0% found this document useful (0 votes)
7 views19 pages

Lecture 6

Uploaded by

kabirsameer2008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views19 pages

Lecture 6

Uploaded by

kabirsameer2008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

Lecture 6: Series

Department of Mathematics
Indian Institute of Technology Guwahati

Jul – Nov 2025

Instructor: Rajen Kumar Sinha


Series
Convergence criteria


P ∞
P
Algebraic operations on series: Let xn and yn be
n=1 n=1
convergent with sums x and y respectively.
Convergence criteria


P ∞
P
Algebraic operations on series: Let xn and yn be
n=1 n=1
convergent with sums x and y respectively.
Then

P
1. (xn + yn ) is convergent with sum x + y
n=1
Convergence criteria


P ∞
P
Algebraic operations on series: Let xn and yn be
n=1 n=1
convergent with sums x and y respectively.
Then

P
1. (xn + yn ) is convergent with sum x + y
n=1
P∞
2. αxn is convergent with sum αx, where α ∈ R
n=1
Convergence criteria


P ∞
P
Algebraic operations on series: Let xn and yn be
n=1 n=1
convergent with sums x and y respectively.
Then

P
1. (xn + yn ) is convergent with sum x + y
n=1
P∞
2. αxn is convergent with sum αx, where α ∈ R
n=1

Cauchy criterion and Monotone sequence criterion for series


Convergence criteria


P ∞
P
Algebraic operations on series: Let xn and yn be
n=1 n=1
convergent with sums x and y respectively.
Then

P
1. (xn + yn ) is convergent with sum x + y
n=1
P∞
2. αxn is convergent with sum αx, where α ∈ R
n=1

Cauchy criterion and Monotone sequence criterion for series



P 1
Example: n is divergent.
n=1
Necessary condition for convergence


P
Result: If xn is convergent, then xn → 0.
n=1
Necessary condition for convergence


P
Result: If xn is convergent, then xn → 0.
n=1

P
Hence if xn 6→ 0, then xn cannot be convergent.
n=1
Necessary condition for convergence


P
Result: If xn is convergent, then xn → 0.
n=1

P
Hence if xn 6→ 0, then xn cannot be convergent.
n=1
Examples: The following series are not convergent.
∞ ∞
n2 +1 n
(−1)n n+2
P P
(i) (n+3)(n+4) (ii)
n=1 n=1
Test for convergence

Comparison test: Let (xn ) and (yn ) be sequences in R such that


for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0 .
Test for convergence

Comparison test: Let (xn ) and (yn ) be sequences in R such that


for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0 .
Then

P P∞
(i) yn is convergent ⇒ xn is convergent.
n=1 n=1
P∞ ∞
P
(ii) xn is divergent ⇒ yn is divergent.
n=1 n=1
Test for convergence

Comparison test: Let (xn ) and (yn ) be sequences in R such that


for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0 .
Then

P P∞
(i) yn is convergent ⇒ xn is convergent.
n=1 n=1
P∞ ∞
P
(ii) xn is divergent ⇒ yn is divergent.
n=1 n=1

Limit comparison test: Let (xn ) and (yn ) be sequences of positive


real numbers such that xynn → ` ∈ R.
Test for convergence

Comparison test: Let (xn ) and (yn ) be sequences in R such that


for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0 .
Then

P P∞
(i) yn is convergent ⇒ xn is convergent.
n=1 n=1
P∞ ∞
P
(ii) xn is divergent ⇒ yn is divergent.
n=1 n=1

Limit comparison test: Let (xn ) and (yn ) be sequences of positive


real numbers such that xynn → ` ∈ R.

P ∞
P
(i) If ` 6= 0, then xn is convergent iff yn is convergent.
n=1 n=1
P∞ ∞
P
(ii) If ` = 0, then yn is convergent ⇒ xn is convergent.
n=1 n=1
Condensation and integral tests
Cauchy’s condensation test: Let (xn ) be a decreasing sequence of
∞ ∞
2n x2n
P P
nonnegative real numbers. Then xn is convergent iff
n=1 n=1
is convergent.
Condensation and integral tests
Cauchy’s condensation test: Let (xn ) be a decreasing sequence of
∞ ∞
2n x2n
P P
nonnegative real numbers. Then xn is convergent iff
n=1 n=1
is convergent.
Examples:

P 1
1. p-series: np is convergent iff p > 1.
n=1
Condensation and integral tests
Cauchy’s condensation test: Let (xn ) be a decreasing sequence of
∞ ∞
2n x2n
P P
nonnegative real numbers. Then xn is convergent iff
n=1 n=1
is convergent.
Examples:

P 1
1. p-series: np is convergent iff p > 1.
n=1

P 1
2. n(log n)p is convergent iff p > 1.
n=2
Condensation and integral tests
Cauchy’s condensation test: Let (xn ) be a decreasing sequence of
∞ ∞
2n x2n
P P
nonnegative real numbers. Then xn is convergent iff
n=1 n=1
is convergent.
Examples:

P 1
1. p-series: np is convergent iff p > 1.
n=1

P 1
2. n(log n)p is convergent iff p > 1.
n=2

Integral Test: Let f : [1, ∞) → R be monotone P∞decreasing and


f (t) ≥ 0 for all t ∈ R[1, ∞). Then the series n=1 f (n) converges if
n
and only if limn→∞ 1 f (t)dt exists.
Condensation and integral tests
Cauchy’s condensation test: Let (xn ) be a decreasing sequence of
∞ ∞
2n x2n
P P
nonnegative real numbers. Then xn is convergent iff
n=1 n=1
is convergent.
Examples:

P 1
1. p-series: np is convergent iff p > 1.
n=1

P 1
2. n(log n)p is convergent iff p > 1.
n=2

Integral Test: Let f : [1, ∞) → R be monotone P∞decreasing and


f (t) ≥ 0 for all t ∈ R[1, ∞). Then the series n=1 f (n) converges if
n
and only if limn→∞ 1 f (t)dt exists.

P 1
Example: p-series: np is convergent iff p > 1.
n=1

You might also like