0% found this document useful (0 votes)
16 views251 pages

Module 4.0 (Inorganic)

The document contains various chemical concepts, including effective nuclear charge (Z_eff) values for different elements, molecular shapes, and bonding theories. It discusses molecular orbital diagrams, hybridization, and the shapes of molecules based on electron pair arrangements. Additionally, it covers the trends in ionization energy and electronegativity among elements.

Uploaded by

mehtab hosssain
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views251 pages

Module 4.0 (Inorganic)

The document contains various chemical concepts, including effective nuclear charge (Z_eff) values for different elements, molecular shapes, and bonding theories. It discusses molecular orbital diagrams, hybridization, and the shapes of molecules based on electron pair arrangements. Additionally, it covers the trends in ionization energy and electronegativity among elements.

Uploaded by

mehtab hosssain
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 251





= 

• 


 

Group Element Li Na K Rb Cs Fe
Zeff 1.30 2.20 2.20 2.20 2.20 2.20
Period Element Be B C N O F
Zeff 1.95 2.6 3.25 3.90 4.55 5.20


M(g) ⟶ M+ (g) + e−




 − =  −

𝜒 Δ
 − = − − −  −

+
M(g) → M(g)
+
+ e−
→ 

→ →
→ →

1 2 3 4
H3C− CH = C = CH2



A

→ →

→ →


→ →
→ → Ne
N F
C

(IP)
Be O
B
Li
3 4 5 6 7 8 9 10 11
Z

→  → 

⎯⎯⎯

⎯⎯⎯

⎯⎯⎯
H
→ 

 
→ →

→ →

→ →
→ →

→ →

→ →

→ →
⎯⎯
I

→ ⎯⎯⎯
II
→ → →


→ →

→ →
→ → → →

→ → → →

→ → → →

→ → → →
→ 
→ 
Coordinate
bond

⎯→

⎯→
+2
Ca Ca Cl Cl
2, 8, 8 2, 8, 8, 2 2, 8, 7 2, 8, 8
One e
Cl Cl
One e 2, 8, 7 2, 8, 8

⎯⎯→

⎯→

Cl > F > Br > I


Anion formation tendency
2 3
F > O > N

1

r


 
 1
Hydrated radii




H • H

• • •
• • •






• •• •
• O •• O
• N N

H2 molecule O2 N2
H H O=O NN
⎯→

⎯→

= − −
− −

1
2
1
2
1
2
I II


 



 

 


 

  
       

+
  
Molecule No.of No.of Arrangement of Shape Examples
type bonding lone electron pairs
pairs pairs

:
AB2E 2 1 A Bent SO2 ,O3
B B

:
3 1 A Trigonal NH3
AB3E
B B pyramidal
B

:
AB2E2 2 2
A Bent H2O
B
:

B
B
4 1 B
AB4E :– A See saw SF4
B
B
B
: T–shape CIF3
AB3E2 3 2
B– A
:

B
B
: – –
AB2E3 2 3 –A Linear I3 ,ICl2 ,XeF2
:

B
B
AB5E B B Square BrF5
5 1 A pyramidal
B B
:
:

B B Square
AB4E2 4 2 XeF4
A planar
B B
:
Molecule No.of bonding No.of lone Shape Reason for the
type pairs pairs shape acquired
4

:
AB2E 1 It is found to be bent or v-shaped.

:
S Bent
:O =
=
0 O: The reason being the lone pair-
119.5 S

:
bond pair repulsion is much more

:
O=
=
O as compared to the bond pair-bond
pair repulsion. So the angle is reduced
0 0
to 119.5 from 120 .

:
N
H Trigonal It is found to be trigonal pyramidal
H 0
pyramidal
AB3E 3 1 107 due to the repulsion between lp-bp
H (which is more than bp–bp repulsion)
the angle between bond pairs is
reduced to 1070 to 109.50 .

