D) 8

29. Let y = cos x (cos x  cos 3 x). Then y is


(A)  0 only when x  0 (B)  0 for all real x
(C)  0 for all real x (D)  0 only when x  0

30. Range of the expression y = cos x (cos x  cos 3 x) is equal to


 5
(A) [0, 1] (B) [0, 2] (C) 0,  (D) [0, )
 2

3
1 1
31. If tan x – tan y = a and cot y – cot x = b (a, b  0), then the value of  =
a b
(A) cot (x – y ) (B) tan (x – y) (C) tan ( x + y) (D) cot (x + y )

32. The simplified value of



2 sin2 2cos 2 1 
is
cossincos3sin3
(A) sin  (B) cos  (C) cosec  (D) sec 

33. In a triangle ABC, angle B < angle C and the values of B and C satisfy the equation
2 tan x – k (1 + tan2 x) = 0 where (0 < k < 1) . Then the measure of angle A is :
(A) /3 (B) 2/3 (C) /2 (D) 3/4

34. If a sin x + b cos x = 1 and a2 + b2 = 1 (a, b > 0), then consider the following statements:
I sin x = a II tan x = a/b III tan x = b
(A) only III is false (B) only I is true
(C) All of I, II, III must be true (D) None of I, II or III is correct.

35. The value of log2 [cos2 ( + ) + cos2 ()  cos 2 . cos 2]
(A) depends on  and  both (B) depends on  but not on 
(C) depends on  but not on  (D) independent of both  and  .

36. In a triangle ABC, 3 sin A + 4 cos B = 6 and 3 cos A + 4 sin B = 1 then C can be
(A) 30° (B) 60° (C) 90° (D) 150°

37. If x sec + y tan = x sec + y tan = a, then sec  · sec  =


a 2  y2 a 2  y2 x 2  y2 x 2  y2
(A) 2 (B) 2 (C) 2 (D) 2
x  y2 x  y2 a  y2 a  y2

cos 3x 1  sin 3x
38. If = for some angle x, 0  x  , then the value of for same x, is
cos x 3 2 sin x
7 5 2
(A) (B) (C) 1 (D)
3 3 3

 C C A B
39. If A + B + C =  and sin  A   = k sin , then tan tan =
 2 2 2 2

k1 k1 k k1


(A) (B) (C) (D)
k1 k1 k1 k

40. The graphs of y = sin x, y = cos x, y = tan x and y = cosec x are drawn on the same axes from 0 to /
2. A vertical line is drawn through the point where the graphs of y = cos x and y = tan x cross, intersecting
the other two graphs at points A and B. The length of the line segment AB is:
5 1 5 1
(A) 1 (B) (C) 2 (D)
2 2

4
41. The expression wherever defined, sec4x – 4 tan3x + 4 tan x is always :
(A) positive (B) negative (C) non-positive (D) non–negative

1  1
42. If cos  =  a   then cos 3 in terms of ‘a’ =
2  a
1  3 1 1  3 1  1
a  3 
3
(A) a  3  (B) (C) 4  a  3  (D) none
4  a  2  a  a

5 1  sin x  1  sin x
43. If  x  3 , then the value of the expression is
2 1  sin x  1  sin x
x x x x
(A) – cot (B) cot (C) tan (D) – tan
2 2 2 2

44. If x, y  R and satisfy the equation xy(x2 – y2) = x2 + y2 where x  0 then the minimum possible value
of x2 + y2 is
(A) 1 (B) 2 (C) 4 (D) 8

 2  4
45. If x sin  = y sin     = z sin     then :
 3   3
(A) x + y + z = 0 (B) xy + yz + zx = 0 (C) xyz + x + y + z = 1 (D) none

sin 2 (212) cos 302  cos3 (148)


46. The value of is :
sin(82) cos(8)  sin 368 sin(172)  sin 58 sin 148
(A) cos 32º  sin 32º (B) sin 32º  cos 32º
(C) cos 32º + sin 32º (D) cos 32º sin 32º + 1

 2 4 8 16
47. The value of cos cos cos cos cos is
10 10 10 10 10

1 1 cos 10  10  2 5
(A) (B) (C) (D) –
32 16 16 64

48. If a cos3  + 3a cos  sin2  = m and a sin3  + 3a cos2  sin  = n . Then


(m + n)2/3 + (m  n)2/3 is equal to :
(A) 2 a2 (B) 2 a1/3 (C) 2 a2/3 (D) 2 a3

49. As shown in the figure AD is the altitude on BC and AD


produced meets the circumcircle of ABC at P where
DP = x. Similarly EQ = y and FR = z. If a, b, c respectively
a b c
denotes the sides BC, CA and AB then  
2 x 2 y 2z
has the value equal to
(A) tanA + tanB + tanC (B) cotA + cotB + cotC
(C) cosA + cosB + cosC (D) cosecA + cosecB + cosecC

5
50. The maximum value of (7 cos + 24 sin) × ( 7 sin – 24 cos) for every   R .
625 625
(A) 25 (B) 625 (C) (D)
2 4

