Max 32655
Max 32655
© 2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2024 Analog Devices, Inc. All rights reserved.
MAX32655 Low-Power, Arm Cortex-M4 Processor with
FPU-Based Microcontroller and Bluetooth 5.2
100MHz (IPO)
MAX32655
EXTERNAL CLOCK
HFXOUT Bluetooth 5.2
32MHz (ERFO) 32-BIT RISC-V (RV32) ANT
HFXIN RADIO TRANSCEIVER
Arm Cortex-M4
8kHz (INRO) WITH FPU
100MHz (CM4)
32.768kHz (ERTCO)
7.3728MHz (IBRO) NVIC SERIAL WIRE DEBUG
60MHz (ISO)
*I2S
TX/RX
FIFO
32KIN CONTROLLER/TARGET
RTC WITH WAKE-UP SHARED PAD
32KOUT TIMER FUNCTIONS
*3 x I2C
TX/RX
FIFO
CONTROLLER/TARGET TIMERS/PWM
POWER-ON RESET, MEMORY
BROWNOUT MONITOR, CAPTURE/
RSTN COMPARE
TX/RX
SUPPLY VOLTAGE
FIFO
*3 × 4-WIRE UART
MONITORS FLASH 512KB
LOW-POWER
TIMERS
TX/RX
VREGI SRAM0 32KB + ECC
FIFO
*2-WIRE LPUART
MULTILAYER BUS MATRIX – AHB/APB
VSSPWR GPIO/
SERIAL WIRE
BLE_LDO_IN ALTERNATE
SRAM1 32KB *2 x QUAD SPI DEBUG
FUNCTION
TX/RX
FIFO
VSS CONTROLLER/TARGET UP TO 52
LXA (3 CS EACH) SPI
SRAM2 48KB
I 2C
LXB UART
VBST SRAM3 16KB 1-Wire CONTROLLER (OWM)
VREGO_A LOW-POWER
SIMO VOLTAGE
VREGO_B CACHE 16KB *4 × PULSE TRAIN ENGINES UART
REGULATION,
VREGO_C AND
1-Wire
POWER CONTROL BOOT ROM *4 × 32-BIT TIMERS
VREGO_D
WAKE-UP TIMER
VDDA 8-CH, Σ-Δ ADC
VSSA *2 × 32-BIT LOW-POWER MICROPOWER
4-CH DMA TIMERS COMPARATORS
VSS_TX
VSS_RX VREGI
2 × WATCHDOG VTXOUT BLUETOOTH
VSS TIMER ANTENNA
OPTIONAL 8 VRXOUT
VTXOUT VCOREA CONTROL
EXTERNAL
VRXOUT UNIQUE ID VCOREB
CHANNEL
VDDIO VDDIOH EXTERNAL
10-BIT VDDIO
VDDIOH INTERRUPTS
SECURITY Σ-Δ ADC VDDA
VCOREA
VCOREB AES-128/192/256
8
RADIO I/O I/O DIGITAL/ OPTIONAL 4 MICROPOWER 8
32-BIT CRC
MEMORIES COMPARATORS
ACCELERATOR
ANALOG SECURE NV KEY *NOT ALL PACKAGES
4 PROVIDE THE FULL
SECURE BOOT
COMPLEMENT OF THIS
TRUE RANDOM NUMBER 4 PERIPHERAL. SEE
GENERATOR (TRNG)
ORDERING INFORMATION
TABLE FOR DETAILS.
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
81 CTBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
51 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics—SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical Characteristics—I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electrical Characteristics—I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Electrical Characteristics—1-Wire Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
81 CTBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pin Descriptions – 81 CTBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
51 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Pin Descriptions – 51 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Arm Cortex-M4 (CM4) with FPU Processor and RISC-V (RV32) Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Internal Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Internal SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bluetooth 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bluetooth 5.2 Low Energy Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bluetooth 5.2 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
General-Purpose I/O (GPIO) and Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
LOW POWER Mode (LPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MICRO POWER Mode (UPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STANDBY Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LIST OF FIGURES
Figure 1. Example 81 CTBGA Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Example 51 WLP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. SPI Controller Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4. SPI Target Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 6. I2S Target Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. 1-Wire Controller Data Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 8. 81 CTBGA Clocking Scheme Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 9. 51 WLP Clocking Scheme Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
LIST OF TABLES
Table 1. MAX32655 Comparator Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 2. MAX32655 ADC External Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 3. BACKUP Mode SRAM Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 4. MAX32655 Wake-up Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 5. MAX32655 Timer Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 6. MAX32655 Watchdog Timer Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 7. MAX32655 Pulse Train Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 8. MAX32655 I2C Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 9. MAX32655 SPI Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 10. MAX32655 UART Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 11. Common CRC Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 12. Device PCB Power Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 13. MAX32655 VREGI Capacitor Placement Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 14. Fixed VREGI Current Consumption ACTIVE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 15. Fixed VREGI Current Consumption SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 16. Fixed VREGI Current Consumption STANDBY Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 17. Fixed VREGI Current Consumption BACKUP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Package Information
81 CTBGA
Package Code X8188+4C
Outline Number 21-0735
Land Pattern Number 90-0460
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA) 41.49°C/W
Junction to Case (θJC) 10.81°C/W
TOP VIEW
LOGO [X]
PIN A1 DESIGNATOR +
For the latest package outline information and land patterns (footprints), go to the Package Index on the Analog Devices
website. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a
different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a
four-layer board. For detailed information on package thermal considerations, refer to Thermal Characterization of IC
Packages.
51 WLP
Package Code W513A3+1
Outline Number 21-100711
Land Pattern Number Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:
Junction to Ambient (θJA) 20.75°C/W
Junction to Case (θJC) N/A
TOP VIEW
PIN A1 DESIGNATOR +
For the latest package outline information and land patterns (footprints), go to the Package Index on the Analog Devices
website. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a
different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a
four-layer board. For detailed information on package thermal considerations, refer to Thermal Characterization of IC
Packages.
Electrical Characteristics
(All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER SUPPLIES
Core Input Supply
VCOREA 0.99 1.1 1.21 V
Voltage A
Core Input Supply
VCOREB 0.81 1.1 1.21 V
Voltage B
If power to the device is cycled, VREGI
must exceed VREGI_POR(MIN) within
Input Supply Voltage, VREGI 2.0 3.0 3.6
20ms after VDDA > 1.24V. After that, V
Battery VREGI can settle to its final value.