:
N
H H
: H
:

O Bent The shape is distored tetrahedral or


AB2E2 2 2 0 angular. The reason is lp-lp repulsion is
H 104.5 H
more than lp-bp repulsion. Thus , the
0 0
angle is reduced to 104.5 from 109.5 .
:

:
O
H H
:

F See- In (i) the lp is present at axial position 0


AB4E 4 1 (i) S saw so there are three lp-bp repulsion at 90 .
F In (ii) the lp is an equatorial position, and
F there are two lp-bp repulsions. Hence ,
F arrangement (ii) is more stable. The shape
shown in (ii) is called as a distorted
F tetrahedron, a folded square or a see-saw.
F
(ii) S (More stable)
F
F

AB3E2 3 2 F T–shape In (i) the lone pairs are at


: equatorial position (120º) so
Cl F there are less lp–bp
(i) : repulsions as compared
to others in which the lp
F are at axial positions.So
structure (i) is most
F stable. (T – shaped).
F
:

:
(ii) Cl F F Cl
(iii)
F F
:

I –
:
AB2E3 2 3 : –I Linear I3– ,ICl2– ,XeF2
:

I

 


 

− +

+ − −
− − −

− +

− − − −

− − − + −

− − + −

− − −


− + −
  

   

   

NO+2 < NO2 < NO2− NO+2 < NO2− < NO2

NO+2 < NO2− < NO2 NO-2 < NO2 < NO+2
 = 
 
 


 = 

 
 
         

         


 

Molecular Antibonding sigma


orbitals molecular orbital
Atomic Atomic – + – + – – + – +
orbital orbital
*2pz 2pz 2pz *1s
Energy

Bonding sigma
molecular orbital
2pz 2Pz
– + + + – – + –
→ →

2pz 2pz 2pz 2pz


(b)
      (

*2pz

*2px = *2py
2p 2p
2pz

2px = 2py

s
2s 2s
N(AO) N(AO)

2s
N2(MO)
M.O. Energy level diagram for N2 molecule


        
*2pz

2px 2py

2px =  2py

2pz

2s
O(AO) O(AO)

2s
O2(MO)
M.O. Energy level diagram for O2molecule

− −

− −

C2-
2
< He+2 < NO < O2− He+2 < O2− < NO < C22-

O2− < NO < C22- < He+2 NO < C2-


2
< O2− < He+2

− − − − − − − −

+
+ − −

− +

− + −

   

 



+ –
H Cl 

−
O

+ H H+
 = 1.84D

+ Cl−
H
−
F −
− +
C C
F B
+ Cl − −
− H + H Cl
H +
F Cl −
     

 

     

12.

 

 



F3− Br3− I 3− Cl3−


 

d
x2 − y2 d
z2
dxy d xz
+ + − −

+ −

− − −


+

− − −
+

− +

− −


+
+

+ +

− − +

− − +

+ − +

+ + − −

+ −

− + + −

− + − +
H H
N H N H
H H

OH
O
C H

O H

O N O
Cl H
O
Cl C C H
O
Cl H
 

SO 4–2
ClO3− PO34−

.. SO24− XeO3
O:
.. ..
:O—S—O
.. .. :
.. :
O


 


     

     

− +

+
⎯⎯⎯
→ −

⎯⎯⎯
→ −

⎯⎯⎯
→ −

⎯⎯⎯
→ +


 Θ



   

− − −

 

   
   

+ 
OH OCH3
COOH COOH

OH OCH3

COOH COOH

 


 

 

 

   

   

+ +
1s 1s

+ _
_ +
2Px 2Px


Column -I Column -II
a C2 i -orbital
participate in
hybridisation
b − ii Hybrid orbitals
contain 25% s-
character
c − iii Only pi-bond

d − iv Permanent
dipole moment

− +

− − −

+ − −
 

 

 

− 
 
+

 
→ → → →
→ → → →
→ → → →
→ → → →
→ → → →
→ → → →
→ → → →
→ → → →
 −

− −

− − − −

− − − −

  + −
  +


  + −
  +

− +

+ − −

− − +

+ − −

− − +

− + −

+
+ − +

 

Column -I Column -II


(a) XeF6 (i) Distorted
Octahedral
(b) XeO3 (ii) Square planar
(c) XeOF4 (iii) Pyramidal
(d) XeF4 (iv) Square
Pyramidal




+


+

+
    
    
     
   
     
   
     
   


  ⎯⎯⎯→ +
+
Central metal ion Coordination sphere

[Cu(NH3)4]SO4 Ionization sphere

Ligand Coordination number


CH2 NH2 –O O–
C C CH3 C N O–
CH2 NH2 O O CH3 C N OH
Ethylenediamine Oxalate (ox) Dimethyl glyoxim ion (DMG)

