Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Advanced Subsidiary and Advanced Level
PHYSICS 9702/42
Paper 4 A Level Structured Questions October/November 2016
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.
Write your Centre number, candidate number and name on all the work you hand in.
bestexamhelp.com
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
DC (RW/JG) 116303/4
© UCLES 2016 [Turn over
2
Data
Formulae
1
uniformly accelerated motion s = ut + 2 at 2
v 2 = u 2 + 2as
Gm
gravitational potential φ =−
r
1 Nm 2
pressure of an ideal gas p= 3 〈c 〉
V
simple harmonic motion a = − ω 2x
Q
electric potential V=
4πε0r
capacitors in parallel C = C1 + C2 + . . .
1
energy of charged capacitor W = 2 QV
resistors in series R = R1 + R2 + . . .
BI
Hall voltage VH =
ntq
0.693
decay constant λ=
t 1
2
...................................................................................................................................................
...............................................................................................................................................[1]
(i) State why Proxima Centauri may be assumed to be a point mass when viewed from the
Sun.
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) Calculate
1. the gravitational field strength due to Proxima Centauri at a distance of 4.0 × 1013 km,
2. the gravitational force of attraction between the Sun and Proxima Centauri.
(c) Suggest quantitatively why it may be assumed that the Sun is isolated in space from other
stars.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
[Total: 8]
pV = nRT
...........................................................................................................................................
.......................................................................................................................................[1]
...........................................................................................................................................
.......................................................................................................................................[1]
(b) An ideal gas is held in a container of volume 2.4 × 103 cm3 at pressure 4.9 × 105 Pa.
The temperature of the gas is 100 °C.
Show that the number of molecules of the gas in the container is 2.3 × 1023.
[3]
(c) Use data from (b) to estimate the mean distance between molecules in the gas.
[Total: 8]
© UCLES 2016 9702/42/O/N/16
7
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) Explain, by reference to work done and heating, whether the internal energy of the following
increases, decreases or remains constant:
(i) the gas in a toy balloon when the balloon bursts suddenly,
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[3]
(ii) ice melting at constant temperature and at atmospheric pressure to form water that is
more dense than the ice.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[3]
[Total: 8]
4 A mass hangs vertically from a fixed point by means of a spring, as shown in Fig. 4.1.
spring
l
mass
Fig. 4.1
The mass is displaced vertically and then released. The subsequent oscillations of the mass are
simple harmonic.
The variation with time t of the length l of the spring is shown in Fig. 4.2.
18
17
16
l / cm
15
14
13
12
0 0.1 0.2 0.3 0.4 0.5 0.6
t /s
Fig. 4.2
(i) state two values of t at which the mass is moving downwards with maximum speed,
(iii) show that the maximum speed of the mass is 0.42 m s–1.
[2]
(b) Use data from Fig. 4.2 and (a)(iii) to sketch, on the axes of Fig. 4.3, the variation with
displacement x from the equilibrium position of the velocity v of the mass.
0.5
0.4
v / m s–1
0.3
0.2
0.1
0
–4 –3 –2 –1 0 1 2 3 4
–0.1 x / cm
–0.2
–0.3
–0.4
–0.5
[Total: 8]
© UCLES 2016 9702/42/O/N/16 [Turn over
10
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) A parallel beam of ultrasound of intensity I0 is incident normally on the boundary between
two media, as shown in Fig. 5.1.
Fig. 5.1
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
[Total: 6]
6 Two solid metal spheres A and B, each of radius 1.5 cm, are situated in a vacuum. Their centres
are separated by a distance of 20.0 cm, as shown in Fig. 6.1.
1.5 cm 1.5 cm
20.0 cm
sphere A sphere B
Point P lies on the line joining the centres of the two spheres, at a distance x from the centre of
sphere A.
The variation with distance x of the electric field strength E at point P is shown in Fig. 6.2.
50
40
30
E / N C–1
20
10
0
0 2 4 6 8 10 12 14 16 18 20
–10 x / cm
–20
–30
–40
–50
Fig. 6.2
ratio = ...........................................................[3]
(b) The variation with distance x of the electric potential V at point P is shown in Fig. 6.3.