VREGI_POR 2.45
Input Supply Voltage,
VDDA 1.71 1.8 1.89 V
Analog
Input Supply Voltage,
VDDIO 1.71 1.8 1.89 V
GPIO
Input Supply Voltage,
VDDIOH 2.0 3.0 3.6 V
GPIO (High)
External Low-Power
fEXT_LPTMR2_
Timer 2 Clock Input LPTMR2_CLK selected 8 MHz
Frequency CLK
GENERAL-PURPOSE I/O
P3.0 and P3.1 can
Input Low Voltage for All only use VDDIOH
VDDIO selected as 0.3 ×
GPIO Except P3.0 and VIL_VDDIO as I/O supply and V
I/O supply VDDIO
P3.1 cannot use VDDIO
as I/O supply
Input Low Voltage for All 0.3 ×
VIL_VDDIOH VDDIOH selected as I/O supply V
GPIO VDDIOH
Input Low Voltage for 0.5 x
VIL_RSTN V
RSTN VDDIOH
P3.0 and P3.1 can
Input High Voltage for only use VDDIOH
VDDIO selected as 0.7 ×
All GPIO Except P3.0 VIH_VDDIO as I/O supply and V
I/O supply VDDIO
and P3.1 cannot use VDDIO
as I/O supply
Input High Voltage for 0.7 ×
VIH_VDDIOH VDDIOH selected as I/O supply V
All GPIO VDDIOH
Input High Voltage for 0.5 x
VIH_RSTN V
RSTN VDDIOH
Electrical Characteristics—SPI
(Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire
operating conditions range unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CONTROLLER MODE
fSYS_CLK = 100MHz, fMCK0(MAX) =
fSYS_CLK/2, Mode 0 and Mode 2 50
SPI Controller Operating operation, SPI0_CTRL.sclk_fb_inv = 1
fMCK0 MHz
Frequency for SPI0 fSYS_CLK = 100MHz, fMCK0(MAX) =
fSYS_CLK/4, Mode 1 and Mode 3 25
operation
SPI Controller Operating fSYS_CLK = 100MHz, fMCK1(MAX) =
fMCK1 25 MHz
Frequency for SPI1 fSYS_CLK/4, all SPI modes of operation
SPI Controller SCK
tMCKX 1/fMCKX ns
Period
SCK Output Pulse-
tMCH, tMCL tMCKX/2 ns
Width High/Low
MOSI Output Hold Time
tMOH tMCX/2 ns
After SCK Sample Edge
MOSI Output Valid to
tMOV tMCKX/2 ns
Sample Edge
MOSI Output Hold Time
tMLH tMCKX/2 ns
After SCK Low Idle
MISO Input Valid to
SCK Sample Edge tMIS 5 ns
Setup
MISO Input to SCK
tMIH tMCKX/2 ns
Sample Edge Hold
Electrical Characteristics—I2C
(Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire
operating conditions range unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
STANDARD-MODE
Standard-mode, from VIH(MIN) to
Output Fall Time tOF 150 ns
VIL(MAX)
SCL Clock Frequency fSCL 0 100 kHz
Low Period SCL Clock tLOW 4.7 μs
High Time SCL Clock tHIGH 4.0 μs
Setup Time for
Repeated Start tSU;STA 4.7 μs
Condition
Hold Time for Repeated
tHD;STA 4.0 μs
Start Condition
Data Setup Time tSU;DAT 300 ns
Data Hold Time tHD;DAT 10 ns
Rise Time for SDA and
tR 800 ns
SCL
Electrical Characteristics—I2S
(Timing specifications are guaranteed by design and not production tested. All specifications and characteristics apply across the entire
operating conditions range unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Bit Clock Frequency fBCLK 25 MHz
0.5 x
BCLK High Time tWBCLKH ns
1/fBCLK
0.5 x
BCLK Low Time tWBCLKL ns
1/fBCLK
LRCLK Setup Time tLRCLK_BLCKS 25 ns
Delay Time, BCLK to
tBCLK_SDO 12 ns
SD (Output) Valid
Setup Time for SD
tSU_SDI 6 ns
(Input)
Hold Time SD (Input) tHD_SDI 3 ns
tMIS tMIH
MISO/SDIOx
(INPUT) MSB MSB-1 LSB
tSIS tSIH
MOSI/SDIOx
(INPUT) MSB MSB-1 LSB
tSOV tSLH
MISO/SDIOx MSB MSB-1 LSB
(OUTPUT)
SDA
tOF tR
tSU;STO
tSP
tSU;DAT tSU;STA tHIGH
SCL
tHD;STA
tHD;DAT
tLOW
tVD;ACK
tVD;DAT
tBCLKS
tWBCLKHS tWBCLKLS
BCLK
(INPUT)
tLRCLK_BCLKS
LRCLK
(INPUT)
tBCLK_SDOS
WORD N-1 RIGHT CHANNEL WORD N LEFT CHANNEL WORD N RIGHT CHANNEL
OWM_IO
OWM_IO
OWM_IO
tRDV tRDV
LEGEND
1-Wire BOTH CONTROLLER
CONTROLLER AND TARGET TARGET DEVICE RESISTOR
ACTIVE LOW DEVICE ACTIVE LOW ACTIVE LOW PULL-UP
Pin Configuration
81 CTBGA
1 2 3 4 5 6 7 8 9
81 CTBGA
8mm x 8mm
81 CTBGA
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
Buck Converter C Voltage Output. Bypass
VREGO_C with a 22μF capacitor to VSS placed
as close as possible to the VREGO_C device pin.
A6 VREGO_C — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signals to this device pin.
Buck Converter D Voltage Output. Bypass
VREGO_D with a 22μF capacitor to VSS placed
as close as possible to the VREGO_D device pin.
A7 VREGO_D — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signal to this device pin.
GPIO Supply Voltage. VDDIOH must be greater
than VDDIO. Bypass this device pin to VSS with
J5 VDDIO — — — a 1μF capacitor placed as close to the package
as possible. This device pin must be connected
as shown in Device PCB Power Connectivity.
GPIO Supply Voltage, High. VDDIOH must be
greater than VDDIO. Bypass this device pin to
VSS with a 1μF capacitor placed as close to the
J4 VDDIOH — — — package as possible. This device pin must be
connected as shown in Device PCB Power
Connectivity. Do not connect any other signal to
this device pin.
D1, E9 VSS — — — Digital Ground
A5 VSSA — — — Analog Ground
Ground for the SIMO SMPS. See VREGI Design
A9 VSSPWR — — —
Considerations.
C3 VSS_RX — — — Bluetooth Radio Baseband Ground
A2 VSS_TX — — — Bluetooth Radio RF Ground
Switching Inductor Input A. Connect a 2.2μH
B9 LXA — — — inductor between LXA and LXB. See Device
PCB Power Connectivity
Switching Inductor Input B. Connect a 2.2μH
A8 LXB — — — inductor between LXA and LXB. See Device
PCB Power Connectivity
RESET AND CONTROL
External System Reset Input (Active-Low). The
device remains in reset while this pin is in its
active state. When the pin transitions to its
F6 RSTN — — —
inactive state, the device performs a system
reset and executes the first instruction. This pin
has an internal pull-up to the VDDIOH supply.
81 CTBGA
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
CLOCK
32kHz Crystal Oscillator Output. Connect a
32kHz crystal between 32KIN and 32KOUT for
A3 32KOUT — — — RTC operation. If the RTC is unused, and a
crystal is not connected, do not connect this
device pin.
