Rando
Rando
URL https://github.com/MyKo101/rando
BugReports https://github.com/MyKo101/rando/issues
Imports dplyr, glue, rlang, stats, tibble
Suggests spelling, covr, testthat
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Michael Barrowman [cre, aut]
Maintainer Michael Barrowman <myko101ab@gmail.com>
Repository CRAN
Date/Publication 2021-02-16 15:40:02 UTC
Contents
rando-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
as_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
blueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
bp_where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
default_n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
2 rando-package
extract_dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
is_wholenumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
match.call2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
null_switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
r_bern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
r_beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
r_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
r_cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
r_cdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
r_chisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
r_exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
r_fdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
r_gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
r_geom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
r_hyper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
r_letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
r_lgl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
r_lnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
r_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
r_nbinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
r_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
r_pois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
r_sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
r_tdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
r_unif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
r_weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
set_n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Index 37
Description
rando is designed to make random number generation easier by providing the ability to set a default
number of numbers to generate or to assess the context in which the functions are being ran.
as_function 3
Description
This function is a wrapper around rlang::as_function() which adds a two extra features:
Usage
as_function(x, env = parent.frame())
Arguments
x a function or formula, see rlang::as_function() for more information
env Environment in which to fetch the function in case x is a string
Value
Either:
Examples
f1 <- as_function(mean)
f1(1:10)
f2 <- as_function("sum")
f2(1,2,3)
f3 <- as_function(~.x + 1)
f3(9)
f4 <- as_function(~ .t + 1)
f4(10)
Description
Allows for the generation of population based on a prescribed set of rando functions.
Usage
blueprint(...)
is_blueprint(bp)
Arguments
... arguments used to generate the blueprint, see Examples.
bp Object to check
Value
A function that will produce a tibble, which matches the blueprint that was provided. The generated
function will take the following arguments:
is_blueprint() simply checks whether a function is a blueprinting function or not and returns a
logical.
Examples
make_tbl <- blueprint(
x = r_norm(),
y = r_norm()
)
make_tbl(n = 2)
make_tbl(n = 5)
is_blueprint(make_tbl)
Description
Runs a blueprint function where a condition is true, otherwise returns NA values
Usage
bp_where(condition, bp, ...)
Arguments
condition Condition to check before evaluating. Results will be given where this is TRUE,
and NA when this is FALSE
bp Blueprint function to run based on the condition
... arguments passed on to Blueprint, such as .seed
Value
a tibble
Examples
make_tbl <- blueprint(
x = r_norm(),
y = r_unif()
)
set_n(10)
i <- r_lgl()
bp_where(i, make_tbl)
df <- tibble::tibble(
id = 1:10,
cnd = r_lgl()
)
dplyr::mutate(df, bp_where(cnd, make_tbl))
6 default_n
Description
Checks for various information surrounding the call to this function to figure out what value for n
should be used
Usage
default_n(...)
blueprint_n()
tibble_n()
dplyr_n()
args_n(...)
Arguments
... parameters to check the lengths of
Details
The default_n() function will run through the other functions found here until it finds a viable
value for n.
It first checks for contxt to see if calls external to default_n() indicate which value should be
used:
• blueprint_n() - Checks if the function is being called within a blueprinting function, and
returns the value supplied to that function, see blueprint().
• tibble_n() - Checks if the function is being called within the declaration of a tibble. It then
checks the lengths of the other arguments being passed to the call. If you want to specify how
many rows should be generate you can use the .rows argument in your tibble() call, see
tibble()
• dplyr_n() - Checks if the function is being used within a dplyr verb, if so, it returns the
value of n()
It then checks the lengths of the arguments supplied via ..., if there is a discrepancy between these
arguments and the context aware value found above, it will throw an error.
