PRACTICE SHEET
TRIGONOMETRY - I
2
c c
1. a, b, c are the sides of a triangle ABC which is right angled at C, then the minimum value of
a b
is
(A) 16 (B) 4 (C) 6 (D) 8
2. If x + y = 3 – cos4 and x – y = 4 sin2 then
(A) x4 + y4 = 9 (B) x y 16
(C) x3 + y3 = 2(x2 + y2) (D) x y 2
n sin A cos A
3. If tanB = then tan(A + B) equals
1 n cos2 A
sin A ( n 1) cos A sin A sin A
(A) (B) (C) (D)
(1 n ) cos A sin A (n 1) cos A (n 1) cos A
FG (a x)IJ = 0 then, which of the following holds good?
4. Given a2 + 2a + cosec2 H2 K
x x
(A) a = 1 ; I (B) a = –1 ; I
2 2
(C) a R ; x (D) a , x are finite but not possible to find
5. The minimum value of the function
f (x) = (3sin x – 4 cos x – 10)(3 sin x + 4 cos x – 10), is
195 60 2
(A) 49 (B) (C) 84 (D) 48
2
6. Which value of listed below leads to
2sin > 1 and 3cos < 1?
(A) 70° (B) 140° (C) 210° (D) 280°
7. In the inequality below the value of the angle is expressed in radian measure. Which one of the inequalities
below is true?
(A) sin 1 < sin 2 < sin 3 (B) sin 3 < sin 2 < sin 1
(C) sin 2 < sin 1 < sin 3 (D) sin 3 < sin 1 < sin 2
2 3 6 9 18 27
8. The exact value of cos cos ec cos cos ec cos cos ec is equal to
28 28 28 28 28 28
(A) – 1/2 (B) 1/2 (C) 1 (D) 0
9. If the expression, 2 cos10° + sin 100° + sin 1000° + sin 10000° is simplified, then it simplifies to
(A) cos 10° (B) 3 cos 10° (C) 4 cos 10° (D) 5 cos 10°
1
10. Number of ordered pair(s) of (x, y) where x, y [–2, 2] satisfying the equation
sin(x y) 1 2 cos(2x y) 1 = 6 is
(A) 1 (B) 2 (C) 3 (D) 4
11. If 3 tan A + cot A = 5cosec A, then the value of (sec A + 4sin2A) is equal to
(A) 3 (B) 4 (C) 5 (D) 6
2 2
12. The maximum value of expression cos x sin x is equal to
4 4
3
(A) 1 (B) 2 (C) (D)
2 2
13. A regular decagon A0, A1, A2......A9 is given in the xy plane. Measure of the A0A3A7 in degrees is
(A) 108° (B) 96°
(C) 72° (D) 54°
14. Number of real solutions to the equation
sin (6x) = x, is
(A) 13 (B) 11 (C) 9 (D) 7
15. The value of x satisfying the equation, x = 2 2 2 x is
(A) 2 cos 10° (B) 2 cos 20° (C) 2 cos 40° (D) 2 cos 80°
16. An equilateral triangle has sides 1 cm long. An ant walks around the triangle, maintaining a distance of
1 cm from the triangle at all time. Distance travelled by the ant in one round is
3
(A) 3 3 3 (B) 3 6 3 (C) 3 + 2 (D) 3 +
2
17. If A, B, C and D denotes the interior angles of a quadrilateral then
tan A tan A
(A)
cot A (B) tan A tan A cot A
(C) cot A tan A tan A (D) tan A tan A cot A
3 7
tan x cos x sin 3 x
2 2 2 when simplified reduces to
18.