32kHz Crystal Oscillator Input. Connect a 32kHz
crystal between 32KIN and 32KOUT for RTC
operation. Optionally, this pin can be configured
as the input for an external CMOS-level clock
source. Load capacitors are not required. If the
A4 32KIN — — —
RTC is unused, and a crystal is not connected,
connect this device pin to VSS through a 1kΩ
resistor. See External RTC Oscillator (ERTCO)
in the Electrical Characteristics table and RTC
Crystal Guidelines for more information.
32MHz Crystal Oscillator Output. When this
C2 HFXOUT — — —
device pin is not used, do not connect.
32MHz Crystal Oscillator Input. Connect a
32MHz crystal between HFXIN and HFXOUT for
Bluetooth operation or I2S controller operation.
During the optional kick-start operation, a series
C1 HFXIN — — —
of pulses is output on this device pin to stimulate
the crystal. If the 32MHz crystal is not in use and
is not connected, connect the device pin to VSS
through a 10kΩ resistor.
GPIO AND ALTERNATE FUNCTION
F7 P0.0 P0.0 UART0A_RX — UART0 Receive Port Map A
E7 P0.1 P0.1 UART0A_TX — UART0 Transmit Port Map A
Timer 0 I/O 32 Bits or Lower 16 Bits Port Map A;
F8 P0.2 P0.2 TMR0A_IOA UART0B_CTS
UART0 Clear to Send Port Map B
External Clock for Use as SYS_OSC/Timer 0
EXT_CLK/
F9 P0.3 P0.3 UART0B_RTS I/O Upper 16 Bits Port Map A; UART0 Request
TMR0A_IOB
to Send Port Map B
SPI0 Target Select 0; Timer 0 Inverted Output
G9 P0.4 P0.4 SPI0_SS0 TMR0B_IOAN
Port Map B
SP0 Controller Out Target In Serial Data 0;
G8 P0.5 P0.5 SPI0_MOSI TMR0B_IOBN 32-Bit Timer 0 Inverted Output Upper 16 Bits
Port Map B
SPI0 Controller In Target Out Serial Data 1;
G7 P0.6 P0.6 SPI0_MISO OWM_IO
1-Wire Controller Data I/O
SPI0 Clock; 1-Wire Controller Pull-up Enable
H9 P0.7 P0.7 SPI0_SCK OWM_PE
Output
SPI0 Data 2 I/O; Timer 0 I/O 32 Bits or Lower 16
H8 P0.8 P0.8 SPI0_SDIO2 TMR0B_IOA
Bits Port Map B
SPI0 Data 3 I/O; Timer 0 I/O Upper 16 Bits Port
J9 P0.9 P0.9 SPI0_SDIO3 TMR0B_IOB
Map B
H7 P0.10 P0.10 I2C0_SCL SPI0_SS2 I2C0 Clock; SPI0 Target Select 2
81 CTBGA
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
J8 P0.11 P0.11 I2C0_SDA SPI0_SS1 I2C0 Serial Data; SPI0 Target Select 1
UART1 Receive Port Map A; Timer 1 Inverted
G6 P0.12 P0.12 UART1A_RX TMR1B_IOAN
Output Port Map B
UART1 Transmit Port Map A; Timer 1 Inverted
H6 P0.13 P0.13 UART1A_TX TMR1B_IOBN
Output Upper 16 Bits Port Map B
Timer 1 I/O 32 Bits or Lower 16 Bits Port Map A;
J7 P0.14 P0.14 TMR1A_IOA UART1B_CTS
UART1 Clear to Send Port Map B
Timer 1 I/O Upper 16 Bits Port Map A; UART1
J6 P0.15 P0.15 TMR1A_IOB UART1B_RTS
Request to Send Port Map B
G5 P0.16 P0.16 I2C1_SCL PT2 I2C1 Clock; Pulse Train 2
F5 P0.17 P0.17 I2C1_SDA PT3 I2C1 Serial Data; Pulse Train 3
H5 P0.18 P0.18 PT0 OWM_IO Pulse Train 0; 1-Wire Controller Data I/O
Pulse Train 1; 1-Wire Controller Pull-up Enable
G4 P0.19 P0.19 PT1 OWM_PE
Output
SPI1 Target Select 0; Timer 1 I/O 32 Bits or
H4 P0.20 P0.20 SPI1_SS0 TMR1B_IOA
Lower 16 Bits Port Map B
SPI1 Controller Out Target In Serial Data 0;
J3 P0.21 P0.21 SPI1_MOSI TMR1B_IOB
Timer 1 I/O Upper 16 Bits Port Map B
SPI1 Controller In Target Out Serial Data 1;
H3 P0.22 P0.22 SPI1_MISO TMR1B_IOAN
Timer 1 Inverted Output Port Map B
SPI1 Clock; Timer 1 Inverted Output Upper 16
G3 P0.23 P0.23 SPI1_SCK TMR1B_IOBN
Bits Port Map B
SPI1 Data 2; Timer 2 I/O 32 Bits or Lower 16
J2 P0.24 P0.24 SPI1_SDIO2 TMR2B_IOA
Bits Port Map B
SPI1 Data 3; Timer 2 I/O Upper 16 Bits Port
J1 P0.25 P0.25 SPI1_SDIO3 TMR2B_IOB
Map B
Timer 2 I/O 32 Bits or Lower 16 Bits Port Map A;
H1 P0.26 P0.26 TMR2A_IOA SPI1_SS1
SPI1 Target Select 1
Timer 2 I/O Upper 16 Bits Port Map A; SPI1
H2 P0.27 P0.27 TMR2A_IOB SPI1_SS2
Target Select 2
G1 P0.28 SWDIO SWDIO — Serial Wire Debug Data I/O
G2 P0.29 SWCLK SWCLK — Serial Wire Debug Clock
F1 P0.30 P0.30 I2C2_SCL UART2B_CTS I2C2 Clock; UART2 Clear to Send Port Map B
I2C2 Serial Data; UART2 Request to Send Port
F4 P0.31 P0.31 I2C2_SDA UART2B_RTS
Map B
UART2 Receive Port Map A; 32-Bit RISC-V Test
F3 P1.0 P1.0 UART2A_RX RV_TCK
Port Clock
UART2 Transmit Port Map A; 32-Bit RISC-V
F2 P1.1 P1.1 UART2A_TX RV_TMS
Test Port Select
I2S Bit Clock; 32-Bit RISC-V Test Port Data
D5 P1.2 P1.2 I2S_SCK RV_TDI
Input
I2S Left/Right Clock; 32-Bit RISC-V Test Port
E4 P1.3 P1.3 I2S_WS RV_TDO
Data Output
81 CTBGA
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
I2S Serial Data Input; Timer 3 I/O 32 Bits or
E1 P1.4 P1.4 I2S_SDI TMR3B_IOA
Lower 16 Bits Port Map B
I2S Serial Data Output; Timer 3 I/O Upper 16
E3 P1.5 P1.5 I2S_SDO TMR3B_IOB
Bits Port Map B
BLE_ANT_CTR Timer 3 I/O 32 Bits or Lower 16 Bits Port Map A;
E2 P1.6 P1.6 TMR3A_IOA
L2 Bluetooth Antenna Control Line 2
BLE_ANT_CTR Timer 3 I/O Upper 16 Bits Port Map A; Bluetooth
D4 P1.7 P1.7 TMR3A_IOB
L3 Antenna Control Line 3
BLE_ANT_CTR Bluetooth Antenna Control Line 0; CM4 Rx
D2 P1.8 P1.8 RXEV0
L0 Event Input
BLE_ANT_CTR Bluetooth Antenna Control Line 1; CM4 Tx
D3 P1.9 P1.9 TXEV0
L1 Event Output
Analog-to-Digital Converter Input 0/Comparator
C4 P2.0 P2.0 AIN0/AIN0N —
0 Negative Input
Analog-to-Digital Converter Input 1/Comparator
C5 P2.1 P2.1 AIN1/AIN0P —
0 Positive Input