If all the above values return 1 or NULL, we then check for a global n assigned by set_n(), if none
is set then default_n() will return 1.
extract_dots 7
Value
The context aware value for n
Examples
# Global Values:
set_n(NULL)
default_n()
set_n(10)
default_n()
# In a blueprint:
bp <- blueprint(x=r_norm(),n=default_n())
bp(n=7)
bp <- blueprint(x=r_norm(),n=blueprint_n())
bp(n=8)
# In a tibble:
tibble::tibble(id = 1:3, n = default_n())
tibble::tibble(id = 1:5, n = tibble_n())
# In a dplyr verb:
df <- tibble::tibble(id = 1:4)
dplyr::mutate(df, n = default_n())
dplyr::mutate(df, n = dplyr_n())
# From arguments:
default_n(1:5)
default_n(1:5,c("a","b","c","d","e"))
args_n(1:3,c("a","b","d"))
args_n(1:3, 1:4)
## Not run:
default_n(1:3, 1:4)
tibble::tibble(id=1:5,n=default_n(1:4))
## End(Not run)
Description
Allow the named entries in ... to be used easily within a function by attaching them to the func-
tion’s environment
Usage
extract_dots()
8 is_wholenumber
Value
Examples
f <- function(...) {
a + b
}
## Not run:
# Throws an error because a and b are trapped inside `...`
f(a = 1, b = 2)
## End(Not run)
f <- function(...) {
extract_dots()
a + b
}
f(a = 1, b = 2)
Description
The built-in function is.integer() will check if a number is of the integer class. However, we
would usually want a function that can check if a number is a whole number. It is also vectorised
over the input.
Usage
Arguments
x Number to check
tol tolerance to check the values
Value
Examples
is.integer(2)
is_wholenumber(2)
is.integer(seq(2, 3, 0.25))
is_wholenumber(seq(2, 3, 0.25))
Description
Usage
Arguments
Value
A numeric vector
Examples
logit(0.5)
Description
Alters the built-in function match.call() by providing an additional argument which means that
by default a user can specify how far up the call stack they want to match a call of. See match.call()
for more details.
Usage
match.call2(
n = 0L,
definition = sys.function(sys.parent(n + 1L)),
call = sys.call(sys.parent(n + 1L)),
expand.dots = TRUE,
envir = parent.frame(n + 3L)
)
Arguments
n How far up the call-stack they would like to extract. The default, n=0 produces
the same result as match.call() so this can be inserted wherever match.call()
is used.
definition a function, by default the function from which match.call2() is called.
call an unevaluated call to the function specified by definition, as generated by
call
expand.dots logical. Should arguments matching ... in the call be included or left as a ...
argument?
envir an environment, from which the ... in call are retrieved, if any.
Value
An object of class call
Examples
f <- function(n) {
g(n)
}
g <- function(n) {
h(n)
}
h <- function(n) {
match.call2(n)
null_switch 11
f(0)
f(1)
f(2)
Description
Evaluates expressions until one that is not NULL is encountered and returns that. Expressions after
the first non-NULL result are not evaluated. If all expressions are NULL, it will return NULL
Usage
null_switch(...)
Arguments
Value
The result of evaluating one of the expressions. Will only be NULL if they all evaluated to NULL
Examples
f <- function() {
cat("Evaluating f\n")
NULL
}
g <- function() {
cat("Evaluating g\n")
2
}
Description
Usage
Arguments
Value
Examples
set_n(5)
r_bern(0.9)
r_bern(seq(0, 1, 0.1))
r_bern(1 / 4, n = 10)
r_beta 13
Description
Usage
Arguments
Value
Examples
set_n(5)
r_beta(1, 1)
r_beta(1:10, 2)
r_beta(1, 2, n = 10)
14 r_binom
Description
Generates a set of Binomial distributed values.
Usage
r_binom(size, prob = 0.5, ..., n = default_n(size, prob), .seed = NULL)
Arguments
size vector of number of trials, positive integer
prob vector of probabilities of success on each trial, between 0 & 1
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_binom(10)
r_binom(1:10)
r_binom(10, 0.2)
Description
Generates a set of Cauchy distributed values.
