NATIONAL UNIVERSITY OF
TECHNOLOGY
   COMPUTER ENGINEERING DEPARTMENT
                             LAB # 11
                        Laplace Transform
Submitted By : Muhammad Junaid Waseem(F23604037)
Tayyeba Fatima(F23604053)
Huzaifa khalid (F23604008)
Submitted To : Maam Maryam Mehmood
Submitted On: 4/06/25
Objectives:
      1. Understanding the Definition and Mathematical Foundation of the Laplace Transform: Grasping the
         mathematical basis and formulation of the Laplace transform.
      2. Examining Key Properties: Exploring properties such as linearity, time-shifting, scaling, and convolution,
         crucial for signal analysis.
      3. Analyzing the Region of Convergence (ROC): Studying the ROC and its impact on system stability and
         causality.
      4. Learning Methods to Compute the Inverse Laplace Transform: Investigating techniques for reverting back to
         the time-domain representation.
      5. Investigating Applications in Control Systems and Signal Processing: Applying the Laplace transform to solve
         real-world engineering problems.
Table of Contents
Objectives: .................................................................................................................................................................. 2
Table of Contents ........................................................................................................................................................ 2
LAB TASK .................................................................................................................................................................... 3
   Task 1: .................................................................................................................................................................... 3
       Solution : ............................................................................................................................................................. 3
   Task 2: .................................................................................................................................................................... 5
       Solution:.............................................................................................................................................................. 5
       Output: ............................................................................................................................................................... 5
Conclusion .................................................................................................................................................................. 6
LAB TASK
Task 1:
Find the Inverse Laplace transform of the following:
Solution :
%part 1
   syms t s
   F =(10*(s+2))/(s*(s^2)+4*s+5);
   ilaplace(F)
   simplify(ans)
   pretty(ans)
% part 2
   syms t s
   F= (s^2 + 1)/(4*s^3 + 4*s^2 + 2*s +1)
   ilaplace(F)
   simplify(ans)
   pretty(ans)
Output:
%part 1
(10*exp(-t))/7 - (10*exp(t/2)*(cos((19^(1/2)*t)/2) - (17*19^(1/2)*sin((19^(1/2)*t)/2))/19))/7
symsum(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(12*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 8*root(s3^3 + s3^2
+ s3/2 + 1/4, s3, k) + 2), k, 1, 3) + symsum((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))*root(s3^3 + s3^2 + s3/2 + 1/4,
s3, k)^2)/(12*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 8*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 2), k, 1, 3)
Task 2:
       Consider the outputs of Lab Task 1 and compute their Laplace transform and verify
       your answer by comparing the output of the Laplace function with the functions given in Task 1
       i.e., F(s).
Solution:
  %part 1
  f=(10*exp(-t))/7 - (10*exp(t/2)*(cos((19^(1/2)*t)/2) - (17*19^(1/2)*sin((19^(1/2)*t)/2))/19))/7;
   f=(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(2*(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2
  + s3/2 + 1/4, s3, k) + 1)), k, 1, 3) + ((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))root(s3^3 + s3^2 + s3/2 + 1/4, s3,
  k)^2)/(2(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 1)), k, 1, 3);
  F=laplace(f,t,s)
  simplify(ans)
  pretty(ans)
  %part 2
   f=(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(2*(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2
  + s3/2 + 1/4, s3, k) + 1)), k, 1, 3) + ((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))root(s3^3 + s3^2 + s3/2 + 1/4, s3,
  k)^2)/(2(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 1)), k, 1, 3);
  F=laplace(f,t,s)
  simplify(ans)
  pretty(ans)
Output:
Conclusion
In this lab, we successfully explored the concept and applications of the Laplace transform, a vital tool in control
systems and signal processing. Through a series of tasks, we achieved the following objectives:
    1. Understanding the Definition and Mathematical Foundation of the Laplace Transform: We reviewed
        the mathematical basis and conditions for applying the Laplace transform.
    2. Examining Key Properties: We investigated properties such as linearity, time-shifting, scaling, and
        convolution, and how they facilitate system analysis and manipulation.
    3. Analyzing the Region of Convergence (ROC): We explored the ROC's impact on system stability and
        causality, highlighting its significance in practical applications.
    4. Learning Methods to Compute the Inverse Laplace Transform: We discussed techniques to revert signals
        from the Laplace domain back to the time domain.
    5. Investigating Applications: We applied the Laplace transform to real-world problems in control systems and
        signal processing.
Through hands-on tasks, we computed convolutions and analyzed poles and zeros of given Laplace transform
functions, reinforcing our understanding of theoretical concepts with practical applications. This lab provided a
comprehensive understanding of the Laplace transform, equipping us with the skills necessary to analyze and design
systems effectively.