CH2 NH2

C O– N N –O C O–
O O
Glycinato (Gly ) 2, 2'-Dipyridyl (Dipy)
Carbonate

NH2 NH2

H2C CH2

H2C NH CH2
Diethylene triamine (Dien)

CH2COO–
CH2COO–
N
CH2COO–
(Nitriloacetato)

.. H
CH2 N
CH2COO–
CH2COO–
CH2 N
..
CH2COO–
–3
(EDTA)
Ethylenediaminetriacetate ion

.. CH2COO
CH2 N
CH2COO–
CH2COO–
CH2 N
..
CH2COO–

Ethylenediaminetetraacetate ion (EDTA)–4

2+
CH2 H2N NH2 CH2
Pt
CH2 H2N NH2 CH2

  −   −  −

     
  −
  −




  
+


⎯⎯⎯→

⎯⎯⎯→


3d 4s 4p 4d

× × × × × ×
3d 4s 4p 4d
2 3
d sp hydridisation


3d 4s 4p 4d

3d 4s 4p 4d
3 2
sp d

3d 4s 4p

× × × ×
3d 4s 4p
3
sp hybridisation

× ×× ×
3d 4s 4p
2
dsp hybridisation

3d 4s 4p

.. .. .. ..
   
NH3 NH3 NH3 NH3

3d 4s 4p
.. .. ..

..
3d 4s 4p
3
sp hybridixation


(



eg
eg
.6  or 6 Dq
  small   large
degenerate d-orbitals in
the free metal ion
.4  or 4 Dq
t2g
t2g
splitting of d-oritals is
presence of weaker splitting of d-oritals in
– –
ligands (F , Cl etc.) presence of stronger ligands

(CN , CO etc.)
   

( → )

⎯→ ⎯→
⎯→ ⎯→

   
a a a b
M M
b b b a
Cis-isomer Trans-isomer

a a
a c
M M
b c b a
Cis trans

H3N NH3 Cl NH3


Pt Pt
Cl Cl H3N Cl
Cis(Cis-platin) anti cancer Trans

NH3 Br NH3
Cl
Pt Pt

Br NH3 H3N Cl
Cis Trans

a b a d a c
M M M
d c c b b d
(i) (ii) (iii)


CH2 NH2 NH2 CH2 CH2 NH2 O CO
Pt Pt
– – –
CO O O CO CO O NH2 CH2
(cis) (Trans)
Cl NH3
H3N NH3 H3N Cl
Fe Fe
H3N NH3 H3N Cl
Cl NH3
Trans Cis

b
b
a
a
b
a

a a
b b

a b
Facial (fac) Meridional (Mer)


=

2+ 2+
py py
Cl py py Cl

Pt Pt

Cl NH3 Cl
H3N
NH3 NH3
Cis-d-isomer Mirror Cis--isomer


Br
Br NO2 py
py NO2

Pt
Pt

H3N Cl
Cl NH3
I
I
-isomer
d-isomer Mirror


3+ 3+
en
en en

Co Co
en

en en

d-form Mirror -form


2+ 2+
en
en
Cl Cl

Co Co

H3N
NH3
en en
Mirror
Cis-d-isomer 
Cis--isomer


gly
gly
gly
Cr Cr
gly

gly gly

Cis or trans-d-isomer Mirror Cis or trans--isomer

Cl Cl
Cl Cl

en Fe Fe en

NH3 NH3
NH3 NH3
Cis--d-isomer Mirror Cis--isomer

en
en
Cl
Cl
Fe
Fe

Cl
Cl
en
Mirror en
Cis or trans-d-isomer Cis or trans--isomer
R Zn R dialkyl zinc (Frankland reagent)
R Mg X Alkyl Magnesium halide (Grignards reagent)

O
Sodium acetate CH3 C ONa
Sodium ethoxide C2H5 O Na
Sodium Mercaptide H3C SNa

 


 

 
R Cl Cl
Zeigler-Natta Catalyst R Al Ti
R Cl Cl



NH+4









   

   

 
 
A
A B
M
B A

A









⎯→
I II

III





 ( ) 
 
 ( ) 


 ( ) 


 ( ) 
  ( ) 
 
 ( ) 
 
 ( )   