0.8
0.7
0.6
V/V
0.5
0.4
0.3
0.2
0.1
0
0 2 4 6 8 10 12 14 16 18 20
x / cm
Fig. 6.3
[Total: 8]
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) Use the expression for the electric potential due to a point charge to show that an isolated
metal sphere of diameter 25 cm has a capacitance of 1.4 × 10–11 F.
[2]
(b) Three capacitors of capacitances 2.0 μF, 3.0 μF and 4.0 μF are connected as shown in Fig. 7.1
to a battery of e.m.f. 9.0 V.
4.0 μF
3.0 μF
2.0 μF
9.0 V
Fig. 7.1
Determine
(ii) the potential difference across the capacitor of capacitance 3.0 μF,
(iii) the positive charge stored on the capacitor of capacitance 2.0 μF.
[Total: 8]
50 kΩ
RA
+9 V
100 Ω
–
RB
10 kΩ +
VIN
–9 V V
Fig. 8.1
A switch enables the inverting input to the op-amp to be connected to either resistor RA or
resistor RB.
On Fig. 8.1, mark with the letter P the positive connection of the voltmeter such that the
voltmeter shows a positive reading. [1]
(b) Calculate the potential VIN such that the voltmeter has a full-scale deflection when the
inverting input to the op-amp is connected to
...................................................................................................................................................
...............................................................................................................................................[1]
[Total: 5]
9 A stiff wire is held horizontally between the poles of a magnet, as illustrated in Fig. 9.1.
stiff
wire
Fig. 9.1
When a constant current of 6.0 A is passed through the wire, there is an additional downwards
force on the magnet of 0.080 N.
(a) On Fig. 9.1, draw an arrow on the wire to show the direction of the current in the wire.
Explain your answer.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
(b) The constant current of 6.0 A is now replaced by a low-frequency sinusoidal current.
The root-mean-square (r.m.s.) value of this current is 2.5 A.
Calculate the difference between the maximum and the minimum forces now acting on the
magnet.
[Total: 7]
© UCLES 2016 9702/42/O/N/16
19
10 Explain the function of the non-uniform magnetic field that is superimposed on a large uniform
magnetic field in diagnosis using nuclear magnetic resonance imaging (NMRI).
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
......................................................................................................................................................[4]
[Total: 4]
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
Explain why the root-mean-square (r.m.s.) value of the current in the solenoid is reduced as a
result of inserting the core.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
(c) Practical transformers are very efficient. However, there are some power losses.
1. ...............................................................................................................................................
...................................................................................................................................................
2. ...............................................................................................................................................
...................................................................................................................................................
[2]
[Total: 7]
12 (a) State an effect, one in each case, that provides evidence for
.......................................................................................................................................[1]
.......................................................................................................................................[1]
(b) Four electron energy levels in an isolated atom are shown in Fig. 12.1.
–0.54 eV
–0.85 eV
energy
–1.51 eV
–3.40 eV
Fig. 12.1
(i) on Fig. 12.1, mark with an arrow the transition that gives rise to the shortest wavelength,
[1]
(ii) show that the wavelength of the transition in (i) is 4.35 × 10–7 m.
[2]
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) Calculate the speed of an electron having a de Broglie wavelength equal to the
wavelength in (b)(ii).
[Total: 9]
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
..........................................................................................................................................................
......................................................................................................................................................[6]
[Total: 6]
14 Phosphorus-30 ( 30
15 P) was the first artificial radioactive nuclide to be produced in a laboratory. This
was achieved by bombarding aluminium-27 ( 27 13Al) with α-particles.
.......................................................................................................................................[1]
.......................................................................................................................................[1]
(b) Data for the rest masses of the particles in the reaction are given in Fig. 14.1.
particle mass / u
27 26.98153
13Al
α 4.00260
30
15 P
29.97830
Φ 1.00867
Fig. 14.1
Calculate, for this reaction,
(ii) the energy, in joule, equivalent to the mass change calculated in (i).
(c) With reference to your answer in (b)(i), comment on the energy of the α-particle such that the
reaction can take place.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
[Total: 8]
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.