Analog-to-Digital Converter Input 2/Comparator
D8 P2.2 P2.2 AIN2/AIN1N —
1 Negative Input
Analog-to-Digital Converter Input 3/Comparator
E8 P2.3 P2.3 AIN3/AIN1P —
1 Positive Input
Analog-to-Digital Converter Input 4/Comparator
C7 P2.4 P2.4 AIN4/AIN2N LPTMR0B_IOA 2 Negative Input; Low-Power Timer 0 I/O Port
Map B
Analog-to-Digital Converter Input 5/Comparator
D7 P2.5 P2.5 AIN5/AIN2P LPTMR1B_IOA 2 Positive Input; Low-Power Timer 1 I/O Port
Map B
Low-Power Timer 0 External Clock Input/
LPTMR0_CLK/ Analog-to-Digital Converter Input 6/Comparator
C6 P2.6 P2.6 LPUARTB_RX
AIN6/AIN3N 3 Negative Input; Low-Power UART 0 Receive
Port Map B
Low-Power Timer 1 External Clock Input/
LPTMR1_CLK/ Analog-to-Digital Converter Input 7/Comparator
D6 P2.7 P2.7 LPUARTB_TX
AIN7/AIN3P 3 Positive Input; Low-Power UART Transmit
Port Map B
Power-Down Output. Internally pulled down to
E5 P3.0 P3.0 PDOWN — VSS. This device pin can only be powered by
VDDIOH. Can be used as a WAKE-UP source.
Square-Wave Output. Internally pulled down to
E6 P3.1 P3.1 SQWOUT — VSS. This device pin can only be powered by
VDDIOH.
ANTENNA OUTPUT
Antenna for Bluetooth Radio. Attach the single-
ended, unbalanced Bluetooth radio antenna. If
A1 ANT — — — Bluetooth functionality is not used, and there is
no antenna connected, do not connect this
device pin.
Pin Configuration
51 WLP
TOP VIEW MAX32655
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
51 WLP
51 WLP
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
Bluetooth LDO Input. Bypass BLE_LDO_IN with
a 1μF capacitor to VSS placed as close as
possible to the BLE_LDO_IN device pin. This
H3 BLE_LDO_IN — — — device pin must be connected as shown in
Device PCB Power Connectivity, even if
Bluetooth functionality is not desired for the
application.
1.8V Analog Power Supply. Bypass with 1μF to
E5 VDDA — — — VSS. This device pin must be connected as
shown in Device PCB Power Connectivity.
Digital Core Supply Voltage A. VCOREA must be
greater than or equal to VCOREB. Bypass with
E7 VCOREA — — —
1μF to VSS. This device pin must be connected
as shown in Device PCB Power Connectivity.
Digital Core Supply Voltage B. VCOREA must be
greater than or equal to VCOREB. Bypass with
E8 VCOREB — — —
1μF to VSS. This device pin must be connected
as shown in Device PCB Power Connectivity.
Bluetooth Radio Baseband Supply Voltage
Output. Bypass this pin to VSS_RX with a 1μF
F3 VRXOUT — — —
capacitor close to the package. Do not connect
any other signal to this device pin.
Bluetooth Radio RF Supply Voltage Output.
Bypass this pin to VSS_TX with a 1μF capacitor
F2 VTXOUT — — —
close to the package. Do not connect any other
signal to this device pin.
The boosted supply voltage for the gate drive of
high-side switches. This device pin must be
F7 VBST — — —
connected as shown in Device PCB Power
Connectivity.
Buck Converter A Voltage Output. Bypass
VREGO_A with a 22μF capacitor to VSS placed
as close as possible to the VREGO_A device pin.
G6 VREGO_A — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signal to this device pin.
Buck Converter B Voltage Output. Bypass
VREGO_B with a 22μF capacitor to VSS placed
as close as possible to the VREGO_B device pin.
H6 VREGO_B — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signal to this device pin.
Buck Converter C Voltage Output. Bypass
VREGO_C with a 22μF capacitor to VSS placed
as close as possible to the VREGO_C device pin.
H5 VREGO_C — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signal to this device pin.
51 WLP
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
Buck Converter D Voltage Output. Bypass
VREGO_D with a 22μF capacitor to VSS placed
as close as possible to the VREGO_D device pin.
G5 VREGO_D — — —
This device pin must be connected as shown in
Device PCB Power Connectivity. Do not connect
any other signal to this device pin.
GPIO Supply Voltage. VDDIOH must be greater
than VDDIO. Bypass this device pin to VSS with
D1 VDDIO — — — a 1μF capacitor placed as close to the package
as possible. This device pin must be connected
as shown in Device PCB Power Connectivity.
GPIO Supply Voltage, High. VDDIOH must be
greater than VDDIO. Bypass this device pin to
VSS with a 1μF capacitor placed as close to the
D2 VDDIOH — — —
package as possible. This device pin must be
connected as shown in Device PCB Power
Connectivity.
D8 VSS — — — Digital Ground
E4 VSSA — — — Analog Ground
Ground for the SIMO SMPS. See VREGI Design
G7 VSSPWR — — —
Considerations.
F1 VSS_RX — — — Bluetooth Radio Baseband Ground
G2 VSS_TX — — — Bluetooth Radio RF Ground
Switching Inductor Input A. Connect a 2.2μH
G8 LXA — — — inductor between LXA and LXB. See Device
PCB Power Connectivity.
Switching Inductor Input B. Connect a 2.2μH
H7 LXB — — — inductor between LXA and LXB. See Device
PCB Power Connectivity.
RESET AND CONTROL
External System Reset Input (Active-Low). The
device remains in reset while this pin is in its
active state. When the pin transitions to its
B8 RSTN — — —
inactive state, the device performs a system
reset and executes the first instruction. This pin
has an internal pull-up to the VDDIOH supply.