3
cos x tan x
2 2
(A) sin x cos x (B) sin2 x (C) sin x cos x (D) sin2x
cos 96 sin 96
19. The smallest natural 'n' such that tan(107n)° = , is
cos 96 sin 96
(A) n = 2 (B) n = 3 (C) n = 4 (D) n = 5
2
20. If in a ABC, sin3A + sin3B + sin3C = 3 sinA · sinB · sinC then
(A) ABC may be a scalene triangle (B) ABC is a right triangle
(C) ABC is an obtuse angled triangle (D) ABC is an equilateral triangle
2005
2 n
21. The value of the sum 2 sin
2
1 equals
n 1001
(A) 2007 (B) 2008 (C) 2010 (D) 20113
22. Number of degrees in the smallest positive angle x such that
8 sin x cos5x – 8 sin5x cos x = 1, is
(A) 5° (B) 7.5° (C) 10° (D) 15°
23 Given that the side length of a rhombus is the geometric mean of the lengths of its diagonals. The degree
measure of the acute angle of the rhombus is
(A) 15° (B) 30° (C) 45° (D) 60°
24. In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the
equation, 3 sin x 4 sin3 x K = 0, 0 < K < 1, then the measure of angle C is
(A) /3 (B) /2 (C) 2/3 (D) 5/6
25. The set of angles btween 0 and 2 satisfying the equation 4 cos2 2 2 cos 1 = 0 is
RS , 5 , 19 , 23 UV 7 17 23
(B) ,
(A)
T12 12 12 12 W ,
12 12
,
12
12
(C) S
R 5 , 13 , 19 UV RS , 7 , 19 , 23 UV
T 12 12 12 W (D)
T 12 12 12 12 W
26. If cos ( + ) = 0 then sin ( + 2) =
(A) sin (B) sin (C) cos (D) cos
1 sin 2 1 3
27. The expression sin 2 cot cot when simplified
cos 2 2 . tan 3
4 4 2 2 2
reduces to
(A) 1 (B) 0 (C) sin2 /2 (D) sin2
28. The number of ordered pairs (x, y) of real numbers satisfying 4x2 – 4x + 2 = sin2y and x2 + y2 3,
is equal to
(A) 0 (B) 2 (C) 4 (D) 8
29. Let y = cos x (cos x cos 3 x). Then y is
(A) 0 only when x 0 (B) 0 for all real x
(C) 0 for all real x (D) 0 only when x 0
30. Range of the expression y = cos x (cos x cos 3 x) is equal to
5
(A) [0, 1] (B) [0, 2] (C) 0, (D) [0, )
2
3
1 1
31. If tan x – tan y = a and cot y – cot x = b (a, b 0), then the value of =
a b
(A) cot (x – y ) (B) tan (x – y) (C) tan ( x + y) (D) cot (x + y )
32. The simplified value of
2 sin2 2cos 2 1
is
cossincos3sin3
(A) sin (B) cos (C) cosec (D) sec
33. In a triangle ABC, angle B < angle C and the values of B and C satisfy the equation
2 tan x – k (1 + tan2 x) = 0 where (0 < k < 1) . Then the measure of angle A is :
(A) /3 (B) 2/3 (C) /2 (D) 3/4
34. If a sin x + b cos x = 1 and a2 + b2 = 1 (a, b > 0), then consider the following statements:
I sin x = a II tan x = a/b III tan x = b
(A) only III is false (B) only I is true
(C) All of I, II, III must be true (D) None of I, II or III is correct.
35. The value of log2 [cos2 ( + ) + cos2 () cos 2 . cos 2]
(A) depends on and both (B) depends on but not on
(C) depends on but not on (D) independent of both and .
