0% found this document useful (0 votes)
39 views8 pages

ST Lines

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views8 pages

ST Lines

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

19.

The medians of a triangle meet at (0 , - 3) and two vertices


are at (- 1 , 4) and (5 , 2). Then the third vertex is at
1) (4 , 15) 2) (- 4 , - 15) 3) (-4 , 15) 4) (4 , - 15)
20. The vertices of a triangle are (0 , 0), (3 , 0) and (0 , 4). The
Multiple choice Questions centroid of the triangle is
LEVEL-I
1   4
1. The distance of the point (x , y) from x-axis is 1)  , 2  2) 1,  3) (0 , 0) 4) (1 , 1)
2   3
1) x 2) y 3) x 4) y
21. The mid-points of AB, BC, CA of a ABC are (6 , - 1), (- 4 , -
2. The distance of the point (x , y) from y-axis is
3), (2 , - 5) respectively. The centroid of ABC is
1) x 2) y 3) x 4) y
3. The locus of a point such that the ratio of its distance from 4  4   4 
1) (4 , 1) 2)  ,  3  3)  , 3  4)   , 3 
two given points is a constant is  3   3   3 
1) a parabola 2) an ellipse 3) a circle 4) a hyperbola 22. If the centroid of a triangle is (3 , 1) and one of the vertices
4. The Distance between the points (2, cot  ) and (1 , 0) is (0 , - 3), then the length of the median is
1) cos ec 2) sec 3) sec 4) cos ec 15 10
1) 5 2) 3) 15 4)
5. The triangle whose vertices are (0 , 0) (2 , 0) and (0 , 3) is 2 3
1) equilateral 2) right angled 23. In the triangle ABC, the co-ordinates of B, C and the cen-
3) isosceles 4) acute angled. troid G are (2 , 3), (- 3 , 4) and (- 5 , - 1) respectively.
6. The points (1 , 5), (- 7 , 9) and (- 10 , - 17) form Then the co-ordinates of A are
1) an acute angled triangle 2) a right angled triangle 1) (14 , 10) 2) (14 , - 10)
3) an obtuse angled triangle 4) a straight line 3) (- 14 , 10) 4) (- 14 , - 10)
7.  
The points (1 , 1), (- 1 , - 1) and  3 , 3 are the vertices of 24. The points (-2 , -5) , (2 , -2), (8 , a) are collinear, then the
1) an equilateral triangle 2) a scalene triangle value of a is
3) an isosceles triangle 4) a right angled isosceles triangle 5 5 3 1
1) 2) 3) 4)
8. The point (22 , 23) divides the join of P (7 , 5) and Q exter- 2 2 2 2
nally in the ratio 3 : 5, then Q = 25. The area of the triangle with vertics at (- 4 , 1), (1 , 2), (4 , 3)
1) (3 , 7) 2) (- 3 , 7) is
3) (3 , - 7) 4) (- 3 , - 7) 1) 17 2) 16 3) 15 4) 1
9. The join of (- 3 , 2) and (4 , 6) is cut by x-axis in the ratio 26. If the points (7 , k), (- 2 , 3) and (- 1 , - 5) are collinear then k
1) 2 : 3 internally 2) 1 : 2 externally is
1
3) 1 : 3 externally 4) 3 : 2 internally. 1) 15 2) 3) 69 4) - 69
7
10. The x-axis divides the line joining the points 27. The area of the triangle formed by the points (a , b + c), (b ,
(5 , 7) and (- 1 , 3) in the ratio c + a) and (c , a + b) is
1) 7 : 3 2) 7 : - 3 3) 6 : 5 4) 6 : - 5 1) abc 2) 0 3) a 2b 2 c 2 4) 1
11. y-axis divides the line joining the points (3 , 6) and (12 , - 3) 28. If the points t1  t2  at12 , 2at1  ,  at22 , 2 at2  and (a , 0) are col-
in the ratio linear, then t1t2 is
1) 1 : 4 2) 1 : - 4 3) 2 : 5 4) 2 : - 5 1) 0 2) 1 3) - 1 4) 2
12. The ratio in which the point (- 1 , 4) divides the line joining 29. The points (- a , - b) (0 , 0) (a , b) and  a 2 , ab  are
(- 7 , 1) and (3 , 6) is 1) collinear 2) vertices of a parallelogram
1) 2 : 1 2) 3 : 1 3) 1 : 2 4) 3 : 2 3) vertices of a rectangle 4) none
13. The ratio in which (- 3 , 4) divides the line joining (1 , 2) and 30. The points (t , 2t), (- 2 , 6) and (3 , 1) are collinear then t =
(7 , - 1) is 3 4
1) 2 : 5 externally 2) 5 : 2 internally 1) 2) 3) 3 4) 4
4 3
3) 1 : 5 externally 4) 1 : 5 internally 31. If the area of the triangle with vertices (x , 0), (1 , 1) and (0
14. The fourh vertex of the rectangle whose other vertices are , 2) is 4 sq.units, then a value of x is
(4 , 1), (7 , 4), (13 , - 2) is 1) - 2 2) - 4 3) - 6 4) 8
1) (10 , 5) 2) (10 , - 5) 3) (8 , 3) 4) (8 , - 3) 32. The point moves such that the area of the triangle form-ed