CLOCK
32kHz Crystal Oscillator Output. Connect a
32kHz crystal between 32KIN and 32KOUT for
G3 32KOUT — — — RTC operation. If the RTC is unused, and a
crystal is not connected, do not connect this
device pin.
51 WLP
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
32kHz Crystal Oscillator Input. Connect a 32kHz
crystal between 32KIN and 32KOUT for RTC
operation. Optionally, this pin can be configured
as the input for an external CMOS-level clock
source. Load capacitors are not required. If the
G4 32KIN — — —
RTC is unused, and a crystal is not connected,
connect this device pin to VSS through a 1kΩ
resistor. See External RTC Oscillator (ERTCO)
in the Electrical Characteristics table and RTC
Crystal Guidelines for more information.
32MHz Crystal Oscillator Output. When this
E1 HFXOUT — — —
device pin is not used, do not connect.
32MHz Crystal Oscillator Input. Connect a
32MHz crystal between HFXIN and HFXOUT for
Bluetooth operation. During the optional kick-
start operation, a series of pulses is output on
E2 HFXIN — — —
this device pin to stimulate the crystal. If the
32MHz crystal is not in use and is not
connected, connect the device pin to VSS
through a 10kΩ resistor.
GPIO AND ALTERNATE FUNCTION (See the Applications Information section for GPIO and Alternate Function Matrices.)
C6 P0.0 P0.0 UART0A_RX — UART0 Receive Port Map A
C7 P0.1 P0.1 UART0A_TX — UART0 Transmit Port Map A
Timer 0 I/O 32 Bits or Lower 16 Bits Port Map A;
B7 P0.2 P0.2 TMR0A_IOA UART0B_CTS
UART0 Clear to Send Port Map B
External Clock for Use as SYS_OSC/Timer 0
EXT_CLK/
B6 P0.3 P0.3 UART0B_RTS I/O Upper 16 Bits Port Map A; UART0 Request
TMR0A_IOB
to Send Port Map B
SPI0 Target Select 0; Timer 0 Inverted Output
D4 P0.4 P0.4 SPI0_SS0 TMR0B_IOAN
Port Map B
SP0 Controller Out Target In Serial Data 0;
A7 P0.5 P0.5 SPI0_MOSI TMR0B_IOBN 32-Bit Timer 0 Inverted Output Upper 16 Bits
Port Map B
SPI0 Controller In Target Out Serial Data 1;
B5 P0.6 P0.6 SPI0_MISO OWM_IO
1-Wire Controller Data I/O
SPI0 Clock; 1-Wire Controller Pull-up Enable
A6 P0.7 P0.7 SPI0_SCK OWM_PE
Output
B4 P0.10 P0.10 I2C0_SCL SPI0_SS2 I2C0 Clock; SPI0 Target Select 2
A5 P0.11 P0.11 I2C0_SDA SPI0_SS1 I2C0 Serial Data; SPI0 Target Select 1
UART1 Receive Port Map A; Timer 1 Inverted
A4 P0.12 P0.12 UART1A_RX TMR1B_IOAN
Output Port Map B
SPI1 Target Select 0; Timer 1 I/O 32 Bits or
C3 P0.20 P0.20 SPI1_SS0 TMR1B_IOA
Lower 16 Bits Port Map B
SPI1 Controller Out Target In Serial Data 0;
B3 P0.21 P0.21 SPI1_MOSI TMR1B_IOB
Timer 1 I/O Upper 16 Bits Port Map B
SPI1 Controller In Target Out Serial Data 1;
A3 P0.22 P0.22 SPI1_MISO TMR1B_IOAN
Timer 1 Inverted Output Port Map B
51 WLP
FUNCTION MODE
PIN NAME Primary Signal Alternate Alternate FUNCTION
(Default) Function 1 Function 2
SPI1 Clock; Timer 1 Inverted Output Upper 16
C2 P0.23 P0.23 SPI1_SCK TMR1B_IOBN
Bits Port Map B
Timer 2 I/O 32 Bits or Lower 16 Bits Port Map A;
B2 P0.26 P0.26 TMR2A_IOA SPI1_SS1
SPI1 Target Select 1
A2 P0.28 SWDIO SWDIO — Serial Wire Debug Data I/O
B1 P0.29 SWCLK SWCLK — Serial Wire Debug Clock
BLE_ANT_CTR Timer 3 I/O 32 Bits or Lower 16 Bits Port Map A;
C1 P1.6 P1.6 TMR3A_IOA
L2 Bluetooth Antenna Control Line 2
Analog-to-Digital Converter Input 0/Comparator
F6 P2.0 P2.0 AIN0/AIN0N —
0 Negative Input
Analog-to-Digital Converter Input 1/Comparator
D7 P2.1 P2.1 AIN1/AIN0P —
0 Positive Input
Low-Power Timer 0 External Clock Input/
LPTMR0_CLK/ Analog-to-Digital Converter Input 6/Comparator
C8 P2.6 P2.6 LPUARTB_RX
AIN6/AIN3N 3 Negative Input; Low-Power UART 0 Receive
Port Map B
Low-Power Timer 1 External Clock Input/
LPTMR1_CLK/ Analog-to-Digital Converter Input 7/Comparator
D5 P2.7 P2.7 LPUARTB_TX
AIN7/AIN3P 3 Positive Input; Low-Power UART Transmit
Port Map B
ANTENNA OUTPUT
Antenna for Bluetooth Radio. Attach the single-
ended, unbalanced Bluetooth radio antenna. If
H2 ANT — — — Bluetooth functionality is not used, and there is
no antenna connected, do not connect this
device pin.
Detailed Description
The MAX32655 microcontroller (MCU) is an advanced system-on-chip (SoC) featuring an Arm® Cortex®-M4F CPU for
efficient computation of complex functions and algorithms that is qualified to operate at a temperature range of -40°C
to +105°C. The SoC integrates power regulation and management with a single inductor multiple-output (SIMO) buck
regulator system. The latest generation Bluetooth® 5.2 Low Energy (LE) radio is on board, supporting long-range (coded)
and high-throughput modes and medical body area network (MBAN).
The device offers large onboard memory with 512KB flash and 128KB SRAM, with optional error correction coding (ECC)
on one 32KB SRAM bank. This 32KB bank can be optionally retained in BACKUP mode. An 8KB user OTP area is
available.
The MAX32655 supports multiple high-speed peripherals, such as I2C, 50MHz SPI, and UART, plus one I2S port for
connecting to an audio codec. An eight-input, 10-bit ADC is available to monitor analog input from external analog
sources. In addition, a low-power UART (LPUART) is available for operation in the lowest power sleep modes to facilitate
wake-up activity without any data loss. A total of six timers with I/O capability are provided, including two low-power
timers to enable pulse counting, capture/compare, and pulse-width modulation (PWM) generation, even in the lowest
power sleep modes.