36. In a triangle ABC, 3 sin A + 4 cos B = 6 and 3 cos A + 4 sin B = 1 then C can be
(A) 30° (B) 60° (C) 90° (D) 150°
37. If x sec + y tan = x sec + y tan = a, then sec · sec =
a 2 y2 a 2 y2 x 2 y2 x 2 y2
(A) 2 (B) 2 (C) 2 (D) 2
x y2 x y2 a y2 a y2
cos 3x 1 sin 3x
38. If = for some angle x, 0 x , then the value of for same x, is
cos x 3 2 sin x
7 5 2
(A) (B) (C) 1 (D)
3 3 3
C C A B
39. If A + B + C = and sin A = k sin , then tan tan =
2 2 2 2
k1 k1 k k1
(A) (B) (C) (D)
k1 k1 k1 k
40. The graphs of y = sin x, y = cos x, y = tan x and y = cosec x are drawn on the same axes from 0 to /
2. A vertical line is drawn through the point where the graphs of y = cos x and y = tan x cross, intersecting
the other two graphs at points A and B. The length of the line segment AB is:
5 1 5 1
(A) 1 (B) (C) 2 (D)
2 2
4
41. The expression wherever defined, sec4x – 4 tan3x + 4 tan x is always :
(A) positive (B) negative (C) non-positive (D) non–negative
1 1
42. If cos = a then cos 3 in terms of ‘a’ =
2 a
1 3 1 1 3 1 1
a 3
3
(A) a 3 (B) (C) 4 a 3 (D) none
4 a 2 a a
5 1 sin x 1 sin x
43. If x 3 , then the value of the expression is
2 1 sin x 1 sin x
x x x x
(A) – cot (B) cot (C) tan (D) – tan
2 2 2 2
44. If x, y R and satisfy the equation xy(x2 – y2) = x2 + y2 where x 0 then the minimum possible value
of x2 + y2 is
(A) 1 (B) 2 (C) 4 (D) 8
2 4
45. If x sin = y sin = z sin then :
3 3
(A) x + y + z = 0 (B) xy + yz + zx = 0 (C) xyz + x + y + z = 1 (D) none
sin 2 (212) cos 302 cos3 (148)
46. The value of is :
sin(82) cos(8) sin 368 sin(172) sin 58 sin 148
(A) cos 32º sin 32º (B) sin 32º cos 32º
(C) cos 32º + sin 32º (D) cos 32º sin 32º + 1
2 4 8 16
47. The value of cos cos cos cos cos is
10 10 10 10 10
1 1 cos 10 10 2 5
(A) (B) (C) (D) –
32 16 16 64
48. If a cos3 + 3a cos sin2 = m and a sin3 + 3a cos2 sin = n . Then
(m + n)2/3 + (m n)2/3 is equal to :