Usage
r_cauchy(
location = 0,
scale = 1,
...,
n = default_n(location, scale),
.seed = NULL
)
Arguments
location vector of locations
scale vector of scales, strictly positive
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_cauchy(10)
r_cauchy(1:10)
r_cauchy(10, 2)
16 r_cdf
r_cauchy(10, 2, n = 10)
Description
Generates Random Numbers based on a distribution defined by any arbitrary cumulative distribution
function
Usage
r_cdf(
Fun,
min = -Inf,
max = Inf,
...,
data = NULL,
n = default_n(..., data),
.seed = NULL
)
Arguments
Fun function to use as the cdf. See details
min, max range values for the domain of the Fun
... arguments that can be passed to Fun
data data set containing arguments to be passed to Fun
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Details
The Fun argument accepts purrr style inputs. Must be vectorised, defined on the whole Real line
and return a single numeric value between 0 and 1 for any input. The random variable will be
passed to Fun as the first argument. This means that R’s argument matching can be used with
named arguments in ... if a different positional argument is wanted.
r_chisq 17
Value
A numeric vector of length n
Examples
set_n(5)
r_cdf(my_fun)
Description
Generates a set of Chi-Squared distributed values.
Usage
r_chisq(df, ..., n = default_n(df), .seed = NULL)
Arguments
df degrees of freedom, strictly positive
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
18 r_exp
Examples
set_n(5)
r_chisq(10)
r_chisq(1:10)
r_chisq(10, n = 10)
Description
Generates a set of Exponentially distributed values.
Usage
r_exp(rate = 1, ..., n = default_n(rate), .seed = NULL)
Arguments
rate vector of rates, strictly positive
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_exp(10)
r_exp(1:10)
r_exp(10, n = 10)
r_fdist 19
Description
Usage
Arguments
Value
Examples
set_n(5)
r_fdist(1, 1)
r_fdist(1:10, 2)
r_fdist(10, 2)
r_fdist(10, 2, n = 10)
20 r_gamma
Description
Generates a set of Gamma distributed values. Can be defined by one and only one of scale, rate
or mean. This must be named in the call.
Usage
r_gamma(
shape,
...,
scale = 1,
rate = NULL,
mean = NULL,
n = default_n(shape, scale, rate, mean),
.seed = NULL
)
Arguments
shape vector of shape parameters, strictly positive
... Unused
scale vector of scale parameters, cannot be specified with rate and mean, strictly
positive
rate vector of rate parameters, cannot be specified with scale and mean, strictly
positive
mean vector of mean parameters, cannot be specified with scale and rate, strictly
positive
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
r_geom 21
Examples
set_n(5)
r_gamma(10)
r_gamma(1:10, scale = 2)
r_gamma(1:10, rate = 1 / 2)
r_gamma(1:10, mean = 5)
r_gamma(10, n = 10)
Description
Usage
Arguments
prob vector of probability of success, must strictly greater than 0 and (non-strictly)
less than 1, i.e. 0 < prob <= 1
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
Examples
set_n(5)
r_geom(0.1)
r_geom(seq(0.1, 1, 0.1))
r_geom(0.1, n = 10)
Description
Generates a set of Hypergeometric distributed values.
Usage
r_hyper(
total,
positives,
num,
...,
n = default_n(total, positives, num),
.seed = NULL
)
Arguments
total size of the population (e.g. number of balls)
positives number of elements with the desirable feature (e.g number of black balls)
num number of draws to make
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
r_letters 23
Value
A numeric vector of length n
Examples
set_n(5)
r_hyper(10, 5, 5)
r_hyper(10:20, 10, 5)
r_hyper(10, 5, 5, n = 10)
Description
Generates a set of Random Letters.