15. The fourth vertex of the square formed by points by it with the points (1 , 5) and (3 , - 7) is 21 sq.units. The
(2 , 1), (4 , 3), (- 2 , 5) is locus of the point is
1) (2 , 3) 2) (- 3 , 3) 3) (- 4 , 3) 4) (4 , 3). 1) 6x + y - 32 = 0 2) 6x - y + 32 = 0
16. If D (1 , 2), E (4 , 3), F (6 , 4) are the mid - points of the sides 3) x + 6y - 32 = 0 4) 6x - y - 32 = 0
BC , CA , AB respectively of ABC , then A = , B = , C = 33 The locus of the point which is equidistant from (1 , 2) and
1) (6 , 5), (2 , - 2), (1 , 1) 2) (6 , 6), (2 , 2), (1 , 1) (4 , 7) is
3) (9 , 5), (3 , - 3), (- 1 , 1) 4) (9 , 5), (3 , 3), (- 1 , 1). 1) 3x + 5y - 30 = 0 2) 3x - 5y = 30
17. Three vertices of a rectangle are (2, 1),(- 4 , - 1) and (-2 , -3) 3) 3x + 5y + 30 = 0 4) 3x - 5y + 30 = 0
then the co-ordinates of the fourth vertex are 34. The locus of the point which moves so that the sum of its
1) (4, 1) 2) (-4 , - 1) 3) (- 4 , 1) 4) (4 , - 1) distances from the points (a , 0) and (- a , 0) is 2c is
18. Mid points of the sides AB and AC of a triangle ABC are (- x2 y2
x2 y 2
3 , - 5) and (3 , 3) respectively then the length of BC is 1)  1 2) c 2  c 2  a 2 1
c 2 c2
1) 15 2) 10 3) 20 4) 30
x y 1) (10 , 4), (- 4 , 6), (2 , - 2) 2) (10 , 4), (4 , - 6), (2 , 2)
3) x  y  c 4) c  c  a  1
3) (10 , -4), (- 4 , 6), (2 , 2) 4) (10 , 4), (4 , - 6), (2 , - 2)
35. The locus of the point which moves on the line joining the 15. The extremities of a diagonal of a parallelogram are (3 , -
points (2 , - 3) and (3 , 2) is 4) and (- 6 , 5). If the third vertex is (- 2 , 1) then the fourth
1) - 5x + y = 0 2) - 5x + y - 13 = 0 vertex is
3) 5x + y + 13 = 0 4) 5x - y - 13 = 0 1) (1 , 0) 2) (- 1 , 0) 3) (1 , 1) 4) (- 1 , - 1)
LEVEL-II 16. The centroid of the triangle formed by the points
1. The locus of a point which moves so that its distance from (1 , a), (2 , b) and ( c 2 , - 3) lies on the x-axis, then
the y-axis is three times its distance from the x-axis is 1) a = 3 2) b = 3
1) x = 3y 2) y = 3x 3) y 2  9 x 4) x 2  9 y 2  0 3) a + b = 3 4) a - b = 3
2. The locus of the point which moves so that the square of 17. The centroid of the triangle ABC is (2 , 3) and
its distance from the point (3 , 0) is equal to 7 is A = (4 , 2), B = (4 , 5), then the area of the triangle ABC
1) x 2  y 2  2 2) x 2  y 2  6 x  0 1) 6 2) 9 3) 8 4) 5
3) x  y  6 x  2  0
2 2
4) x 2  y 2  4 18. If the co-ordinates of points A , B , C and D are (6 , 3), (-3 ,
3. If a , b , c are in A.P a , x , b are in G.P and b , y , c are in G.P DBC 1
5), (4 , - 2) and (x , 3x) respectively and if  , then x
the point (x , y) lies on ABC 2
1) a straight line 2) a circle is
3) an ellipse 4) a hyperbola 8 11 7
1) 2) 3) 4) 0
4. The locus of the point equidistant from (1 , - 1) and (- 1 , 1) 11 8 9
is 19. K  0 If the three points (k , 2k), (3k , 3k) and (3 , 1) are
1) x + y = 0 2) x - y = 0 collinear then k is
3) 2y - x = 0 4) x + 2y = 0 1 1
1) 3 2) - 3 3) 4) 
5. A line is of the length 10 units and one end is at (2 , -3). If 3 3
the abcissae of the other end is 10, then its ordinate is 20. The end points of the base of a triangle are (- 1 , 2) and (3 ,
1) 2 , 7 2) 7 , 2 3) -3 , 9 4) -9 , 3 5). The locus of the vertex, if the altitude is 7 is
6. Three points (0 , 0), (3 , 3 ), (3,  ) form an equilateral tri- 1) 3x - 4y + 46 = 0 2) 3x - 4y + 24 = 0
angle. Then  = 3) 3x + 4y + 46 = 0 4) 3x - 4y - 46 = 0
1) 2 2) - 3 3) - 4 4)  3 21. A point P moves in a plane such that the algebraic sum of
7. If (9 , - 9), (1 , - 3) are the ends of a right angle isosceles its distances from perpendicular lines is equal to a, then
triangle, then the third vertex is the equation of its locus is
1) (8 , - 2) 2) (- 8 , 2) 3) (8 , - 8) 4) (8 , 8) 1) x + y = a 2) x + y + a = 0
8. If A (a , a), B (- a , - a) are two vertices of an equilateral 3) x + y = 2a 4) x  y  a 2
triangle, then its third vertex is 22. If A = (6 , 0) and B = (0 , 4) and O is the origin then the locus
a 3 a 3 of P such that POB  2POA
1)  2 ,  2 
 