(A) 2 a2 (B) 2 a1/3 (C) 2 a2/3 (D) 2 a3
49. As shown in the figure AD is the altitude on BC and AD
produced meets the circumcircle of ABC at P where
DP = x. Similarly EQ = y and FR = z. If a, b, c respectively
a b c
denotes the sides BC, CA and AB then
2 x 2 y 2z
has the value equal to
(A) tanA + tanB + tanC (B) cotA + cotB + cotC
(C) cosA + cosB + cosC (D) cosecA + cosecB + cosecC
5
50. The maximum value of (7 cos + 24 sin) × ( 7 sin – 24 cos) for every R .
625 625
(A) 25 (B) 625 (C) (D)
2 4
51. If is eliminated from the equations x = a cos( – ) and y = b cos ( – ) then
x2 y2 2xy
2
2
cos( ) is equal to
a b ab
(A) cos2 ( – ) (B) sin2 ( – ) (C) sec2 ( – ) (D) cosec2 ( – )
tan 2 x 4 tan x 9
52. If M and m are maximum and minimum value of the function f (x) = , then (M + m)
1 tan 2 x
equals
(A) 20 (B) 14 (C) 10 (D) 8
1 1
53. + =
cos 290 3 sin 250
2 3 4 3
(A) (B) (C) 3 (D) none
3 3
54. Let f (x) = sin 4 x 4 cos2 x – cos4 x 4 sin 2 x . An equivalent form of f (x) is
(A) 1 (B) – 1 + 2 sinx (C) cos 2x (D) – cos 2x
sin 8θ ·cos θ sin 6θ ·cos 3θ
55. The value of when = 7.5° is
cos 2θ ·cos θ sin 3θ ·sin 4θ
(A) 2 1 (B) 2 3 (C) 2 1 (D) 2 3
56. The value of cot x + cot (60º + x) + cot (120º + x) is equal to :
(A) cot 3x (B) tan 3x (C) 3 tan 3x (D) 3cot 3x
x2 x 1
57. If tan = 2 and tan = 2 (x 0, 1), where 0 < , < , then tan ( + ) has
x x 1 2 x 2x 1 2
the value equal to
3
(A) 1 (B) – 1 (C) 2 (D)
4
58. If tan A and tan B are the roots of the quadratic equation x2 ax + b = 0, then the value of sin2 (A + B) is
a2 a2 a2 a2
(A) 2 (B) 2 (C) (D) 2
a (1 b)2 a b2 ( b a) 2 b (1 a ) 2
x2
59. For every x R the value of the expression y = + x cos x + cos 2x is never less than
8
(A) – 1 (B) 0 (C) 1 (D) 2
6
60. If be an acute angle satisfying the equation 8 cos 2 + 8 sec 2 = 65, then the value of cos is equal
to
1 2 2 3 3
(A) (B) (C) (D)
8 3 3 4
x y
61. If x sin = y cos then + is equal to
sec2 cosec2
(A) x (B) y (C) x2 (D) y2
62. If cos25° + sin25° = p, then cos50° is
(A) 2 p2 (B) – p 2 p 2 (C) p 2 p 2 (D) – p 2 p 2
63. In a triangle ABC if tan A < 0 then
(A) tan B . tan C > 1 (B) tan B . tan C < 1
(C) tan B . tan C = 1 (D) none
64. , , and are the smallest positive angles in ascending order of magnitude which have their sines
equal to the positive quantity k . The value of
4 sin + 3 sin + 2 sin + sin is equal to :
2 2 2 2
(A) 2 1 k (B) 2 1 k (C) 2 k (D) 2 k
x 1
65. Suppose that is a positive acute angle such that sin , then the value of tan is
2 2x
x 1 x2 1
(A) x (B) (C) 2
x 1 (D)
x 1 x
A
66. If A = 3400 then 2 sin is identical to
2
(A) 1 sin A 1 sin A (B) 1 sin A 1 sin A
(C) 1 sin A 1 sin A (D) 1 sin A 1 sin A
67. The value of cosec – 3 sec 18 is a
18
(A) surd (B) rational which is not integral
(C) negative natural number (D) natural number
68. The expression S = sec 11° sec 19° – 2 cot 71° reduces to
1
(A) 2 cot 11° (B) tan 19° (C) 2 tan 11° (D) tan 19°
2
7
69. The set of values of ‘a’ for which the equation, cos 2x + a sin x = 2a 7 possess a solution is
(A) (, 2) (B) [2, 6] (C) (6, ) (D) ()
70. If tan x + tan y = 25 and cot x + cot y = 30, then the value of tan(x + y) is
(A) 150 (B) 200 (C) 250 (D) 100
71. In a right angled triangle the hypotenuse is 2 2 times the perpendicular drawn from the opposite vertex.
Then the other acute angles of the triangle are
3 3
(A) and (B) and (C) and (D) and
3 6 8 8 4 4 5 10
A B
cot 2 2 . cot 2 2
72. In ABC, the minimum value of is
A
cot 2 2
(A) 1 (B) 2 (C) 3 (D) non existent
73. Minimum vertical distance between the graphs of y = 2 + sin x and y = cos x is
(A) 2 (B) 1 (C) 2 (D) 2 – 2
74. If sin () = a and sin () = b (0 <, ,</2)
then cos2 () 4 ab cos() =
(A) 1 a2 b2 (B) 1 2a2 2b2 (C) 2 + a2 + b2 (D) 2 a2 b2
75. The exact value of cos273º + cos247º + (cos73º . cos47º) is
(A) 1/4 (B) 1/2 (C) 3/4 (D) 1