The MAX32655 is available in two different packages:
● 81 CTBGA (8mm x 8mm, 0.8mm pitch)
● 51 WLP (3.09mm x 3.09mm, 0.35mm pitch)
Arm Cortex-M4 (CM4) with FPU Processor and RISC-V (RV32) Processor
The Arm Cortex-M4 with FPU processor is ideal for low-power system control. The architecture combines high-efficiency
signal processing functionality with low power, low cost, and ease of use.
The Arm Cortex-M4 with FPU DSP supports single instruction multiple data (SIMD) path DSP extensions, providing:
● Four parallel 8-bit add/sub
● Floating-point single precision
● Two parallel 16-bit add/sub
● Two parallel MACs
● 32- or 64-bit accumulate
● Signed and unsigned data with or without saturation
The addition of 32-bit RISC-V processor (RV32) provides the system with ultra-low-power consumption signal
processing.
Memory
Internal Flash Memory
512KB of internal flash memory provides nonvolatile storage of program and data memory.
Internal SRAM
The internal 128KB SRAM provides low-power retention of application information in all power modes except POWER
DOWN. The SRAM is divided into four banks. SRAM0 and SRAM1 are both 32KB, SRAM2 is 48KB, and SRAM3 is
16KB. SRAM2 and SRAM3 are accessible by the RV32 in LOW POWER mode. For enhanced system reliability, SRAM0
(32KB) can be configured with error correction coded (ECC) or single error correction-double error detection (SED-DED).
This data retention feature is optional and configurable. This granularity allows the application to minimize its power
consumption by only retaining the most essential data.
Bluetooth 5.2
Bluetooth 5.2 Low Energy Radio
Bluetooth 5.2 LE is the latest version of the Bluetooth wireless communication standard. Bluetooth LE communications
operate in the unlicensed 2.4GHz industrial-scientific-medical (ISM) band. A frequency-hopping transceiver is used to
combat interference and fading. It uses 40 RF channels. These RF channels have 2402 + k x 2MHz center frequencies,
where k = 0, ..., 39. The Bluetooth stack runs on RV32, so the CM4 can be freed to run the software. The features of the
radio include the following:
● Higher transmit power up to +5.5dbm
● 1Mbps, 2Mbps, and long-range coded (125kbps and 500kbps)
● Increased broadcast capability
• Advertising packet up to 255 bytes
● On-chip matching network to the antenna
● Antenna control outputs
● Provides hardware on-the-fly encryption and decryption for lower power consumption
● Low transmit current of 4.17mA at 0dbm at 3.3V
● Low receive current of 4.0mA at 3.3V
● Supports MBAN
Comparators
The ADC inputs can be configured as pairs and deployed as independent comparators with the following features:
● Comparison events can trigger interrupts
● Events can wake the CM4 from SLEEP, LPM, UPM, STANDBY, or BACKUP operating modes
● Can be active in all power modes
The instances and characteristics of the peripheral are shown in Table 1. Some instances may not be available in every
package configuration; see the Ordering Information table for the specific instances available by part number.
Clocking Scheme
Multiple clock sources can be selected as the system clock:
● Internal primary oscillator (IPO) at a nominal frequency of 100MHz
● Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
● Configurable internal nano-ring oscillator (INRO) at 8kHz, 16kHz, or 30kHz
● External RTC oscillator at 32.768kHz (ERTCO)—external crystal required
● Internal baud rate oscillator at 7.3728MHz (IBRO)
● External square-wave clock up to 80MHz
● External RF oscillator at 32MHz (ERFO)—external crystal required
• An internal kick-start circuit improves the ERFO startup time.
There are multiple external clock inputs:
● LPTMR0 and LPTMR1 can be clocked from unique external sources.
● SYS_CLK can be derived from an external source.
RTC/CALIBRATION OUTPUT
SQWOUT
(P3.1)
XTAL DRIVER OR 32KIN BYPASS
32KIN RTC_OSCCTRL.bypass
EXTERNAL CLOCK LEGEND
32.768kHz 32.768kHz 32.768kHz 32.768kHz
CRYSTAL OSC X = UNCONNECTED CLOCK
1Hz 512Hz 4096Hz 32768Hz INPUT
(ERTCO)
REAL-TIME CLOCK = DEVICE PIN
32KOUT
MICRO-POWER DOMAIN PERIPHERALS
POWER-DOWN MODE
LPUART0 WAKE-UP CONTROLLER
LPTMR0 LPTMR1 LPWDT0
2-WIRE TIMER
POWER
MANAGEMENT UNIT
LPTMR0_CLK (P2.6)
÷8
NANO-RING (INRO)
LPTMR1_CLK (P2.7) 8kHz, 16kHz, 30kHz
AUTO-CAL
100MHz GCR_CLKCN.clksel
100MHz
7.3728MHz
SYS_CLK ÷2
INTERNAL BAUD RATE GCR_CLKCN.psc APB CLK
OSCILLATOR (IBRO)
SYS_OSC
60MHz PRESCALER
60MHz
INTERNAL SECONDARY
OSCILLATOR (ISO)
PLPCR_LPCN.lpmclksel
RISC-V
HFXIN (RV32)
32MHz 32MHz OSC
CRYSTAL (ERFO)
500kΩ
WITH GCR_PCKDIV.adcfrq
KICK START
ADC
HFXOUT AES/CRC/
ADC CLOCK
TRNG
<8MHz SCALER
Bluetooth 5.2
EXT_CLK (P0.3)
RTC/CALIBRATION OUTPUT
SQWOUT
(P3.1)
XTAL DRIVER OR 32KIN BYPASS
32KIN RTC_OSCCTRL.bypass
EXTERNAL CLOCK LEGEND
32.768kHz 32.768kHz 32.768kHz 32.768kHz
CRYSTAL OSC X = UNCONNECTED CLOCK
1Hz 512Hz 4096Hz 32768Hz
(ERTCO) INPUT
REAL-TIME CLOCK = DEVICE PIN
32KOUT
MICRO-POWER DOMAIN PERIPHERALS
POWER-DOWN MODE
LPUART0 WAKE-UP CONTROLLER
LPTMR0 LPTMR1 LPWDT0
2-WIRE TIMER
POWER
MANAGEMENT UNIT
LPTMR0_CLK (P2.6)
÷8
NANO-RING (INRO)
LPTMR1_CLK (P2.7) 8kHz, 16kHz, 30kHz
AUTO-CAL
100MHz GCR_CLKCN.clksel
100MHz
7.3728MHz
SYS_CLK ÷2
INTERNAL BAUD RATE GCR_CLKCN.psc APB CLK
OSCILLATOR (IBRO)
SYS_OSC
60MHz PRESCALER
60MHz
INTERNAL SECONDARY
OSCILLATOR (ISO)
PLPCR_LPCN.lpmclksel
HFXIN RISC-V
(RV32)
32MHz OSC
32MHz (ERFO)
500kΩ
CRYSTAL WITH KICK
GCR_PCKDIV.adcfrq
START
HFXOUT ADC
AES/CRC/
ADC CLOCK
TRNG
Bluetooth 5.2 <8MHz SCALER
EXT_CLK (P0.3)
UART0
TMR0 TMR1 TMR2 TMR3
4-WIRE
WDT0 1-Wire I2 C SPI1
In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be
independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same
interrupt vector.