2)  a 3 , a 3  POA is
1) x 2  3 y 2  0 2) x 2  3 y 2  0

3) a 3 , a 3  4)   a 3, a 3  3) x  9 y  0
2 2
4) none
9. If the point (1 , 1) is equidistant from the point (a + b , b - a)  1 2 1 1
and (a - b , a + b) then 23. Is A   t 2 , 2t  and B   2 ,   and S  1, 0  , then  
 t t  SA SB
1) a + b = 0 2) a + b = 1 1 1
1) 2 2) 3) 4) 1
3) a = b 4) b - a = 1 2 5
24. Area of the triangle with vertices (a , b) , ( x1 , y1 ) and
 8
10. The points A  0,  B 1,3 and C  82,30  are the vertices of ( x2 , y2 ) where a , x1 , x2 are in G.P, with common ratio r and
 3
1) an acute angled triangle 2) an isoscles triangle b , y1 , y2 are in G.P. With common ratio s is
3) a right angled triangle 4) none 1
1) ab (r - 1) (s - 1) (s - r) 2) ab (r  1) ( s  1) ( s  r )
11. The base vertices of a right angled isosceles triangle are (7 2
1
, 9) and (3 , - 7), then the third vertex is 3) ab ( r  1) ( s  1) ( s  r ) 4) ab (r + 1) (s + 1) (r - s).
2
1) (13 , 1) or (- 3 , 3) 2) (13 , - 1) or (3 , - 3) 25. Locus of centroid of the triangle whose vertices are (a cos t
3) (13 , - 1) or (- 3 , 3) 4) (13 , 1) or (3 , 3) , a sin t),(b sin t , - b cos t) and (1 , 0), where t is a parameter
12. The harmonic conjugate of (1 , 4) with respect to the point is
(- 1 , 2) and (4 , 7) is 1)  3x  1   3 y   a 2  b 2
2 2
2)  3x  1   3 y   a 2  b 2
2 2

1) (11 , 8) 2) (- 11 , 8) 3)  3x  1   3 y   a  b
2 2 2 2
4)  3x  1   3 y   a 2  b 2
2 2

3) (- 11 , - 8) 4) (11 , - 8) 26. If the equation of the locus of a point equidistant from the
13. If P and Q are the points (-3 , 4) and (2 , 1) then the coordi- points  a1 , b1  and  a2 , b2  is  a1  a2  x   b1  b2  y  c  0 , then
nates of the point R on PQ produced such that PR = 2QR the value of ‘c’ is
are 1 2 2 2 2
1) a12  b12  a22  b22 2)  a2  b2  a1  b1 
 1 5 2
1) (2 , 4) 2) (3 , 7) 3) (7 , - 2) 4)   ,  1 2
 2 2 4)  a1  a2  b1  b2 
2 2 2
3) a12  a22  b12  b22
14. If the midpoints of the sides of a triangle are 2
27. The locus of the point x  a cos  , y  b sin  is
(- 1 , 2), (6 , 1) and (3 , 5) then the co-ordinates of the verti-
ces of the triangle are
x 2 y2 x 2 y2 
1)  1 2)  1 3x-5y+7=0 is then one of the value of k=
a 2 b2 a 2 b2 4
x y2
2
1)1 2)2 3)3 4)4
3) 2  2  2 4) a 2 x 2  b 2 y 2 1
a b 7. Perpendicular distance from the origin to the line joining
28. The locus of the point x  a  b cos  , y  b  a sin  is the points (acos  ,asin  ) (acos  ,asin  ) is
1) circle 2) ellipse 3) parabola 4) hyperbola   
29. The locus of the point  a cos3  , a sin 3   is 1) 2a cos (  -  ) 2) a cos 
 2 

2 2 2 2 2 2
1) x 3  y 3  a 3 2) x 3  y 3  a 3      
2
3) x 3  y 3  a 2
2 3
4) x 2  y 2  a 2
3 3 3 3) 4a cos   4) a cos  
 2   2 
30. A line segment AB of length ‘a’ moves with its ends on the 8. The equation of the base of an equilateral triangle is
axes. The locus of the point P which divides the line in the x+y-2=0 and the vertex is (2,-1) then the length of side is
ratio 1 : 2 is
2
1) 9x 2  4y 2  a 2 2) 9  y 2  4x 2   4a 2 1)1 2)2 3)3 4)
3
3) 9  x  4y   4a
2 2 2
4) 9x 2  9y 2  4a 2 9. A line passing through P(-2,3) meets the axes in A and B.
31. The distance between the points (a cos 48 , 0) and If P divides AB in the ratio of 3:4 then the perpendicular
( 0 , a cos12 ) is ‘ d ‘ then d 2  a 2  distance from (1,1) to the line is

