0% found this document useful (0 votes)
30 views7 pages

Trength of Materials (SOM) - GSSC Technical Assistant (Civil)

Uploaded by

vaishali
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views7 pages

Trength of Materials (SOM) - GSSC Technical Assistant (Civil)

Uploaded by

vaishali
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

trength of Materials (SOM) – GSSC

Technical Assistant (Civil)


1. Basics of Strength of Materials
 Definition: Study of behavior of materials under loads (tension, compression, shear,
bending, torsion).
 Stress (σ): Force per unit area

σ=PA\sigma = \frac{P}{A}σ=AP

o Units: N/mm² or MPa


 Strain (ε): Deformation per unit length

ε=ΔLL\varepsilon = \frac{\Delta L}{L}ε=LΔL

 Hooke’s Law:

σ=E⋅ε\sigma = E \cdot \varepsilonσ=E⋅ε

o EEE = Modulus of Elasticity

Types of Stress:

 Tensile, Compressive, Shear, Bearing, Bending


 Factor of Safety (FS):

FS=Failure LoadWorking LoadFS = \frac{\text{Failure Load}}{\text{Working


Load}}FS=Working LoadFailure Load

2. Axial Load
 Axial Stress: σ=PA\sigma = \frac{P}{A}σ=AP
 Elongation/Shortening: ΔL=PLAE\Delta L = \frac{PL}{AE}ΔL=AEPL
 Poisson’s Ratio (ν): Lateral strain / Longitudinal strain
 Volumetric Strain:
εv=εx+εy+εz\varepsilon_v = \varepsilon_x + \varepsilon_y + \varepsilon_zεv=εx+εy
+εz

3. Shear Stress & Strain


 Direct Shear:
τ=VA\tau = \frac{V}{A}τ=AV
 Torsion of Circular Shaft:

τmax=T⋅rJ,θ=TLGJ\tau_{\text{max}} = \frac{T \cdot r}{J}, \quad \theta =


\frac{TL}{GJ}τmax=JT⋅r,θ=GJTL

Where:

o J=πd432J = \frac{\pi d^4}{32}J=32πd4 for solid shaft


o G=G = G= Modulus of Rigidity

4. Bending of Beams
 Bending Stress:

σ=MyI\sigma = \frac{M y}{I}σ=IMy

Where:

o MMM = Bending moment


o yyy = Distance from neutral axis
o III = Moment of inertia
 Section Modulus:

Z=IyZ = \frac{I}{y}Z=yI

 Deflection:

δ=PL348EI(for simply supported beam with central load)\delta = \frac{PL^3}{48EI}


\quad \text{(for simply supported beam with central load)}δ=48EIPL3
(for simply supported beam with central load)

 Types of Bending:
o Sagging (concave up)
o Hogging (concave down)

5. Combined Stresses
 Principal Stress (σ₁, σ₂):

σ1,2=σx+σy2±(σx−σy2)2+τxy2\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm


\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}σ1,2=2σx+σy±(2σx
−σy)2+τxy2
 Maximum Shear Stress:
τmax=(σx−σy2)2+τxy2\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x -
\sigma_y}{2}\right)^2 + \tau_{xy}^2}τmax=(2σx−σy)2+τxy2

6. Columns (Slender Members)


 Euler’s Buckling Load:

Pcr=π2EI(KL)2P_{cr} = \frac{\pi^2 EI}{(KL)^2}Pcr=(KL)2π2EI

Where KKK = Effective length factor

 Slenderness Ratio:

λ=Leffr,r=IA\lambda = \frac{L_{\text{eff}}}{r}, \quad r = \sqrt{\frac{I}{A}}λ=rLeff


,r=AI

7. Springs
 Helical Spring (Axial Load):
o Deflection: δ=8WD3nGd4\delta = \frac{8WD^3 n}{G d^4}δ=Gd48WD3n
o Stress: τ=8WDπd3K\tau = \frac{8 W D}{\pi d^3} Kτ=πd38WDK (K =
Wahl’s factor)

8. Energy Methods
 Strain Energy in Axial Members:

U=σ22E⋅V=P2L2AEU = \frac{\sigma^2}{2E} \cdot V = \frac{P^2 L}{2AE}U=2Eσ2


⋅V=2AEP2L

 Castigliano’s Theorem: For deflection:

δ=∂U∂P\delta = \frac{\partial U}{\partial P}δ=∂P∂U

9. Important Formulas – Quick Revision


Topic Formula
Axial Load σ = P/A, ΔL = PL/AE
Topic Formula
Shear τ = V/A
Torsion τ = Tr/J, θ = TL/GJ
Bending σ = My/I, δ = PL³/48EI
Column Pcr = π² EI/(KL)²
Spring δ = 8WD³n/Gd⁴, τ = 8WD/πd³ K

10. Exam Tips


 Always check units consistency.
 For GSSC TA, focus on formulas + direct application MCQs.
 Draw beam sketches for bending, shear, torsion to avoid mistakes.
 Memorize simple cases for deflection and maximum stress.