When configured as GPIO, all features can be independently enabled or disabled on a per-pin basis. The following
features are provided:
● Configurable as input, output, bidirectional, or high impedance
● Optional internal pull-up resistor or internal pull-down resistor when configured as input
● Exit from low-power modes on rising or falling edge
● Selectable standard- or high-drive modes
Up to 52 GPIO pins are provided. The number of GPIOs varies by part package configuration; see the Ordering
Information table for the number of GPIOs available by part number.
Power Management
Power Management Unit (PMU)
The PMU provides high-performance operation while minimizing power consumption. It exercises intelligent, precise
control of power distribution to the CPUs and peripheral circuitry.
The PMU provides the following features:
● User-configurable system clock
● Automatic enabling and disabling of crystal oscillators based on power mode
● Multiple power domains
● Fast wake-up of powered-down peripherals when activity detected
ACTIVE Mode
In this mode, the CM4 and the RV32 can execute application code and all digital and analog peripherals are available on
demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power
consumption. The CM4 has access to all system SRAM. The RV32 has access to SRAM2 and SRAM3. Both the CM4
and the RV32 can execute from internal flash simultaneously. SRAM3 can be configured as an instruction cache for the
RV32.
SLEEP Mode
This mode allows for lower power consumption operations than ACTIVE mode. The GPIO or any active peripheral can
be configured to interrupt and cause a transition to ACTIVE mode. This mode consumes less power, but wakes faster
because the clocks can optionally be enabled.
The device status is as follows:
● CM4 is in the Arm Cortex-M4 processor SLEEP mode.
● RV32 is asleep.
● Peripherals are on.
● Standard DMA is available for optional use.
● Both CM4 and RV32 are state retained. (System state and all SRAM is retained.)
● The GPIO pins retain their state.
● All non-UPM peripherals are state retained.
● IBRO can be optionally powered down.
● The following oscillators are powered down:
• IPO
• ISO
• ERFO
● The following oscillators are enabled:
• IBRO
• ERTCO
• INRO
● The following UPM peripherals are available for use to wake up the device:
• LPUART0
• WWDT1
• All four low-power analog comparators
STANDBY Mode
This mode is used to maintain the system operation while keeping time with the RTC.
The device status is as follows:
● Both CM4 and RV32 are state retained. (System state and all SRAM is retained.)
● The GPIO pins retain their state.
● RTC is on.
● All peripherals are state retained.
● The following oscillators are powered down:
• IPO
• ISO
• IBRO
• ERFO
● The following oscillators are enabled:
• ERTCO
• INRO
BACKUP Mode
This mode is used to maintain the system RAM while keeping time with the RTC. The device status is as follows:
● CM4 and RV32 are powered off.
● SRAM0, SRAM1, SRAM2, and SRAM3 can be configured to be state retained as per Table 3.
● All peripherals are powered off.
● The GPIO pins retain their state.
● RTC is on.
● The following oscillators are powered down:
• IPO
• ISO
• IBRO
• ERFO
● The following oscillators are enabled:
• ERTCO
• INRO
Wake-up Sources
The wake-up sources from the power modes are summarized in Table 4.
Table 4. MAX32655 Wake-up Sources
OPERATING MODE WAKE-UP SOURCE
SLEEP Any enabled peripheral with interrupt capability; RSTN
SPI0, I2S, I2C, UARTs, timers, watchdog timers, wake-up timer, all comparators, RTC, GPIOs, RSTN, and
LOW POWER (LPM)
RV32
MICRO POWER All comparators, LPUART (where available), LPTMR0, LPTMR1, LPWDT0, RTC, wake-up timer, GPIOs,
(UPM) and RSTN
STANDBY RTC, wake-up timer, GPIOs, CMP0 (where available), and RSTN
BACKUP RTC, wake-up timer, GPIOs, CMP0 (where available), and RSTN
POWER DOWN
P3.0 and RSTN
(PDM)
Programmable Timers
32-Bit Timer/Counter/PWM (TMR, LPTMR)
General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals
with minimal software interaction.
The timer provides the following features:
● 32-bit up/down autoreload
● Programmable prescaler
● PWM output generation
● Capture, compare, and capture/compare capability
● External pin multiplexed with GPIO for timer input, clock gating, or capture
● Timer output pin
● TMR0–TMR3 can be configured as two 16-bit general-purpose timers
● Timer interrupt
The instances and characteristics of the peripheral are shown in Table 5. Some instances and I/O functionality may not
be available in every package configuration; see the Ordering Information table for the specific instances available by
part number.
Table 5. MAX32655 Timer Instances
REGISTER DUAL CLOCK SOURCE
SINGLE SINGLE POWER
INSTANCE ACCESS 16 LPTMR0 LPTMR1
32 BIT 16 BIT MODE PCLK ISO IBRO INRO ERTCO
NAME BIT _CLK _CLK
ACTIVE,
TMR0 TMR0 Yes Yes No SLEEP, Yes Yes Yes No Yes No No
LPM
ACTIVE,
TMR1 TMR1 Yes Yes No SLEEP, Yes Yes Yes No Yes No No
LPM
ACTIVE,
TMR2 TMR2 Yes Yes No SLEEP, Yes Yes Yes No Yes No No
LPM
ACTIVE,
TMR3 TMR3 Yes Yes No SLEEP, Yes Yes Yes No Yes No No
LPM
ACTIVE,
SLEEP,
LPTMR0 TMR4 No No Yes No No Yes Yes Yes Yes No
LPM,
UPM
ACTIVE,
SLEEP,
LPTMR1* TMR5 No No Yes No No Yes Yes Yes No Yes
LPM,
UPM
* Available as an internal timer only on the 51-bump WLP. There is no external connection to this timer on the 51-bump
WLP.
application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt,
system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction
execution.
The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be
reset within a specific window of time.
The instances and characteristics of the peripheral are shown in Table 6. Some instances may not be available in every
package configuration; see the Ordering Information table for the specific instances available by part number.
Table 6. MAX32655 Watchdog Timer Instances
CLOCK SOURCE
INSTANCE NAME REGISTER ACCESS NAME POWER MODE
PCLK IBRO INRO ERTCO
ACTIVE,
WDT0 WDT0 SLEEP, Yes Yes No No
LPM
ACTIVE,
SLEEP,
LPWDT0 WDT1 No Yes Yes Yes
LPM,
UPM
Serial Peripherals
I2C Interface (I2C)
The I2C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can
operate as a one-to-one, one-to-many, or many-to-many communication medium. This interface supports Standard-
mode, Fast-mode, and Fast-mode Plus I2C speeds. It provides the following features:
● Controller or target mode operation
• Supports up to four different target addresses in target mode
● Supports standard 7-bit addressing or 10-bit addressing
● RESTART condition
● Interactive receive mode (IRXM)
● Transmitter FIFO preloading
● Support for clock stretching to allow slower target devices to operate on higher speed busses
● Multiple transfer rates
• Standard-mode: 100kbps
• Fast-mode: 400kbps
• Fast-mode Plus: 1000kbps
● Internal filter to reject noise spikes
● Receiver FIFO depth of 8 bytes
● Transmitter FIFO depth of 8 bytes
The instances and characteristics of the peripheral are shown in Table 8. Some instances may not be available in every
package configuration; see the Ordering Information table for the specific instances available by part number.