1)
a2  5 1  2)
a2  5 1 3) a  2
5 1  4) a 2
5 1  1)
9
2)
7
3)
8
4)
6
4 4 8 8 5 5 5 5
32. The centroid of a triangle formed by the points (0 , 0) 10. One side of an equiateral triangle is 3x+4y=7 and its
(cos  ,sin  ) and (sin  ,  cos  ) lie on the line y = 2x, then  vertex is (1,2). Then the length of the side of the triangle
is is
1 1 1 1 4 3 3 3 8 3 4 3
1) Tan 1 2 2) Tan 3) Tan 4) Tan 1 ( 3) 1) 2) 3) 4)
3 2 17 16 15 15
33. The maximum area of the triangle formed by the points 11. If p, q are the perpendicular distances from the origin to
(0 , 0) , (a cos  , b sin  ) and (a cos  ,  b sin  ) the lines xsec  + ycosec  = a and xcos  – ysin  =
(in square units) acos2  then 4p2+q2 =
3ab ab a2
1) 2) ab 3) 4) a 2b 2 1) a2 2) 4a2 3) 2a2 4)
4 2 2
34. If the lines 3x+2y-5=0, 2x-5y+3=0, 5x+by+c=0 are concur- 12. A : The distance between the St.lines y=mx+c1, y=mx+c2
rent then b+c = is |c1-c2| then m =
1) 7 2) -5 3) 6 4) 9 1)0 2)1 3)2 4)3
35. The straight lines x+2y-9=0, 3x+5y-5=0 and ax+by-1 are
13. The distance between two parallel lines is
concurrent if the straight line 22x-35y-1=0 passes through
the point p1-p. Equation of one line is xcos  + ysin  = p then the
1) (a, b) 2) (b,a) 3) (-a,b) 4)(-a, -b) equation of the 2nd line is
1) xcos  + ysin  + p1 + 2p = 0
LEVEL-III 2) xcos  + ysin  = 2p1 - p
1. If a  b  c and if ax  by  c  0 bx  cy  a  0 and 3) xcos  + ysin  = 0
cx  ay  b  0 are 4) xcos  + ysin  + p1 - 2p = 0
concurrent. Then the value of 2a2b1c1 2b2c1a12c2a1b1 14. The perpendicular distance from the point of intersection
1) 1 2) 4 3) 8 4) 16 of the lines 3x+2y+4=0,
2. The acute angle between the lines 2x+5y-1=0 to the line 7x+24y-15=0
lx + my = l+m, l (x-y) + m (x+y) = 2m is 2 1 1 2
1) 2) 3) 4)
    3 7 5 5
1) 2) 3) 4)
15. The foot of the perpendicular drawn from (0, 0) to the
4 6 2 3
3. The lines (a+b)x+(a-b) y – 2ab = 0, line xcos  + ysin  – p = 0 is
(a-b)x + (a+b) y – 2ab = 0 and x+y=0 from an isosceles 1) (psin  , pcos  ) 2) (psec  , pcos  )
3) (pcos  , psin  ) 4) (p, p)
triangle whose vertical angle is
16. A line passing through the points (7,2) (-3,2) then the
 1  2 ab 
1) 2) tan  2 2  image of the line in x-axis is
2  a b 
1) y = 4 2) y = 9
1  a  1  a 
3) tan   4) 2 tan   3) y = -1 4) y = -2
b b
4. The angle between the lines kx+y+9=0, y-3x=4 is 45 then O 17. The reflection of the point (6,8) in the line x=y is
the value of k is 1) (4,2) 2) (-6,-8) 3) (-8,-10) 4) (8,6)
1) 2 or ½ 2) 2 or -1/2 18. Image of (1,2) w.r.t. (-2, -1) is
3) -2 of ½ 4) -2 or -1/2 1) (0,5) 2) (-4,-3) 3) (-5,-4) 4)(-4,-5)
5. The angle between the lines x cos  +y sin  = p1 and 19. If 2x+3y+4=0 is the perpendicular bisector of the
x cos  + y sin  = p2 where    is segment joining the points A(1,2) and B (a b) then the
1)    2)    3)  4) 2   value of a+b is
6. If the angle between the lines kx-y+6=0, 81 136 135 134
1)  2)  3)  4) 
13 13 13 5
20. P is the midpoint of the part of the line 3x+y-2=0 34. An equilateral triangle has its centroid at origin and one
intercepted between the axes. Then the side is x+y-1=0 then the vertex of the triangle not on the
image of P in origin is given side is
 1  1   1  1) (1, 1) 2) (-1, -1) 3) (2, 2) 4)(-2, -2)
1)  1,   2)   , 4  3)   , 1 4) (-2, -3)
 3  3   3  35. Area of the quadrilateral formed by the lines 2x-5y+7=0,
21. L1 and L2 are two intersecting lines. If the image of L1 w.r.t. 5x+2y-1=0, 2x-5y+2=0 and 5x+2y+4=0
L2 and that of L2 w.r.t. L1 concide, then the angle between 25 3 2 7
1) 2) 3) 4)
L1 and L2 is 29 4 7 16
1) 35O 2) 60O 3) 90O 4) 45O 36. Two sides of a rectangle are 3x+4y+5-0, 4x-3y+15=0 and
22. The image of the point P (3,5) with respect to the line y = x its one vertex is (0,0). Then the area of the rectangle is
is the point Q and the image of Q with respect to the line 1) 4 2) 3 3) 2 4) 1
y = 0 is the point R (a,b), then (a, b)= 37. If the straight lines y = 4-3x, ay=x+10, 2y+bx+9=0
1) (5,3) 2) (5,-3) 3) (-5,3) 4) (-5,-3) represents three consecutive sides of a rectangle then
the value of ab is
23. If the vertices of an equilateral triangle is the
1) 12 2) 6 3) 18 4) 24
origin and side opposite to it has the equation x+y=1,
38. Area of the quadrilateral formed by the lines 4y-3x-a=0,
then the orthocentre of the triangle is 3y-4x+a=0, 4y-3x-3a=0, 3y-4x+2a=0 is
1 1 2 2 a2 a2 2a 2 2a 2
1)  ,  2)  ,  3)(1,1) 4)(1,3) 1) 2) 3) 4)