   ( ) 

 ( )( )


 ( ) 

 
− 
 ( ) 
 
− 
 ( ) 
 


 

 


 

 

 



 ( ) 


 ( ) 

( ) 
+

( ) 
+

( ) 
+

( ) 
+

( ) 
+

( ) 
+



 

− 

−


→ → → →
→ → → →
→ → → →
→ → → →

 

I I

⎯⎯

⎯⎯→


   

 


 

 
• •
• •
• •

• •
• •

⎯⎯⎯

→ ⎯⎯⎯

⎯⎯⎯

 ⎯⎯⎯

III

→ 

 



       






 

  



α
α

⎯→

 
 
 
 

⎯→ ⎯→ 
⎯→ ⎯→ 
⎯→


⎯⎯ →

 
OH

|
N=N
HO
|

Hyponitrous acid

P 2.21Å
60
ºC
P P


Non metallic oxide


Anhydrides of oxyacids
⎯⎯→

⎯⎯→

⎯⎯⎯

⎯⎯⎯

 
 
 
 

⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ 
⎯⎯⎯⎯→

⎯⎯⎯⎯
→ ⎯⎯⎯⎯
→ ⎯⎯⎯⎯

→ →
→ →
→ →


⎯⎯⎯⎯
→ ⎯⎯⎯⎯

⎯⎯⎯

→ ⎯⎯⎯


⎯⎯⎯

→ ⎯⎯⎯


⎯⎯⎯

→ ⎯⎯⎯


⎯⎯⎯⎯

⎯→ 

 


⎯⎯⎯⎯⎯⎯

   
20 S S
S
4 pm S 205.7 pm
S S
107o
S S 102.2o
S
S S
S S (b)
(a) S

130−200ºC 200ºC
 ⎯⎯⎯
95.5ºC
⎯→   ⎯⎯⎯⎯⎯ → ⎯⎯⎯⎯ →



Θ


⎯→

⎯→

I– → I2

⎯→
⎯→ ⎯→
⎯→  ⎯→ 


 →
⎯⎯⎯

⎯→
OCl
Ca
Cl ⎯⎯⎯

⎯⎯⎯⎯

⎯→
⎯→


⎯→


⎯→ ⎯→
⎯→ ⎯→

⎯⎯ →

⎯⎯ →

→ →
→ →
→ →
→ →

+ −

+ −


→ →
→ →
→ →
→ →

 
 

 



⎯⎯⎯

⎯⎯⎯⎯

 

 

 

 
 



− − − −

− − − −
1 3

4 2 1 3 2 1 3 1 1 2 3 4 4 1 4 3 3 3 3 3 4 4 2 1 2

4 4 1

3 1

1 3 3 3 4
 Θ

Θ

 

   



 Θ

 

1
Δ0 
λ(Wavelengthof light absorb)

Ti+3 Purple Cr+3 Green Mn+2 Light pink Fe+2 Green


Fe+3 Yellow Co+3 Pink Ni+2 Green Cu+2 Blue

= +


(a) Bronze Cu (75 - 90 %) +Sn ( 10 - 25 %)
(b) Brass Cu ( 60 - 80 %) +Zn (20 - 40 %)
(c) German Silver Cu + Zn + Ni ( 2: 1: 1)
(d) Stainless steel Cr (12 - 14 %) & Ni (2 - 4 %)
− + +
+ + → + +

⎯→

⎯→

⎯→

⎯→

⎯→

⎯→
⎯⎯⎯⎯ →
Roasting
in air

⎯→

⎯→

3
⎯→
2

⎯→
⎯→

2−
7 ⎯→

2−
7  ⎯→ 

2−
7 ⎯→

2− 2− 2−
7 3 ⎯→ 4

2−
7 ⎯→

T70ºC
⎯⎯⎯ ⎯→

⎯→ 
− − − − − −

− − − − − −
⎯→
1.

2.

3.
4.

+ + +

− −

⎯⎯⎯→ ⎯⎯⎯

⎯⎯⎯

I

IO3— IO4—
24

⎯→
⎯→
⎯→


⎯⎯⎯→

⎯⎯⎯→

 
3MnO42– + 2H2O 2MnO4– + MnO2 + 4OH–



⎯⎯⎯

→ 

− −


− −


− −

You might also like