51. If  is eliminated from the equations x = a cos( – ) and y = b cos ( – ) then


x2 y2 2xy
2
 2
 cos(  ) is equal to
a b ab
(A) cos2 (  – ) (B) sin2 ( – ) (C) sec2 (  – ) (D) cosec2 ( – )

tan 2 x  4 tan x  9
52. If M and m are maximum and minimum value of the function f (x) = , then (M + m)
1  tan 2 x
equals
(A) 20 (B) 14 (C) 10 (D) 8

1 1
53. + =
cos 290 3 sin 250

2 3 4 3
(A) (B) (C) 3 (D) none
3 3

54. Let f (x) = sin 4 x  4 cos2 x – cos4 x  4 sin 2 x . An equivalent form of f (x) is
(A) 1 (B) – 1 + 2 sinx (C) cos 2x (D) – cos 2x

sin 8θ ·cos θ  sin 6θ ·cos 3θ


55. The value of when  = 7.5° is
cos 2θ ·cos θ  sin 3θ ·sin 4θ
(A) 2  1 (B) 2  3 (C) 2 1 (D) 2  3

56. The value of cot x + cot (60º + x) + cot (120º + x) is equal to :


(A) cot 3x (B) tan 3x (C) 3 tan 3x (D) 3cot 3x

x2  x 1 
57. If tan  = 2 and tan  = 2 (x  0, 1), where 0 < ,  < , then tan ( + ) has
x  x 1 2 x  2x  1 2
the value equal to
3
(A) 1 (B) – 1 (C) 2 (D)
4

58. If tan A and tan B are the roots of the quadratic equation x2  ax + b = 0, then the value of sin2 (A + B) is
a2 a2 a2 a2
(A) 2 (B) 2 (C) (D) 2
a  (1  b)2 a  b2 ( b  a) 2 b (1  a ) 2

x2
59. For every x  R the value of the expression y = + x cos x + cos 2x is never less than
8
(A) – 1 (B) 0 (C) 1 (D) 2

6
60. If  be an acute angle satisfying the equation 8 cos 2 + 8 sec 2 = 65, then the value of cos  is equal
to
1 2 2 3 3
(A) (B) (C) (D)
8 3 3 4

x y
61. If x sin  = y cos  then + is equal to
sec2 cosec2
(A) x (B) y (C) x2 (D) y2

62. If cos25° + sin25° = p, then cos50° is


(A) 2  p2 (B) – p 2  p 2 (C) p 2  p 2 (D) – p 2  p 2

63. In a triangle ABC if tan A < 0 then


(A) tan B . tan C > 1 (B) tan B . tan C < 1
(C) tan B . tan C = 1 (D) none

64. , ,  and  are the smallest positive angles in ascending order of magnitude which have their sines
equal to the positive quantity k . The value of
   
4 sin + 3 sin + 2 sin + sin is equal to :
2 2 2 2
(A) 2 1  k (B) 2 1  k (C) 2 k (D) 2 k

  x 1
65. Suppose that  is a positive acute angle such that sin    , then the value of tan  is
 2 2x

x 1 x2 1
(A) x (B) (C) 2
x 1 (D)
x 1 x

A
66. If A = 3400 then 2 sin is identical to
2
(A) 1  sin A  1  sin A (B)  1  sin A  1  sin A
(C) 1  sin A  1  sin A (D)  1  sin A  1  sin A

 
67. The value of cosec – 3 sec 18 is a
18
(A) surd (B) rational which is not integral
(C) negative natural number (D) natural number

68. The expression S = sec 11° sec 19° – 2 cot 71° reduces to
1
(A) 2 cot 11° (B) tan 19° (C) 2 tan 11° (D) tan 19°
2

7
69. The set of values of ‘a’ for which the equation, cos 2x + a sin x = 2a  7 possess a solution is
(A) (, 2) (B) [2, 6] (C) (6, ) (D) ()

70. If tan x + tan y = 25 and cot x + cot y = 30, then the value of tan(x + y) is
(A) 150 (B) 200 (C) 250 (D) 100

71. In a right angled triangle the hypotenuse is 2 2 times the perpendicular drawn from the opposite vertex.
Then the other acute angles of the triangle are
   3    3
(A) and (B) and (C) and (D) and
3 6 8 8 4 4 5 10

A B
 cot 2 2 . cot 2 2
72. In  ABC, the minimum value of is
A
 cot 2 2
(A) 1 (B) 2 (C) 3 (D) non existent

73. Minimum vertical distance between the graphs of y = 2 + sin x and y = cos x is
(A) 2 (B) 1 (C) 2 (D) 2 – 2

74. If sin () = a and sin () = b (0 <, ,</2)


then cos2 ()  4 ab cos() =
(A) 1  a2  b2 (B) 1  2a2  2b2 (C) 2 + a2 + b2 (D) 2  a2  b2

75. The exact value of cos273º + cos247º + (cos73º . cos47º) is


(A) 1/4 (B) 1/2 (C) 3/4 (D) 1

You might also like