0% found this document useful (0 votes)
7 views6 pages

Lab 11

Uploaded by

wafsar257
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views6 pages

Lab 11

Uploaded by

wafsar257
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

NATIONAL UNIVERSITY OF

TECHNOLOGY

COMPUTER ENGINEERING DEPARTMENT

LAB # 11
Laplace Transform

Submitted By : Muhammad Junaid Waseem(F23604037)


Tayyeba Fatima(F23604053)
Huzaifa khalid (F23604008)
Submitted To : Maam Maryam Mehmood
Submitted On: 4/06/25
Objectives:
1. Understanding the Definition and Mathematical Foundation of the Laplace Transform: Grasping the
mathematical basis and formulation of the Laplace transform.
2. Examining Key Properties: Exploring properties such as linearity, time-shifting, scaling, and convolution,
crucial for signal analysis.
3. Analyzing the Region of Convergence (ROC): Studying the ROC and its impact on system stability and
causality.
4. Learning Methods to Compute the Inverse Laplace Transform: Investigating techniques for reverting back to
the time-domain representation.
5. Investigating Applications in Control Systems and Signal Processing: Applying the Laplace transform to solve
real-world engineering problems.

Table of Contents
Objectives: .................................................................................................................................................................. 2
Table of Contents ........................................................................................................................................................ 2
LAB TASK .................................................................................................................................................................... 3
Task 1: .................................................................................................................................................................... 3
Solution : ............................................................................................................................................................. 3
Task 2: .................................................................................................................................................................... 5
Solution:.............................................................................................................................................................. 5
Output: ............................................................................................................................................................... 5
Conclusion .................................................................................................................................................................. 6
LAB TASK

Task 1:
Find the Inverse Laplace transform of the following:

Solution :
%part 1
syms t s
F =(10*(s+2))/(s*(s^2)+4*s+5);
ilaplace(F)
simplify(ans)
pretty(ans)

% part 2

syms t s
F= (s^2 + 1)/(4*s^3 + 4*s^2 + 2*s +1)
ilaplace(F)
simplify(ans)
pretty(ans)

Output:
%part 1
(10*exp(-t))/7 - (10*exp(t/2)*(cos((19^(1/2)*t)/2) - (17*19^(1/2)*sin((19^(1/2)*t)/2))/19))/7

symsum(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(12*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 8*root(s3^3 + s3^2
+ s3/2 + 1/4, s3, k) + 2), k, 1, 3) + symsum((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))*root(s3^3 + s3^2 + s3/2 + 1/4,
s3, k)^2)/(12*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 8*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 2), k, 1, 3)
Task 2:
Consider the outputs of Lab Task 1 and compute their Laplace transform and verify
your answer by comparing the output of the Laplace function with the functions given in Task 1
i.e., F(s).

Solution:

%part 1
f=(10*exp(-t))/7 - (10*exp(t/2)*(cos((19^(1/2)*t)/2) - (17*19^(1/2)*sin((19^(1/2)*t)/2))/19))/7;

f=(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(2*(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2
+ s3/2 + 1/4, s3, k) + 1)), k, 1, 3) + ((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))root(s3^3 + s3^2 + s3/2 + 1/4, s3,
k)^2)/(2(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 1)), k, 1, 3);

F=laplace(f,t,s)
simplify(ans)
pretty(ans)

%part 2

f=(exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))/(2*(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2
+ s3/2 + 1/4, s3, k) + 1)), k, 1, 3) + ((exp(t*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k))root(s3^3 + s3^2 + s3/2 + 1/4, s3,
k)^2)/(2(6*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k)^2 + 4*root(s3^3 + s3^2 + s3/2 + 1/4, s3, k) + 1)), k, 1, 3);

F=laplace(f,t,s)
simplify(ans)
pretty(ans)

Output:
Conclusion

In this lab, we successfully explored the concept and applications of the Laplace transform, a vital tool in control
systems and signal processing. Through a series of tasks, we achieved the following objectives:

1. Understanding the Definition and Mathematical Foundation of the Laplace Transform: We reviewed
the mathematical basis and conditions for applying the Laplace transform.
2. Examining Key Properties: We investigated properties such as linearity, time-shifting, scaling, and
convolution, and how they facilitate system analysis and manipulation.
3. Analyzing the Region of Convergence (ROC): We explored the ROC's impact on system stability and
causality, highlighting its significance in practical applications.
4. Learning Methods to Compute the Inverse Laplace Transform: We discussed techniques to revert signals
from the Laplace domain back to the time domain.
5. Investigating Applications: We applied the Laplace transform to real-world problems in control systems and
signal processing.

Through hands-on tasks, we computed convolutions and analyzed poles and zeros of given Laplace transform
functions, reinforcing our understanding of theoretical concepts with practical applications. This lab provided a
comprehensive understanding of the Laplace transform, equipping us with the skills necessary to analyze and design
systems effectively.

You might also like