Usage
r_letters(nchar = 1, ..., n = default_n(nchar), .seed = NULL)
Arguments
nchar vector of number of characters to return, positive integer
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A character vector of length n
24 r_lgl
Functions
• r_letters: Uses only lower-case letters
• r_LETTERS: Uses only upper-case letters
• r_Letters: Uses lower- & upper-case letters
Examples
set_n(5)
r_letters(3)
r_letters(1:10)
r_letters(3, n = 10)
r_LETTERS(3)
r_LETTERS(1:10)
r_LETTERS(3, n = 10)
r_Letters(3)
r_Letters(1:10)
r_Letters(3, n = 10)
Description
Generates a set of Logical values.
Usage
r_lgl(prob = 0.5, ..., n = default_n(prob), .seed = NULL)
Arguments
prob vector of probability of TRUE results, between 0 & 1
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
r_lnorm 25
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A logical vector of length n
Examples
set_n(5)
r_lgl(0.9)
r_lgl(seq(0, 1, 0.1))
r_lgl(1 / 4, n = 10)
Description
Generates a set of Log Normal distributed values.
Usage
r_lnorm(
mean_log = 0,
sd_log = 1,
...,
n = default_n(mean_log, sd_log),
.seed = NULL
)
Arguments
mean_log vector of means (on the log scale)
sd_log vector of standard deviations (on the log scale), strictly positive
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
26 r_matrix
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_lnorm(10)
r_lnorm(10, 2)
r_lnorm(1:10)
r_lnorm(-2, n = 10)
Description
Generate a random matrix, given a rando function and it’s dimensions. By default, this will generate
a square matrix.
Usage
r_matrix(
engine,
row_names = NULL,
col_names = NULL,
...,
nrow = default_n(row_names),
ncol = default_n(col_names),
.seed = NULL
)
Arguments
engine The rando function that will be used to generate the random numbers
col_names, row_names
names to be assigned to the rows or columns. This is also used in deciding the
dimensions of the result.
r_nbinom 27
... Unused
nrow, ncol dimensions of the matrix. The default_n() function will provide a default
value within context.
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A matrix with nrow rows and ncol columns an a type as decided by the function passed to engine.
Examples
set_n(5)
r_matrix(r_norm)
r_matrix(r_unif,min=1,max=2)
r_matrix(r_norm,mean=10,sd=2,ncol=2)
Description
Generates a set of Negative Binomial distributed values. Only two of r, prob and mu can be pro-
vided.
Usage
r_nbinom(
r = NULL,
prob = 0.5,
...,
mu = NULL,
n = default_n(r, prob, mu),
.seed = NULL
)
28 r_norm
Arguments
r number of failure trials until stopping, strictly positive
prob vector of probabilities of success on each trial, between 0 & 1
... Unused
mu vector of means
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Note
It is important to note that this is the number of failures, and not the number of successes, as in
rnbinom(), so rnbinom(prob = x,...) is equivalent to r_nbinom(prob=1-x,...)
Examples
set_n(5)
r_nbinom(10, 0.5)
r_nbinom(1:10, mu = 2)
#'
r_nbinom(10, 0.2, n = 10)
Description
Generates a set of Normally distributed values.
Usage
r_norm(mean = 0, sd = 1, ..., n = default_n(mean, sd), .seed = NULL)
r_pois 29
Arguments
Value
Examples
set_n(5)
r_norm(10)
r_norm(10, 2)
r_norm(1:10)
r_norm(-2, n = 10)
Description
Usage
Arguments
rate vector of rates, strictly positive
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_pois(10)
r_pois(1:10)
r_pois(10, n = 10)
Description
Generates a Sample from a set, with replacement
Usage
r_sample(sample, weights = NULL, ..., n = default_n(), .seed = NULL)
Arguments
sample a set of values to choose from
weights a vector of weights, must be the same length as sample, between 0 & 1
... Unused
r_tdist 31
Value
A vector of length n of the same type as sample
Examples
set_n(15)
Description
Generates a set of Student’s T distributed values.
Usage
r_tdist(df, ..., n = default_n(df), .seed = NULL)
Arguments
df vector of degrees of freedom
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
32 r_unif
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Value
A numeric vector of length n
Examples
set_n(5)
r_tdist(10)
r_tdist(1:10)
r_tdist(10, n = 10)
Description
Generates a set of Uniformly distributed values.