3 3  
3 3  5 7 7 9
24 If the circumcentre of the triangle lies at (0,0) and 39 The point (2,3) is reflected four times about co-ordinate
centroid is mid point of the line joining the points (2,3) axes continuously starting with x-axis. The area of
uadrilateral formed in sq.units is
and (4,7),then its orthocentre lies onthe line
1) 24 2) 6 3) 12 4) 5
1)5x-3y=0 2)5x-3y+6=0 3)5x+3y=0 4)5x+3y+6=0 40. The two lines y = 2x, y = -2x are
25. Two sides of a triangle are y = m1x and y=m2x. m1, m2 are 1) Parallel 2) Perpendicular
the roots of the equation x2+ax-1=0. For all values of a, 3) Coincident
the orthocentre of the triangle lies at 4) Equally inclined with the axes
3 3
1) (1, 1) 3)  , 
2) (2, 2) 4) (0,0) IIT CORNER
2 2
26. The equation to the base of an equilateral triangle 1. The total number of circles that can be drawn touching
all the three lines x+y-1=0, x-y-1=0, y+1=0 is
is   
3 1 x  
3  1 y  2 3  0 and opposite vertex is 1) 1 2) 2 3) 3 4) 4
A(1,1) then the Area of the triangle is 2. A ray of light passing through the point (8,3) and is
reflected at (14,0) on x axis. Then the equation of the
1) 3 2 2) 3 3 3) 2 3 4) 4 3
reflected ray
27. The area of the triangle formed by the axes and the
1) x+y=14 2) x-y=14 3) 2y=x-14 4) 3y=x-14
line (cosh  - sinh  ) x+ (cosh  + sinh  ) y=2 in
3. Equation of the line which join the origin and the point
square units is
1) 4 2) 3 3) 2 4) 1 of trisection of the portion of the line x+3y-12=0
28. Area of the triangle formed by the lines x=0, x+y=2, intercepted between the axes is
x-y=1/2 is 1) x=6y 2) x-5y=0 3) 3x-7y=0 4) 2x-5y=0
25 15 3 3 4. The number of circles that touch all the straight lines
1) 2) 3) 4) x+y - 4 = 0, x - y+2 = 0 and y = 2 is
16 8 4 8
29. Area of triangle formed by angle bisectors of coordinate 1) 1 2) 2 3) 3 4) 4
axes and the line x=6 in sq.units is 5. p is the length of the perpendicular drawn from the
1) 36 2) 18 3) 72 4) 9 origin upon a straight line then the locus of mid point
30. A line passing through (3,4) meets the axes OX and OY at of the portion of the line intercepted between the
A and B respectively. The minimum area of the triangle coordinate axes is
OAB in square units is 1 1 1 1 1 2
1)   2)  
1) 8 2) 16 3) 24 4) 32 x2 y2 p2 x2 y2 p2
31. Area of the triangle formed by the lines 7x+3y=35, x=5,
1 1 4 1 1 1
2y-3=0 is 3)   4)  
x2 y2 p2 x2 y 2 p
27 17 13 27
1) 2) 3) 4) 6. The limiting position of the point of intersection of the lines
28 28 25 56
3x+4y=1 and (1+c) x+3c2y=2 as c tends to 1 is:
32. Area of the triangle formed by the lines 7x-2y+10=0,
1) (4, -5) 2) (-5, 4) 3) (5, -4) 4) (-4, 5)
7x+2y-10=0, y+2=0 is
7. The equation of the straight line whose intercepts on x-axis
1) 7 2) 14 3) 18 4) 12
and y-axis are respectively twice and thrice of those by the
33. Area of triangle formed by angle bisectors of coordinate
line 3x + 4y = 12, is
axes and the lineY=6 in sq.units is
1) 9x + 8y = 72 2) 9x - 8y = 72
1)36 2)24 3)72 4)16
3) 8x + 9y = 72 4) 8x+9y+72=0
8. The number of integer values of m, for which x coordinate
of the point of intersection of the lines 3x  4 y  9 and
y  mx  1 is also an integer, is  1  a  a
1) 2 2) 0 3) 4 4) 1 1)  0,   2)  0,  3)  0,   4)  0, 0 
 2  m  m
9. If thelinesy=mrx, r=1, 2, 3 cut off equal intercepts on the trans- 22. Two equal sides of an isoceles triangle are given by
versal x+y=1, then 1+m1, 1+m2, 1+m3 are in : 7 x  y  3  0 and x  y  3  0 and the third side passes
1) A.P. 2) G.P. 3) H.P. 4)A.G..P through the point ( 1,10 ) the slope m of the third side is
10. y = cos x cos(x+2)-cos2(x+1) is: given by
1) a straight line passing through the origin 1) 3m 2  1  0 2) m 2  1  0
2) a straight line having slope 3 3) 3m 2  8m  3  0 4) m 2  3  0
3) a parabola with vertex (0, -sin21) 23. One vertex of an equilateral triangle is (2,3) and the
4) a straight line parallel to x-axis passing through equation of one side is x-y+5=0 then the equations to the
 2 
other sides are
 ,  sin 1 .
4  
1) y-3 =  2  3 (x-2)  2) y-3 = 2  1 (x-2)  
11. The lne 3x-2y = 24 meets x-axis at A and y-axis at B. The 
3) y-3 = 3  1 (x-2)  4) y-3 = 5  1 (x-2)  
perpendicular bisector of AB meets the line through (0, - 24. In an isosceles triangle, the ends of the base are (2a, 0)
1) and parallel to x-axis at C. Then C is
and (0, a) and one side is parallel to y-axis. The third
 7   15   11   13  vertex is
1)  , 1 2)  , 1 3)  , 1 4)  , 1
 2   2   2   2 
 