Strength of Materials – GSSC TA (Civil)


MCQs – Complete Set

1. Axial Load & Stress


1. Tensile stress formula: σ = P/A ✅
2. Elongation of bar: ΔL = PL/AE ✅
3. A steel rod 2 m long, 20 mm diameter, axial load 50 kN → σ ≈ 159 MPa ✅
4. Poisson’s ratio: ν = lateral strain / longitudinal strain ✅
5. Volumetric strain: εv = εx + εy + εz ✅

2. Shear Stress
6. Direct shear: τ = V/A ✅
7. Maximum shear in solid circular shaft: τmax = 16T/πd³ ✅
8. Maximum shear in hollow circular shaft: τmax = 16T/do³(1-(di/do)⁴) ✅
9. Angle of twist: θ = TL/GJ ✅
10. Hollow shafts preferred → stronger in torsion per unit weight ✅

3. Bending of Beams
11. Bending stress: σ = My/I ✅
12. Section modulus: Z = I/y ✅
13. Max bending stress: σmax = M/Z ✅
14. Simply supported beam, central load → δ = PL³/48EI ✅
15. Cantilever, end load → δ = PL³/3EI ✅
16. Sagging → top fibers compressed, bottom stretched ✅
17. Hogging → top fibers stretched, bottom compressed ✅
18. Simply supported, uniform load → max bending moment at mid-span ✅
19. Simply supported, point load at mid-span → Mmax = PL/4 ✅
20. Moment of inertia – rectangle: I = bd³/12 ✅
21. Moment of inertia – circle: I = πd⁴/64 ✅

4. Torsion
22. Torsion formula: τ = Tr/J ✅
23. Polar moment of inertia – solid: J = πd⁴/32 ✅
24. Polar moment of inertia – hollow: J = π(do⁴-di⁴)/32 ✅
25. Angle of twist: θ = TL/GJ ✅
26. Torsion constant G → modulus of rigidity ✅
27. Hollow shafts → lighter and stronger in torsion ✅

5. Columns
28. Euler’s formula (pin–pin): Pcr = π² EI / L² ✅
29. General Euler’s formula: Pcr = π² EI / (KL)² ✅
30. K factor:

 Pin–pin → K=1
 Fixed–fixed → K=0.5
 Fixed–free → K=2
 Fixed–pin → K=0.7 ✅

31. Slenderness ratio: λ = L/r, r = √(I/A) ✅


32. Short columns fail by compression, long columns by buckling ✅

6. Springs
33. Helical spring deflection: δ = 8WD³n / Gd⁴ ✅
34. Shear stress in spring: τ = 8WD/πd³ K ✅
35. Wahl factor K → accounts for stress concentration ✅
36. Spring stiffness (k) → k = F/δ ✅
37. Close-coiled spring → shear stress dominates ✅

7. Combined Stresses
38. Principal stresses: σ1,2 = (σx+σy)/2 ± √[(σx-σy)/2)² + τxy²] ✅
39. Max shear stress: τmax = √[(σx-σy)/2)² + τxy²] ✅
40. Principal plane → zero shear stress ✅
41. Biaxial stress system → σx = 50 MPa, σy = 30 MPa, τxy = 20 MPa → σ1 ≈ 63.25
MPa, σ2 ≈ 16.75 MPa ✅

8. Energy Methods
42. Strain energy in axial member: U = P²L / 2AE ✅
43. Strain energy in bending: U = M²L / 2EI ✅
44. Castigliano theorem → δ = ∂U/∂P ✅
45. Work done by axial load = strain energy stored ✅

9. Miscellaneous / Practical
46. Maximum stress occurs at outermost fiber ✅
47. Neutral axis → plane with zero stress ✅
48. Section modulus – rectangle: Z = bd²/6 ✅
49. Section modulus – circle: Z = πd³/32 ✅
50. Moment of inertia depends on geometry only ✅
51. Bending + axial load → use combined stress formula ✅
52. Shear center → point where load doesn’t twist section ✅
53. Solid vs hollow shaft → same torque, hollow lighter ✅
54. Maximum shear in rectangular section: 1.5V/A approx ✅
55. Columns fail by Euler formula when slenderness ratio > 100–120 ✅
56. Fixed–fixed column → buckling load 4× pin–pin load ✅
57. Energy methods simplify deflection and slope calculations ✅
58. Helical spring energy: U = ½ k δ² ✅
59. Shear in beam → max at supports for simply supported ✅
60. Bending moment diagram → triangular for point load, parabolic for uniform load

Tips for GSSC TA Exam:

 Memorize formulas first, then practice numerical application.


 Draw beam & shaft sketches for visual questions.
 Focus on simply supported & cantilever beams, torsion, springs, and Euler columns
– high probability in exam.
 Use slenderness ratio rules for quick column questions.

You might also like