Usage
r_unif(min = 0, max = 1, ..., n = default_n(min, max), .seed = NULL)
Arguments
min, max vectors of lower and upper limits of the distribution
... Unused
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
r_weibull 33
Value
A numeric vector of length n
Examples
set_n(5)
r_unif()
r_unif(1:5, 6:10)
r_unif(1:5, 10)
r_unif(n = 10)
Description
Generates a set of Weibull distributed values.
Usage
r_weibull(
shape,
scale = 1,
...,
b_scale = NULL,
B_scale = NULL,
n = default_n(shape, scale, b_scale, B_scale),
.seed = NULL
)
Arguments
shape vector of shape parameters, strictly positive
scale vector of scale parameters, strictly positive
... Unused
b_scale, B_scale
alternative definition of scale parameter, cannot be provided with scale, strictly
positive.
n number of observations to generate. The default_n() function will provide a
default value within context
.seed One of the following:
34 seed
• NULL (default) will not change the current seed. This is the usual case for
generating random numbers.
• A numeric value. This will be used to set the seed before generating the
random numbers. This seed will be stored with the results.
• TRUE. A random seed value will be generated and set as the seed before
the results are generated. Again, this will be stored with the results.
To extract the random seed from a previously generated set of values, use pull_seed()
Details
This function provides alternative definitions for the scale parameter depending on the user’s
parametrisation of the Weibull distribution, with k = shape.
Using λ = scale:
F (x) = 1 − exp(−(x/λ)k )
Using b = b_scale:
F (x) = 1 − exp(−bxk )
Using β = B_scale:
F (x) = 1 − exp(−(βx)k )
Value
A numeric vector of length n
Examples
set_n(5)
r_weibull(10)
r_weibull(1:10, 2)
r_weibull(1:10, scale = 2)
r_weibull(1:10, b_scale = 2)
r_weibull(1:10, B_scale = 2)
r_weibull(10, 2, n = 10)
Description
Functions related to generating random seeds and utilising them for reproducibility.
seed 35
Usage
gen_seed()
set_seed(seed)
fix_seed(reset = FALSE)
with_seed(seed, expression)
pull_seed(x)
Arguments
seed The random seed to be used
reset Should the fixed seed be forced to reset
expression expression to be evaluated
x object to extract the seed from
Details
Random values are generated based on the current seed used by the R system. This means by
deliberately setting a seed in R, we can make work reproducible.
Value
gen_seed() returns a single numeric value
with_seed() returns the value of the evaluated expression after with the relevant seed as an attribute
(if required)
pull_seed() returns a single numeric value
fix_seed() and set_seed() do not return anything
Functions
• gen_seed: Generates a random seed, which can be used in set_seed()
• set_seed: Sets the current seed
• fix_seed: Resets the seed to re-run code
• with_seed: Evaluates the expression after setting the seed. If seed is TRUE, then it first
generates a seed using gen_seed(). Results are output with the seed attached (if set).#’
• pull_seed: Extracts the seed used to generate the results of with_seed()
Examples
my_seed <- gen_seed()
set_seed(my_seed)
36 set_n
r_norm(n=10)
set_seed(my_seed)
r_norm(n=10)
fix_seed()
r_norm(n=3)
fix_seed()
r_norm(n=3)
fix_seed(reset=TRUE)
r_norm(n=3)
pull_seed(res)
Description
Set and get the global value for n for rando functions
Usage
set_n(n)
get_n()
Arguments
n value to set as the default n
Value
The current global default value for n.
set_n() returns this value invisibly
Examples
set_n(100)
get_n()
Index
pull_seed (seed), 34
r_bern, 12
r_beta, 13
r_binom, 14
r_cauchy, 15
r_cdf, 16
r_chisq, 17
r_exp, 18
r_fdist, 19
37