5a   5a
12. A straight line through the origin 'O' meets the parallel lines 1)  2a  2)  , a  3) (2a, a) 4)(4a, a)
 2   4 
4 x  2 y  9 and 2 x  y  6  0 at points P and Q respectively.
then point O divides the segment PQ in the ratio 25. The acute angle bisector between the lines 3x-4y-5=0,
1) 1 : 2 2) 3 : 4 3) 2 : 1 4) 4 : 3 5x+12y-26=0 is
13. If the line x  a  m , y  2 and y  mx are concurrent , then 1) 7x-56y+32=0 2) 9x-3y+13=0
least value of a is 3) 14x-112y+65=0 4) 7x-13y+9=0
26. The obtuse angle bisector between the lines 2x-y-4=0, x-
1) 0 2) 2 3) 2 2 4) 2
2y+10=0 is
14. If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0 (a, b, c being
1) x-y+7=0 2) 3x-y+5=0
distinct and  1) are concurrent then the value of
3) x+y-14=0 4) 2x+3y-5=0
a b c 27. The equation of the bisector of the angle between the
  =
a 1 b 1 c 1
lines x-7y+5=0, 5x+5y-3=0 which is the supplement of
1) -1 2) 0 3) 1 4) 3
the angle containing the origin will be
15. If 4a 2  9b 2  c 2  12ab  0 then the family of straight lines 1) x+3y-2=0 2) x-3y+2=0
ax  by  c  0 is concurrent at 3) 3x-y+1=0 4) 3x+y+2=0
1) (2,3) or (-2,-3) 2) (2,-3) or (-2,6) 28. Equation of the line through the point of intersection of
3)(-2,-4) or (-2,3) 4) (2,5) or (-1,-5) the lines 3x+2y+4=0 and 2x+5y-1=0 whose distance from
(2,-1) is 2.
16. If the point (a, a) falls between the lines |x+y|=2, then:
1) 2x-y+5=0 2) 4x+3y+5=0
1) | a |=2 2) | a |=1
3) x+2=0 4) 3x+y+5=0
1
3) | a |<1 4) | a |< 29. The equation of the line passing through the point of
2
intersection of the lines 2x+y=5 and y=3x-5 and which is
17. In an isosceles triangle OAB, O is the origin and OA = OB
at the minimum distance from the point (1,2) is
= 6. The equation of the side AB is x-y+1=0. Then the area
of the triangle is 1) x+y=3 2) x-y=1 3) x-2y=0 4) 2x+5y=7
30. If the base of an isosceles triangle is of length 2P and
142 71
1) 2 21 2) 142 3) 4) the length of the altitude dropped to the base is q, then
2 2
the distance from the mid point of the base to the side
18. The equation of a straight line L is x+y=2, and L1 is
of the triangle is
another straight line perpendicular to L and passes
pq 2 pq
through the piont (1/2, 0), then area of the triangle 1) p 2  q 2 2) p 2  q 2
formed by the y-axis and the lines L, L1 is
25 25 25 25 3 pq 4 pq
1) 2) 3) 4) 3) 4)
8 16 4 12 p2  q2 p2  q2
19. The abscissa of the orthocentre of the triangle formed
31. If the lines p1x  q1 y  1, p2 x  q2 y  1and p3 x  q3 y  1
1
by the lines y=mix+ (i=1,2,3) is be concurrent, then the points  p1 , q1  ,  p2 , q2  and  p3 , q3  ,
mi
1) 1 2) -1 3) 2 4) -2 1) are collinear
20. The orthocentre of the triangle formed by the lines 2) form an equilateral triangle
x+y=1, 2x+3y=6 and 4x-y+9=0 lies in quadrant number 3) form a scalene triangle
1) 1st 2) IInd 3) IIIrd 4) IVth 4) form a right angled triangle
21. The foot of the perpendicular from (a,0) on the line 32. If the lines x+py+p=0, qx+y+q=0 and rx+ry+1=0 (p,q,r
being distinct and  1) are concurrent, then the value
a
y  mx  is p q r
m
of p  1  q  1  r  1 =
1)1 2) -1 3) 2 4) -2
KEY
33. If a, b, c are the pth, qth and rth terms of an H.P. then the
LEVEL-I
lines bcx+ py + 1 = 0, cax + qy + 1 = 0 and abx + ry + 1 = 0:
1) are concurrent 2) form a triangle
1 4 2 3 3 3 4 4 5 2
3) are parallel
6 2 7 1 8 4 9 3 10 2
4) mutuvally perpendicular lines 11 2 12 4 13 1 14 2 15 3
34. If x1 , y1 are roots of x 2  8x  20  0, x2 , y2 16 4 17 4 18 3 19 2 20 2
are the roots of 4 x 2  32 x  57  0 and x3 , y3 are the roots of 21 2 22 2 23 4 24 2 25 4
9 x 2  72 x  112  0, then the points  x1 , y1  ,  x2 , y2  and  x3 , y3  26 4 27 2 28 3 29 1 30 2
1) are collinear 31 3 32 1 33 1 34 2 35 4
2) form an equilateral triangle LEVEL-II
3) form a right angled isosceles triangle 1 4 2 3 3 2 4 2 5 4
4) are concyclic 6 4 7 1 8 2 9 3 10 4
35. Let ax + by + c = 0 be a variable straight line, where a,b and 11 3 12 3 13 3 14 1 15 2
c are 1st ,3rd and 7th terms of an increasing A.P. then the 16 3 17 2 18 2 19 4 20 2
variable straight line always passes through a fixed point 21 1 22 3 23 4 24 3 25 3
which lies on. 26 2 27 2 28 2 29 2 30 3
1) x 2  y 2  13 2) x 2  y 2  5 31 4 32 4 33 3 34 2 35 2
3) y  4 x
2
4) 3x  4 y  9 LEVEL-III
36. If t1 and t2 are the roots of the equation t 2   t  1  0 .Where 1 3 2 1 3 2 4 2 5 2
'  ' is an aribitary constant. Then the line joining the point 6 4 7 2 8 4 9 3 10 3
 at1
2
, 2at1  and  at2 , 2at 2  always passes through a fixed
2
11 1 12 1 13 4 14 3 15 3
point 16 4 17 4 18 3 19 1 20 3
1) ( a,0 ) 2) ( -a,0 ) 3) ( 0,a ) 4) ( 0,-a ) 21 2 22 2 23 1 24 1 25 4
37. No.of integral values of 'b' for which the origin and the (1
26 3 27 3 28 1 29 1 30 3
,1) lie on the same side of the straight line a 2 x  aby  1  0 ,
31 4 32 2 33 1 34 2 35 1
 a  R  {o}is 36 2 37 3 38 3 39 1 40 4
1) 4 2) 3 3) 5 4) 6
IIT CORNER
38. If (a, 2) is a point between the lines 3x  4 y  2 and
1 4 2 3 3 1 4 4 5 3
3 x  4 y  5, then :
1) -2<a<-1 2) a<-1 3) a>-1 4) a=0
6 2 7 1 8 1 9 3 10 4
39. The quadratic equation whose roots are the x and y inter- 11 1 12 2 13 3 14 3 15 1
cepts of the line passing through (1,1) and making a traingle 16 3 17 4 18 2 19 2 20 2
of area A with the co -ordinate axes is 21 2 22 3 23 1 24 1 25 3
1) x 2  Ax  2 A  0 2) x 2  2 Ax  2 A  0 26 3 27 1 28 2 29 1 30 1
3) x 2  Ax  2 A  0 4)( x - A)(x+A)=0
31 1 32 1 33 1 34 1 35 1
40. Aera of the parallelogram formed the lines y  mx , 36 2 37 2 38 1 39 2 40 4
y  mx  1 , y  nx , y  nx  1
Hints & Solutions
mn 2
1)  m  n 2 2)  m  n 2 LEVEL-III
1. a+b+c=0
1 1 a 3  b3  c 3  3abc
3)  m  n  4) m  n
m1  m2
2. tan  
1  m1m2