Table 8. MAX32655 I2C Instances
PACKAGES
81 CTBGA 51 WLP
I2C0
I2C1 I2C0
I2C2
Security
AES
The dedicated hardware-based AES engine supports the following algorithms:
● AES-128
● AES-192
● AES-256
The AES keys are automatically generated by the engine and stored in dedicated flash to protect against tampering. Key
generation and storage is transparent to the user.
CRC Module
A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application
software. It supports a user-defined programmable polynomial up to 32-bits. Direct memory access copies data into
the CRC module so that CRC calculations on large blocks of memory are performed with minimal CPU intervention.
Examples of common polynomials are depicted in Table 11.
Table 11. Common CRC Polynomials
ALGORITHM POLYNOMIAL EXPRESSION
CRC-32-ETHERNET x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0
CRC-CCITT x16 + x12 + x5 + x0
CRC-16 x16 + x15 + x2 + x0
USB DATA x16 + x15 + x2 + x0
PARITY x1 + x0
Secure Boot
On devices that support Secure Boot, the device performs a secure boot to confirm that the root of trust has not been
compromised. Following every reset and exit from certain low-power modes, the secure boot verifies the digital signature
of the program memory to confirm it has not been modified or corrupted, ensuring the trustworthiness of the application
software. Failure to verify the digital signature transitions the device to safe mode, which prevents execution of the
customer code. During the development phase, the bootloader can be reactivated and a new, trusted program memory
loaded. Refer to the MAX32655 User Guide for more details.
Applications Information
Bypass Capacitors
The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The Pin Descriptions table
indicates which pins should be connected to bypass capacitors, and the appropriate ground plane.
It is recommended that one instance of a bypass capacitor should be connected to each pin/ball of the IC package. For
example, if the Pin Descriptions table shows four device pins associated with voltage supply A, a separate capacitor
should be connected to each pin for a total of four capacitors.
Capacitors should be placed as close as possible to their corresponding device pins. Pins which recommend more than
one value of capacitor per pin should place them in parallel with the lowest value capacitor first, closest to the pin.
SLEEP Mode
Table 15. Fixed VREGI Current Consumption SLEEP Mode
TYPICAL
PARAMETER SYMBOL CONDITIONS UNITS
-40°C 25°C 55°C 85°C 105°C
Fixed, IPO enabled, ISO disabled, total current into
VREGI VREGI pin, VREGI = 3.0V; VCOREA = 1.0V, VCOREB
Current, IREGI_FSLP = 0.81V, CM4 and RV32 in SLEEP mode 0MHz 506 570 659 840 1103 μA
SLEEP Mode operation; ECC disabled; inputs tied to VSS, VDDIO
or VDDIOH; outputs source/sink 0mA
STANDBY Mode
Table 16. Fixed VREGI Current Consumption STANDBY Mode
TYPICAL
PARAMETER SYMBOL CONDITIONS UNITS
-40°C 25°C 55°C 85°C 105°C
VREGI
Fixed, total current into VREGI pin, VREGI = 3.0V,
Current,
IREGI_STBY VCOREA = 1.0V, VCOREB = 0.81V; inputs tied to VSS 1.2 2.1 4.6 12 25 μA
STANDBY
or VDDIO, or VDDIOH; outputs source/sink 0mA
Mode
BACKUP Mode
Table 17. Fixed VREGI Current Consumption BACKUP Mode
PARAMETER SYMBOL CONDITIONS TYPICAL UNITS
Ordering Information
OPTIONALLY
EXT. ADC
PULSE LPUART ENABLED PIN-
PART UART SPI I²C INPUTS/ I²S GPIO
TRAINS SECURE PACKAGE
COMPARATORS
BOOT
81 CTBGA
8mm x
2x
MAX32655GXG+ 4 3 4 8/4 1 1 52 Yes 8mm,
quad
0.8mm
pitch
81 CTBGA
8mm x
2x
MAX32655GXG+T 4 3 4 8/4 1 1 52 Yes 8mm,
quad
0.8mm
pitch
51 WLP
3.09mm x
2x
MAX32655GWJ+ 1 1 0 4/2 1 0 23 Yes 3.09mm,
dual
0.35mm
pitch
51 WLP
3.09mm x
2x
MAX32655GWJ+T 1 1 0 4/2 1 0 23 Yes 3.09mm,
dual
0.35mm
pitch
All packages contain one RTC, CRC, OWM, TRNG, I²S, two WDT, and Bluetooth 5.2;
UART = Universal Asynchronous Receiver-Transmitter; SPI = Serial Peripheral Interface;
TMR = Timer; I²C = Inter-IC; ADC = Analog-to-Digital Converter; LPUART = Low-Power UART;
I²S = Inter-IC Sound; GPIO = General-Purpose Input/Output; RTC = Real-Time Clock;
CRC = Cyclic Redundancy Check; OWM = 1-Wire Controller; TRNG = True Random Number Generator
+ Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel. Full reel.
Revision History
REVISION REVISION PAGES
DESCRIPTION
NUMBER DATE CHANGED
0 8/20 Release for intro —
Added 63 WLP Pin Configuration, Pin Descriptions, and Package Information. 1, 7, 11, 32–36,
1 9/21
Updated the Electrical Characteristics and Ordering Information. 41, 52
Removed 63 WLP package and replaced with 60 WLP in Pin Configuration, Pin
Descriptions, Package Information, General Description, and Detailed Description. 1, 7, 32–36, 38,
2 11/21
Updated Ordering information to reflect package change to MAX32655GWY+ and 41, 42, 46–49, 52
MAX32655GWY+T.
Added guidelines for RTC crystal, clarified RSTN causes a system reset, removed
the requirement for 32KIN/32KOUT capacitors. Removed 60 WLP package
information. Replaced all references to Master/Slave with Controller/Target. Updated
1, 2, 7–13,
the Simplified Block Diagram. Updated Electrical Characteristics for revision B
3 11/23 16–18, 20–24,
silicon. Updated Pin Description for 81 CTBGA package. Updated the Clocking
29–51
Scheme Diagram for 81 CTBGA package. Removed description of the Dynamic
Voltage Scaling. Removed support for High-Speed I2C. Updated Detailed
Description. Updated Ordering Information.
1, 7–9, 35–40,
4 1/24 Added 51 WLP package information. 41, 42, 44, 45,
49–57
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may
result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of
their respective owners.
w w w . a n a l o g . c o m Analog Devices | 58