m1  m2
3. tan  
1  m1m2

m1  m2
4. tan   =1
1  m1m2

a1a2  b1b2
5. cos  
a  b12 a22  b22
2
1

m1  m2
6. tan  
1  m1m2

7. Find the distance between  0, 0  and midpoint of


 a cos  , a sin   and  a cos  , a sin  
36. The perpendicular distance from orign lines are a,b.
3 1
8. a Then area = ab
2 2
37. a  3, b  6
9. The line passing through P is 2 x  y  7  0 38. The area of the parallelogram formed by the lines a1x +
3 4 b1y + c1 = 0, a2x + b2 y + d1=0, a1x + b1y + c2= 0, a2x + b2
10. a
2 5  c1  c2  d1  d 2 
11. Standard result y + d2= 0 is a1b 2  a 2 b1
Sq.units.
c1  c2
12.  c1  c2 39. A  2,3 B  2,3 C  2  3 D  2, 3
1  m2
40. Given lines are equally inclined angular bisectors of
13. Verify the distance between the parllel lines coordinate axes
14. Intersecting point  2,1 IIT CORNER
15. Apply foot of the perpendicular formula 1. Given lines form a triangle
16. Line equation y = 2 2. Write the image of  8,3 in X-axis and write the
Image with respect to x-axes is y = -2
equation through that point and 14,0 
17. The reflection of the point  a, b  in the line x  y is (b,a)
3. Point of trisection is (8,4/3)
18. The image of  x1, y1  w.r.to  x, y  is  2 x  x1, 2 y  y1  equation of the line y = x / 6
19. B is the image of A w. r to 2 x  3 y  4  0 4. Given lines form a triangle
20. The image of (a,b) w.r .to orign is (-a,-b) x y
5. Equate the distance from  0, 0  to the line x  y  2
21.   60 0 1 1

22. Image of P(3,5) w. r to the line y = x is Q(5,3) 3c2  8 5 c


Image of Q(5,3) w. r to the line y =0 is R(5,-3) 6. (B) Solving (1) and (2), x  ,y 2 .
9c2  4c  4 9c  4c  4
1 1 x y
23. Foot of the perpendicular D   ,  7. a  8, b  9 ;  1
2 2   8 9
G(=O) divides median in the ratio 2:1 8. By solving (1) and (2)
24. circumcentre,centroid and orthocentre lies on asame 5
x
line. 3  4m
25. m1m2  1 Given lines are perpendicular  3  4m  1,  1, 5 and -5
26. Area of an equilateral triangle is  4m   2, 4, 2, 8
 m   1,  2 ( m is an integer)
h2
where h is the height of the triangle 9m  3
3 y
3  4m
c2 3  4m  1, 1, 9m  3, 9 m  3
27.   2 ab
1 6
28. Given lines form a right angle triangle m  0, 1, , the satisfaction value of the m = -1,-2
2 13
29. Equations of the angular bisectors of the axes 9. Solving x+ y=1 and y=m1x,
are y  x and y   x
 1 m 
 p, q    3,4  then minimum area = 2pq
1
30. we get: A  1  m , 1  m 
 1 1 
31. The area of the triangle
 1 m2 
a1 b1 c1
2 similarly B is  1  m , 1  m 
 2 2 
1
a2 b2 c2
2  1 m3 
a3 b3 c3 and C is  1  m , 1  m 
 1 2 2 1  a2b3  a3b2  a3b1  a1b3 
a b  a b  3 3 

by the question, B is mid point of AC


2 2 1 1
a1 b1 c1   
1 1  m2 1  m1 1  m3
a2 b2 c2
2  1  m1 ,1  m2 ,1  m3 are in H.P.
32. The area of the triangle a3 b3 c3
 a1b2  a2b1  a2b3  a3b2  a3b1  a1b3  1
10.  [2 cos x cos( x  2)]  cos ( x  1)
2

2
33. Equations of the angular bisectors of the 1 1
 [2 cos 2 ( x  1)  1]  cos 2  cos 2 ( x  1)
axes are y  x and y   x 2 2
34. mid point of the side =foot of perpendicular
= -sin2 1,
1 1 Which is a st. line, parallel to x-axis through
from (0,0) to x+y-1=0is D   ,   2 
 2 2
 , sin 1
G divides median in the ratio 2:1 4 
35. The area of the parallelogram formed by the lines a1x + 11. perpendicular bisector of AB is
b1y + c1 = 0, a2x + b2 y + d1=0, a1x + b1y + c2= 0, a2x + b2 y + 2 x  3 y  10  0............. 1 ;
 c1  c2  d1  d 2  y  1.............  2 
d2= 0 is a1b 2  a 2 b1
Sq.units.
Solve above equations
12. The normal form of 4 x  2 y  9 is a1 x  b1 y  c1 a2 x  b2 y  c2

4x 2y 9 a b
2 2
a22  b22
  and 1 1
20 20 20
2x y 6
28. Point of intersection   2,1  and verification
2 x  y  6  0 is  
5 5 5 29. The point 1, 2  lies on L1   L2  0
P0 9 / 20 9 3
     3:4 30. Consider B   p,0  C  p,0  A  0, q 
Q0 6 / 5 12 4
13. by eliminating x,y from three equations we get p1 q1 1
–2 = m (a + m)  m 2  am  2  0 p2 q2 1  0
31. ,
Since m  R  dis  0 p3 q3 1
 a2  8  0  a  2 2 p1 q1 1
p2  p1 q2  q1 0  0
1 a a
p3  p2 q3  q2 0
b 1 b 0
14. p2  p1 p3  p2
c c 1 
q2  q1 q3  q2
Use det properties
1 p p
15.  2a  3b   c 2  0
2
q 1 q 0
32.
16. From the figure r r 1
1  a  1 i.e. | a | 1.
Y Use det formula
B bc p 1
x+
y=
ca q 1
2
33.
C X ab r 1
O A
x+
y= m  ( p  1) d p 1
-2
m  (q  1)d q 1,
D = abc
m  (r  1)d r 1
17. Let D is the mid point of AB
p p 1
1 71  abcd q q 1
OD  ; AD  =abcd(0)=0.
2 2 r r 1
AB  2 AD 34. x1  10, y1  2
18. Find the area of the triangle formed by the lines
19 3
x y 2 x2  , y1 
2 2
2x  2 y  1
28 4
x0 x3  , y3 
3 3
19. Standard result
35. Let ' d ' be common difference of A.P. then
 7 b  a  2 d , c  a  6d
20. Orthocentre =  1, 
 2   b  a  3  c  a  2a  3b  c  0
 a So the straight line passes through ( 2,-3 ) which also satis-
 am  
21. h  a  k    m fies x 2  y 2  13
m 1 1 m2
36. t1  t2   , t1t2  1 ,

22.
m7

m 1  y  2at1  
2
t1  t2

x  at1
2

1  7m 1 m
 a b 
(or) 3m 2  8m  3  0   y  2 x  2a  1
2 2
ab
 h, k    , 2 2 
a b a b 
2 2

m 1  2 x  a   y  0
23. Let slope of another side is m tan 60 
0
;
1 m
Passes through fixed point ( –a, 0 ).
m  2  3 37. a 2  ab  1  0
24. a  R  D  0  b 2  4  0  2  b  2
A  2a,0  B  0, a  C  2a, k 
 Sine(0, 0) and 1,1  b  1, 0,1
BC  AC
38. (0,0)(a,2) oppiste side of 3x+4y=2
25. a1a2  bb ,
1 2  32  0 c1c2  130  0 39. a  b  ab
a1 x  b1 y  c1 a2 x  b2 y  c2 1
Use  ab  A
a b2
1 1
2
a22  b22 2
40. Area of the parallelogram
26. a1a2  b1b2  4  0
 c1  c2  d1  d 2 
a1 x  b1 y  c1 a2 x  b2 y  c2
Use  a1b2  a2b1
a12  b12 a22  b22

27. a1a2  b1b2  0


***

You might also like